JPS60142303A - Multicore fiber for optical transmission and its manufacture - Google Patents

Multicore fiber for optical transmission and its manufacture

Info

Publication number
JPS60142303A
JPS60142303A JP58248120A JP24812083A JPS60142303A JP S60142303 A JPS60142303 A JP S60142303A JP 58248120 A JP58248120 A JP 58248120A JP 24812083 A JP24812083 A JP 24812083A JP S60142303 A JPS60142303 A JP S60142303A
Authority
JP
Japan
Prior art keywords
glass body
glass
optical fibers
fibers
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58248120A
Other languages
Japanese (ja)
Inventor
Shuzo Suzuki
鈴木 修三
Ichiro Ogasawara
小笠原 一郎
Makoto Sumita
真 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58248120A priority Critical patent/JPS60142303A/en
Publication of JPS60142303A publication Critical patent/JPS60142303A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/08Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with fibre bundle in form of plate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To improve the array quality of plural optical glass fiber consisting of a core and a clad and the uniformity of the distance between adjacent fibers by arranging plural glass fibers on a glass body in parallel, and welding part of the clads of the glass fibers to the glass body. CONSTITUTION:All optical fibers 1 are welded to the common glass body 8 at part 7 of their circumferences. Namely, the optical fibers 1 and glass body 8 are united lengthwise in terms of structure. This structure allows the individual optical fibers to be discriminated. For the purpose, plural preforms 12 are arrayed closely and supplied to heating furnaces 15 which function individually and then heated in the heating furnace 15. The glass body 13, on the other hand, is supplied to the heating furnaces 14 and also heated in the heating furnace 14. Those are heated individually and the both are assembled in the state where the surface of the glass body 13 is parallel to the array surface of the plural optical fibers when they are fused, thereby welding the respective optical fibers onto the glass body.

Description

【発明の詳細な説明】 〔発明の目的〕 本発明は実用的な多心コア光伝送用ファイバとして、各
々のコアを含むファイバの識別性、各ファイバの整列性
および隣り合う各コア間の距離の均一性を向上させた光
ファイバならびにその製造方法を提供しようとするもの
である。
[Detailed Description of the Invention] [Object of the Invention] The present invention provides a practical multi-core optical transmission fiber that improves the identification of fibers including each core, the alignment of each fiber, and the distance between adjacent cores. The present invention aims to provide an optical fiber with improved uniformity and a method for manufacturing the same.

〔従来技術とその問題点〕[Prior art and its problems]

多心コア光ファイバは複数本のコアとクラッドからなる
光ファイバで構成されており、それらのクラッド同志が
溶着し、機械的に一体化されている。
A multi-core optical fiber is composed of an optical fiber consisting of a plurality of cores and claddings, and the claddings are welded together and mechanically integrated.

これにより隣り合うコア間の距離を一定にし、多心コア
を同時に一括接続することを可能にしようとするもので
あるが、このため、接続時に若干の応力を加えても、多
心コアの配列が崩れないこと、およびコア、クラッドと
も物性のほぼ等しいガラスである必要がある。第1図に
従来の平行形多心コアカラスファイバを断面で示す。複
数本の光ファイバ1が平行に密接して束ねられた形状を
有しており、その外周は軸方向に一様な溝2を有した構
造のものである。この構造の多心コア光ファイバは左右
に対して対称な構成をなしているため、個々の多心コア
光ファイバを識別し、簡単に特定できないという欠点が
ある。光ケーブル内の各光ファイバを識別することは、
光ケーブル伝送路を建設する上で、必須の事柄である。
This is intended to make it possible to connect multiple cores at once by keeping the distance between adjacent cores constant, but for this reason, even if a slight stress is applied at the time of connection, the arrangement of the multiple cores will not change. The core and cladding must be made of glass that has approximately the same physical properties. FIG. 1 shows a cross section of a conventional parallel multi-core glass fiber. It has a shape in which a plurality of optical fibers 1 are closely bundled in parallel, and the outer periphery thereof has a uniform groove 2 in the axial direction. Since the multi-core optical fiber of this structure has a symmetrical configuration with respect to the left and right sides, there is a drawback that individual multi-core optical fibers cannot be easily identified. Identifying each optical fiber in an optical cable is
This is an essential matter when constructing optical cable transmission lines.

また第1図図示のものを製造する場合、通常複数本のプ
リフォ−ム(母材)を平行に密接に配置し、各プリフォ
ーム間を互いに結合した後、高温に加熱し、溶融させな
がら線引し、所定の細径寸法に仕上げる方法が採られて
いる。この方法によると、第2図に示すように、溶着時
、両側の光ファイバ3に引張られて内側の光ファイバ4
が扁平になったり、あるいは光ファイバの整列度が劣化
する等の問題を生しる。
In addition, when manufacturing the product shown in Figure 1, usually multiple preforms (base materials) are closely arranged in parallel, each preform is bonded to each other, and then heated to a high temperature and melted to create a wire. A method is adopted in which the material is drawn and finished to a predetermined narrow diameter. According to this method, as shown in FIG. 2, during welding, the inner optical fiber 4 is pulled by the optical fibers 3 on both sides.
This causes problems such as the optical fibers becoming flat or the degree of alignment of the optical fibers deteriorating.

〔発明の開示〕[Disclosure of the invention]

本発明はこのような従来の平行形多心ファイバの問題点
を解消しようとするものであり、コアとクラッドからな
る複数本のガラスファイバをガラス体」―に平行して配
置し、ガラスファイバのクラッドの一部をガラス体に溶
着させた光伝送用ファイバにあり、更にこの光伝送用フ
ァイバの製造方法にある。
The present invention aims to solve the problems of conventional parallel multi-core fibers, and involves arranging a plurality of glass fibers consisting of a core and a cladding in parallel to a glass body. The invention relates to an optical transmission fiber in which a part of the cladding is welded to a glass body, and also to a method for manufacturing the optical transmission fiber.

〔実施例〕〔Example〕

第3図(a ’L(b )、(c )、(d )は本発
明実施例の断面図である。5,6は例えば石英ガラスよ
りなる光ファイバのコアとクラッドである。
3(a'L(b), (c), and (d) are cross-sectional views of an embodiment of the present invention. 5 and 6 are the core and cladding of an optical fiber made of, for example, quartz glass.

第3図(a)において、全ての光ファイバ1はその円周
の一部7において共通のガラス体8に溶着されている。
In FIG. 3(a), all the optical fibers 1 are welded to a common glass body 8 at a portion 7 of their circumference.

隣り合う光コアイノ、<のクラッド6の円周の一部は9
において溶着されていてもよい。
Part of the circumference of the cladding 6 of the adjacent optical core ino is 9
It may be welded at.

光ファイバ1およびガラス体゛8は長手方向に亘り、構
造的に一体化されたものとなっている。本構造によれば
、個々の光ファイバを識別することが可能となる。例え
ば図示のようにガラス体8を基準にA、B、C,D、E
の光ファイバが識別できる。
The optical fiber 1 and the glass body 8 are structurally integrated in the longitudinal direction. According to this structure, it becomes possible to identify individual optical fibers. For example, as shown in the figure, A, B, C, D, E based on the glass body 8.
optical fibers can be identified.

第3図(b )、(c )はコア5.クラッド6よりな
る複数の光ファイバを両側からガラス体8,1oまたわ
IIではさんだ構造のものであり、第3図(b)におい
ては、ガラス体10に着色したものを用い、第3図(C
)においては、ガラス体11の寸法、例えば幅、厚さを
ガラス体8と異ならせ、各光ファイバを識別、特定でき
るようにしたものである。
FIGS. 3(b) and 3(c) show core 5. It has a structure in which a plurality of optical fibers made of cladding 6 are sandwiched between glass bodies 8 and 1o from both sides, and in FIG. 3(b), a colored glass body 10 is used, and C
), the dimensions of the glass body 11, such as width and thickness, are different from those of the glass body 8, so that each optical fiber can be identified and specified.

また第3図(d)はガラス体8の片側を折曲げ、非対称
形として識別の基準とするものである。
Further, in FIG. 3(d), one side of the glass body 8 is bent, and is used as a reference for identification as an asymmetric shape.

次に製造方法について説明する。Next, the manufacturing method will be explained.

第4図に本発明の特に第3図(a)に示す多心コア光伝
送用ガラスファイバの製造方法を概略図で示す。
FIG. 4 schematically shows a method of manufacturing the multi-core optical transmission glass fiber shown in FIG. 3(a) according to the present invention.

図においては、14.15は独立に機能する加熱炉であ
り、加熱炉+5に複数のプリフォーム12を近接配列し
て供給し、前記加熱炉15て加熱する。
In the figure, reference numerals 14 and 15 indicate heating furnaces that function independently, and a plurality of preforms 12 are supplied to the heating furnace +5 in a close arrangement and heated by the heating furnace 15.

一方加熱炉I4にガラス体13を供給し、前記加熱炉I
4で加熱する。これらを別々に加熱し、これらが溶融の
状態になったところ16で、前記ガラス体13の面と複
数の光ファイバの配列面とが平行になる状態において、
両者を集合し、各光ファイバをガラス体上に溶着する。
On the other hand, the glass body 13 is supplied to the heating furnace I4, and
Heat at 4. These are heated separately, and when they are in a molten state 16, the surface of the glass body 13 and the arrangement surface of the plurality of optical fibers are parallel to each other,
Both are assembled and each optical fiber is welded onto the glass body.

この場合、ガラス体13の粘度が溶着時に各光ファイバ
の粘度より高くなるように加熱−炉の温度を適切に設定
することにより、各光ファイバが扁平になることおよび
配列の乱れ等の問題は解消される。つまり、各光ファイ
バがカラス体」二に溶着した後に光ファイバの形状を崩
そうとする力が生じても、ガラス体の高粘度性により、
その力を吸収し、変形を防止できる。両者を集合したの
ち、再度加熱炉により溶融し線引してもよい。また、共
通の加熱炉で加熱し、溶着して線引きできるように、同
一加熱温度に対する溶着時の粘度がプリフォームのそれ
と同程度もしくは同程度以上のカラス体を用いてもよい
In this case, by appropriately setting the temperature of the heating furnace so that the viscosity of the glass body 13 is higher than the viscosity of each optical fiber during welding, problems such as flattening of each optical fiber and disordered arrangement can be avoided. It will be resolved. In other words, even if a force is generated that tries to break the shape of the optical fiber after each optical fiber is welded to the glass body, due to the high viscosity of the glass body,
It can absorb that force and prevent deformation. After gathering both, they may be melted again in a heating furnace and drawn. Furthermore, in order to be able to heat, weld, and draw wire in a common heating furnace, a glass body may be used whose viscosity at the time of welding at the same heating temperature is about the same level or higher than that of the preform.

更に第3図(b )、(c )に示したものについては
、ガラス体8に対し、着色を施したガラス体101幅が
あるいは厚みのことなるガラス体口が最終的に形成され
るように、予め加熱炉て加熱する段階で、ガラス体13
とは形状、色調のことなったカラス体か準備され、複数
本の光ファイバを前記ガラス体13とともにはさんだ状
態で、溶融接着され、そのまま、あるいは再加熱しなが
ら線引きをする。
Furthermore, in the case shown in FIGS. 3(b) and 3(c), the glass body 8 is coated with a colored glass body 101 so that glass body openings having different widths or thicknesses are finally formed. , the glass body 13 is heated in advance in a heating furnace.
A glass body having a different shape and color tone is prepared, and a plurality of optical fibers are sandwiched together with the glass body 13, melted and bonded, and then drawn as is or while being reheated.

この場合、ガラス体13とともに複数本の光ファイバを
はさむガラス体の溶融粘度についてはすでにガラス体1
3と複数本の光ファイバの溶着時溶融粘度について説明
したところと同一の考え方が適用され、更に光ファイバ
をはさむ両ガラス体の溶融粘度はほぼ等しいことが極め
て望ましい。
In this case, the melt viscosity of the glass body sandwiching the plurality of optical fibers together with the glass body 13 has already been determined.
The same concept as described in No. 3 regarding the melt viscosity during welding of a plurality of optical fibers is applied, and furthermore, it is extremely desirable that the melt viscosities of both glass bodies sandwiching the optical fibers be approximately equal.

〔効果〕〔effect〕

本発明によれば、従来の多心コア光ファイバては不ij
J能てあった各光ファイバの識別、特定か容易に可能と
なり、接続の困難性を克服するととかてきる。
According to the present invention, conventional multi-core optical fibers can be
It becomes possible to easily identify and specify each optical fiber that has been used, and to overcome difficulties in connection.

他方製造上においては、従来第1図のような多心コア光
ファイバを製造する場合、多数本のプリフォームを整列
して一列にならべたときても、線引時には、両側の光フ
ァイバに外向きの力で引張られ、内側の光ファイバか第
2図に示したように扁平になることかあり、整列性も崩
れやすいという問題があったが、本発明の製造方法によ
れば、複数本の光ファイバをそれよりも溶着時の粘度の
高いガラス体上に整列し、溶着するため、各光ファイバ
の断面形状を崩す力をガラス体で吸収でき、1−記した
従来技術の問題点が解消される。
On the other hand, in manufacturing, when manufacturing a multi-core optical fiber as shown in Figure 1, even if a large number of preforms are aligned and lined up in a line, there is a problem with the optical fibers on both sides when drawing. There was a problem in that the inner optical fibers were pulled by the force in the direction, causing them to become flat as shown in Figure 2, and the alignment was likely to collapse.However, according to the manufacturing method of the present invention, it is possible to Because the optical fibers are aligned and welded on a glass body that has a higher viscosity during welding, the glass body can absorb the force that disrupts the cross-sectional shape of each optical fiber, and the problems of the prior art described in 1-1 can be avoided. It will be resolved.

この結果本発明により、複数の光ファイバの整列性およ
び隣接するファイ公開の距離の均一性が非常に高いもの
が得られ、すてに述へたように、各光ファイバが識別で
きるため、多心コア光ファイバの接続を一括して行うこ
とがより容易となるものである。
As a result, according to the present invention, the alignment of a plurality of optical fibers and the uniformity of the distance between adjacent fibers are very high.As mentioned above, since each optical fiber can be identified, it is possible to This makes it easier to connect the core optical fibers all at once.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多心コア光ファイバの一例を断面で示す
。 第2図は第1図多心コア光フアイバの製造により生する
歪の説明図である。 第3図(a )、(b L(c )、(d )は本発明
の実施例のそれぞれ断面を示す。 第4図は本発明の製造方法の(既略図である。 1.3・・・光ファイバ、2・・・溝、4・・・扁平に
歪んだ光ファイバ、5・・・光ファイバのコア、6・・
・同クラッド、8.10,11・・・カラス体、I2プ
リフォーム、13・・・カラス体、14.15・・・加
熱炉。 ■3図
FIG. 1 shows a cross section of an example of a conventional multi-core optical fiber. FIG. 2 is an explanatory diagram of distortion caused by manufacturing the multi-core optical fiber shown in FIG. Figures 3(a), (b), (c), and (d) respectively show cross sections of embodiments of the present invention. Figure 4 is a schematic diagram of the manufacturing method of the present invention. 1.3...・Optical fiber, 2...Groove, 4...Flattened optical fiber, 5...Core of optical fiber, 6...
- The same cladding, 8.10, 11... Glass body, I2 preform, 13... Glass body, 14.15... Heating furnace. ■Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)コアとクラッドからなる複数本のガラスファイバ
がガラス体上に平行して配置され、前記クラッドの一部
がガラス体に溶着されたことを特徴とする多心コア光伝
送用ファイバ。
(1) A multicore optical transmission fiber characterized in that a plurality of glass fibers each consisting of a core and a cladding are arranged in parallel on a glass body, and a part of the cladding is welded to the glass body.
(2)溶着時の粘度がガラスファイバのそれよりも高い
カラス体上にコアとクラッドからなる複数本のガラスフ
ァイバを平行に配置し、0;1記クラツドを溶着するこ
とを特徴とする多心コア光伝送用ファイバの製造方法。
(2) A multi-core structure characterized by arranging a plurality of glass fibers consisting of a core and a clad in parallel on a glass body whose viscosity at the time of welding is higher than that of the glass fiber, and welding the 0 and 1 clads. A method for manufacturing core optical transmission fiber.
JP58248120A 1983-12-29 1983-12-29 Multicore fiber for optical transmission and its manufacture Pending JPS60142303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248120A JPS60142303A (en) 1983-12-29 1983-12-29 Multicore fiber for optical transmission and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248120A JPS60142303A (en) 1983-12-29 1983-12-29 Multicore fiber for optical transmission and its manufacture

Publications (1)

Publication Number Publication Date
JPS60142303A true JPS60142303A (en) 1985-07-27

Family

ID=17173523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248120A Pending JPS60142303A (en) 1983-12-29 1983-12-29 Multicore fiber for optical transmission and its manufacture

Country Status (1)

Country Link
JP (1) JPS60142303A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137150A (en) * 1974-04-17 1975-10-31
JPS5732910B2 (en) * 1975-09-16 1982-07-14
JPS57136607A (en) * 1981-01-12 1982-08-23 Xerox Corp Assembly of optical fiber
JPS5821210A (en) * 1981-07-30 1983-02-08 Fujitsu Ltd Production of optical fiber sheet
JPS587700B2 (en) * 1975-09-02 1983-02-10 昭和電工株式会社 Seizouhou
JPS5813505B2 (en) * 1972-12-15 1983-03-14 ピ−ピ−ジ− インダストリ−ズ インコ−ポレ−テツド coating equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813505B2 (en) * 1972-12-15 1983-03-14 ピ−ピ−ジ− インダストリ−ズ インコ−ポレ−テツド coating equipment
JPS50137150A (en) * 1974-04-17 1975-10-31
JPS587700B2 (en) * 1975-09-02 1983-02-10 昭和電工株式会社 Seizouhou
JPS5732910B2 (en) * 1975-09-16 1982-07-14
JPS57136607A (en) * 1981-01-12 1982-08-23 Xerox Corp Assembly of optical fiber
JPS5821210A (en) * 1981-07-30 1983-02-08 Fujitsu Ltd Production of optical fiber sheet

Similar Documents

Publication Publication Date Title
JPS5848014A (en) Manufacture of optical distributor
US3901674A (en) Method of making optical fiber
EP0486297A2 (en) Optical fiber coupler
JPS60142303A (en) Multicore fiber for optical transmission and its manufacture
JPS6126005A (en) Production for image fiber
JP2003201140A (en) Method of manufacturing multicore optical fiber and optical fiber preform and multicore optical fiber
JPH07253518A (en) Production of star coupler and star coupler
JPS6114489B2 (en)
JPS62162633A (en) Production of image guide
JPS63129307A (en) Star coupler and its manufacture
JP3871737B2 (en) Manufacturing method of tape-shaped multi-core fiber
JPS6146415B2 (en)
JP3428168B2 (en) Manufacturing method of optical fiber coupler
JPS6146414B2 (en)
JPS60225104A (en) Manufacture of multicore optical fiber
JPS6186443A (en) Manufacture of flexible image guide
JPS6188206A (en) Image fiber and its manufacture
JPH0812301B2 (en) Quartz-based image fiber
JPH02118502A (en) Image fiber and production thereof
JPS6052803A (en) Production of image guide
JPH05203821A (en) Optical fiber plate
JP3101958B2 (en) Broadband coupler and method of manufacturing the same
JPS60233604A (en) Method for arranging optical fiber into jacket pipe
JP3816128B2 (en) Method for producing radiation-resistant tape-type multi-core fiber
JP2677666B2 (en) Manufacturing method of optical fiber coupler