JP3871737B2 - Manufacturing method of tape-shaped multi-core fiber - Google Patents

Manufacturing method of tape-shaped multi-core fiber Download PDF

Info

Publication number
JP3871737B2
JP3871737B2 JP20757096A JP20757096A JP3871737B2 JP 3871737 B2 JP3871737 B2 JP 3871737B2 JP 20757096 A JP20757096 A JP 20757096A JP 20757096 A JP20757096 A JP 20757096A JP 3871737 B2 JP3871737 B2 JP 3871737B2
Authority
JP
Japan
Prior art keywords
base material
tape
core
shaped multi
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20757096A
Other languages
Japanese (ja)
Other versions
JPH1039148A (en
Inventor
恵司 金田
尚樹 社本
孝司 妻沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP20757096A priority Critical patent/JP3871737B2/en
Publication of JPH1039148A publication Critical patent/JPH1039148A/en
Application granted granted Critical
Publication of JP3871737B2 publication Critical patent/JP3871737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ラインセンサ、ライトガイド等に用いられるテープ状マルチコアファイバの製造方法に関し、細径コアにも係わらずコア配列の乱れが少ないものを提供する。
【0002】
【従来の技術】
テープ状マルチコアファイバの製造方法として、本発明者等は先に特願平6−90743号と特願平6−106248号を提案している。
前者は、スリット状の貫通孔を有する石英板を用意し、そのスリット状の貫通孔内に光ファイバを一列に並べてそれを母材とし、一端から溶融線引きしてテープ状マルチコアファイバとする方法である。また、後者は幅広い溝を有する石英板を用意し、その溝に光ファイバを一列に並べ、その上に石英板を被せて母材とし、一端から溶融線引きしてテープ状マルチコアファイバとする方法である。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの方法では、細径のコアを有するテープ状マルチコアファイバを得ようとして、スリット状の貫通孔もしくは幅広の溝に整列させる光ファイバの径を100μm以下にすると細過ぎて整列が困難となり、時として得られたテープ状マルチコアファイバは画素のズレ、空き等が生じたものとなり、歩留りが上がらないという問題があった。
【0004】
【課題を解決するための手段】
この発明は、以上の問題の解決を図ったもので、その特徴とする請求項1記載の発明は、所定長さの石英ガラス系の光ファイバを複数本並列させて相互に固着して一次母材とする工程と、この一次母材をその一端から溶融線引きした後、所定長さに切断して二次母材とする工程と、この二次母材を純水に湿らせて、その複数個を溝付の石英ガラス系の板状体の溝内に整列させて収容し、その上に石英ガラス系の板状体を被せ相互に固着させて三次母材とする工程と、この三次母材をその一端から溶融線引きしてテープ状マルチコアファイバとする工程とからなることを特徴とするテープ状マルチコアファイバの製造方法にある。
【0005】
また、その特徴とする請求項2記載の発明は、所定長さの石英ガラス系の光ファイバを複数本並列させて相互に固着して一次母材とする工程と、この一次母材をその一端から溶融線引きした後、所定長さに切断して二次母材とする工程と、この二次母材の複数個をスリット付の石英ガラス系の板状体のスリット内に純水中で超音波振動をかけながら挿入させて三次母材とする工程と、この三次母材をその一端から溶融線引きしてテープ状マルチコアファイバとする工程とからなることを特徴とするテープ状マルチコアファイバの製造方法にある。
【0006】
【発明の実施の形態】
図1〜4はこの発明方法の一実施例を示す説明図である。図1に於いて、1は一次母材で、外径0.5〜3mm程度、長さ100〜1000mm程度の石英系光ファイバ(例えばGeO2 −SiO2 コア、SiO2 クラッド、コアとクラッドとの比屈折率差Δ=1.0%)を5〜20本程度一列に並べ、相互に酸水素炎バーナ等で溶着加工してすだれ状としたものである。このときのファイバ同士の溶着加工は、その全長にわたって行なうことは必ずしも必要ではなく、長さ500mm程度の母材の場合、両端と中間部の3ケ所で良い。
【0007】
このすだれ状の一次母材を一端から溶融線引きし、適宜長さに切断して所望サイズ(長さ100〜500mm,幅0.5〜5mm,高さ0.1〜0.25mm程度)の二次母材とする。この線引きのときに炉の温度を2000〜2200℃に調整することによって各ファイバの側面同士が融着された、所望の径の断面形状が保存されたものがえられる。
なお、線引き開始時の錘として一次母材の先端に断面のサイズが略等しい石英板を溶着してもよい。
【0008】
一方、図2に示すような幅広い溝22を有する石英板2が用意される。この石英板の寸法は典型的には幅100mm,厚さ5mm,長さ500mm程度であり、また、溝22の幅は石英板の幅よりも2〜4mm狭く、かつ、20〜200個の二次母材が一列に並べられる幅とされ、更に、溝の深さは50〜2000μm、特に、100〜200μmが好適とされている。
【0009】
そして、この石英板2の溝22に、図3に示すように二次母材を複数個一列に並べる。この整列作業には乾燥した二次母材を用いても良いが、純水等に湿らせて整列させる方がスムーズに整列させることができる。
この二次母材が収容された石英板の上に図4に示すように石英板3の蓋をし、上下の石英板の重ねられた外側面を酸水素バーナ等で溶着し三次母材4とする。この三次母材4を加熱炉を用いて1700〜2000℃に加熱し、その一端から溶融線引きして幅0.5〜10mm(500〜10000μm)、厚さ25〜500μmの所望のテープ状マルチコアファイバとする。
【0010】
なお、このテープ状マルチコアファイバ上にはその線引き直後に熱硬化性樹脂や紫外線硬化型樹脂等のコーティングが施される。
また、線引きに先立って、図5に示すように三次母材4の一端に石英管5を取り付けるとともに他端に断面のサイズが等しいダミーの石英板6を溶着し、石英管5側から真空引きしつつ、ダミーの石英板6側から溶融線引きするようにしてやれば、得られるテープ状マルチコアファイバに泡等が入ることがなく、また、三次母材の大半を製品となしうるので効率的である。
【0011】
図6は、この発明方法の他の例に用いられるスリット状の貫通孔100を有する石英板10で、その幅、厚さ、長さは上記石英板のそれと同一サイズで、スリットの幅は並列させる二次母材の個数によるがその幅よりも僅かだけ大きくされている。そして、このスリット内に所定個数の二次母材を一列に挿入して三次母材とする。
なお、二次母材のスリット内への挿入に際しては、純水中で超音波振動をかけながら行なうと挿入が容易にできる。その後の取扱は、全く上記例と同様にして行なうことができる。
【0012】
【実施例】
実施例1
直径2mmφ、長さ500mm石英系ファイバ(例えばGeO2 −SiO2 コア、SiO2 クラッド、コアとクラッドとの比屈折率差Δ=1%)を15本用意した。このファイバを一列に並べ、これらの両端と中央部を相互に酸水素バーナで溶着して一次母材とし、この一次母材を2000℃に加熱してその一端から溶融線引きして幅3mm、厚さ0.2mmのテープ状ファイバとし、これを長さ450mmに切断して二次母材としたものを15個用意した。
一方、幅48mm、厚さ2.5mm、長さ500mm、溝の幅45mm、深さ0.21mmの石英ガラス板を用意し、この溝の中に純水に湿らせた15個の二次母材を一列に並べ、乾燥させその上に幅48mm、厚さ2.5mm、長さ500mmの石英ガラス板を被せ、この両石英ガラス板の重ね合わせ部分を酸水素バーナで溶着し三次母材とした。この三次母材の一端にダミーの石英ガラス板を溶着するとともに他端には石英管を溶着し、この石英管側から真空引きしつつダミーの石英ガラス板側を2170℃に加熱して溶融線引きし長さ160m、幅2.4mm、厚さ0.25mm、コア数225のテープ状マルチコアファイバとし、その上に100μm厚さに紫外線硬化型樹脂をコーティングした。
得られたテープ状マルチコアファイバは、画素径が7.5μmと細いにもかかわらず画素のズレ、画素の空きのないものであった。
【0013】
実施例2
二次母材として実施例1と同じものを用いた。一方、幅48mm、厚さ5mm、長さ500mm、スリットの幅45mm、高さ0.21mmの石英ガラス板を用意し、純水中でスリット内に15個の二次母材を超音波振動をかけながら一列に整列させ、これを乾燥させて三次母材とした。
その後は実施例1と同様にして、長さ160m、幅2.4mm、厚さ0.25mm、コア数225のテープ状マルチコアファイバとし、その上に100μm厚さに紫外線硬化型樹脂をコーティングした。
得られたテープ状マルチコアファイバは、画素径が7.5μmと細いにもかかわらず画素のズレ、画素の空きのないものであった。
【0014】
【発明の効果】
この発明方法は、予め複数のファイバを用意し、これらを一列に配列して相互に固着してすだれ状になし、これを溶融線引きしたものの複数本を板状体に形成された溝あるいはスリット内に一列に収容する方法であるので、ファイバの整列が容易であり、細径のファイバを用いても画素の配列に乱れのないテープ状マルチコアファイバがえられる。
【図面の簡単な説明】
【図1】テープ状に配列したマルチコアファイバの斜視図。
【図2】テープ状に配列したマルチコアファイバを収容する石英板の斜視図。
【図3】石英板に2次母材を収容した状態の斜視図。
【図4】石英板に2次母材を収容し蓋をした状態の斜視図。
【図5】三次母材の一端に石英管を取付け他端にダミー石英管を取り付けた状態の側面図。
【図6】スリット状貫通孔を有する石英板10の斜視図。
【符号の説明】
1 一次母材
2 石英板
22 溝
3 石英板の蓋
4 三次母材
5 石英管
6 ダミーの石英板
10 石英板
100 スリット条貫通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a tape-shaped multi-core fiber used for a line sensor, a light guide, and the like, and provides a method with little disturbance in the core arrangement regardless of a small-diameter core.
[0002]
[Prior art]
As a method for manufacturing a tape-shaped multi-core fiber, the present inventors have previously proposed Japanese Patent Application No. 6-90743 and Japanese Patent Application No. 6-106248.
The former is a method in which a quartz plate having slit-like through holes is prepared, optical fibers are arranged in a row in the slit-like through holes and used as a base material, and melt drawing is performed from one end to form a tape-like multi-core fiber. is there. The latter is a method in which a quartz plate having a wide groove is prepared, optical fibers are arranged in a row in the groove, a quartz plate is placed on the quartz plate, and a base material is formed. is there.
[0003]
[Problems to be solved by the invention]
However, in these methods, in order to obtain a tape-shaped multi-core fiber having a thin core, if the diameter of the optical fiber aligned with the slit-like through hole or wide groove is set to 100 μm or less, it becomes too thin and difficult to align. In some cases, the tape-shaped multi-core fiber obtained sometimes has pixel misalignment, vacancy, etc., and the yield does not increase.
[0004]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems. The invention according to claim 1 is characterized in that a plurality of optical fibers of a predetermined length of silica glass system are arranged in parallel and fixed to each other to form a primary mother. A step of melting the primary base material from one end thereof, cutting it into a predetermined length and making it a secondary base material, and moistening the secondary base material in pure water, A step of placing the individual pieces in a groove in a grooved quartz glass plate and covering them with a quartz glass plate to fix them together to form a tertiary base material; A tape-shaped multi-core fiber manufacturing method characterized by comprising a step of melting and drawing a material from one end to form a tape-shaped multi-core fiber.
[0005]
The invention according to claim 2 is characterized in that a plurality of silica glass optical fibers having a predetermined length are arranged in parallel and fixed to each other to form a primary base material, and the primary base material is one end thereof. And then drawing the molten metal into a secondary base material by cutting it into a predetermined length , and superimposing a plurality of secondary base materials in pure water in the slits of a quartz glass plate with a slit. process and method for producing a tape-shaped multicore fiber characterized by comprising the tertiary base material and a step of a tape-like multi-core fiber to melt drawn from one end thereof which is inserted while applying ultrasonic vibration to the tertiary base material It is in.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
1 to 4 are explanatory views showing an embodiment of the method of the present invention. In FIG. 1, reference numeral 1 denotes a primary base material, which is a quartz optical fiber having an outer diameter of about 0.5 to 3 mm and a length of about 100 to 1000 mm (for example, GeO 2 —SiO 2 core, SiO 2 cladding, core and cladding) The relative refractive index difference Δ = 1.0%) is arranged in a line of about 5 to 20 and welded with an oxyhydrogen flame burner or the like to form an interdigital shape. It is not always necessary to perform the welding process between the fibers at this time, and in the case of a base material having a length of about 500 mm, it may be at three locations, both ends and an intermediate portion.
[0007]
This interdigital primary base material is melt-drawn from one end and cut to an appropriate length to obtain a desired size (length 100 to 500 mm, width 0.5 to 5 mm, height 0.1 to 0.25 mm). The next base material. By adjusting the furnace temperature to 2000 to 2200 ° C. at the time of this drawing, one in which the cross-sectional shape of a desired diameter is preserved by fusing the side surfaces of each fiber is obtained.
Note that a quartz plate having a substantially equal cross-sectional size may be welded to the tip of the primary base material as a weight at the start of drawing.
[0008]
On the other hand, a quartz plate 2 having a wide groove 22 as shown in FIG. 2 is prepared. The dimensions of the quartz plate are typically about 100 mm wide, 5 mm thick, and 500 mm long. The width of the groove 22 is 2 to 4 mm narrower than the width of the quartz plate, and 20 to 200 two. The width is set such that the next base material is arranged in a line, and the depth of the groove is preferably 50 to 2000 μm, particularly 100 to 200 μm.
[0009]
Then, a plurality of secondary base materials are arranged in a line in the groove 22 of the quartz plate 2 as shown in FIG. For this alignment work, a dried secondary base material may be used, but the alignment can be performed more smoothly by being wetted with pure water or the like.
As shown in FIG. 4, the quartz plate 3 is covered on the quartz plate in which the secondary base material is accommodated, and the outer surfaces on which the upper and lower quartz plates are overlapped are welded with an oxyhydrogen burner or the like to form the tertiary base material 4. And This tertiary preform 4 is heated to 1700-2000 ° C. using a heating furnace, melt drawn from one end thereof, and a desired tape-shaped multicore fiber having a width of 0.5-10 mm (500-10000 μm) and a thickness of 25-500 μm. And
[0010]
The tape-like multi-core fiber is coated with a thermosetting resin or an ultraviolet curable resin immediately after the drawing.
Prior to drawing, a quartz tube 5 is attached to one end of the tertiary base material 4 and a dummy quartz plate 6 having the same cross-sectional size is welded to the other end as shown in FIG. However, if melt drawing is performed from the side of the dummy quartz plate 6, it is efficient because bubbles or the like do not enter into the obtained tape-shaped multi-core fiber and most of the tertiary base material can be made into a product. .
[0011]
FIG. 6 shows a quartz plate 10 having a slit-like through hole 100 used in another example of the method of the present invention. The width, thickness and length of the quartz plate 10 are the same as that of the quartz plate, and the slit width is parallel. Depending on the number of secondary base materials to be made, it is slightly larger than the width. Then, a predetermined number of secondary base materials are inserted into this slit in a row to form a tertiary base material.
The insertion of the secondary base material into the slit can be facilitated by performing ultrasonic vibration in pure water. Subsequent handling can be performed in exactly the same manner as in the above example.
[0012]
【Example】
Example 1
Fifteen silica fibers having a diameter of 2 mmφ and a length of 500 mm (for example, GeO 2 —SiO 2 core, SiO 2 clad, relative refractive index difference between core and clad Δ = 1%) were prepared. These fibers are arranged in a row, and both ends and the center are welded to each other with an oxyhydrogen burner to form a primary base material. The primary base material is heated to 2000 ° C. and melt drawn from one end to obtain a width of 3 mm and a thickness. Fifteen pieces of tape-like fibers having a thickness of 0.2 mm were prepared and cut into a length of 450 mm to form secondary base materials.
On the other hand, a quartz glass plate having a width of 48 mm, a thickness of 2.5 mm, a length of 500 mm, a groove width of 45 mm, and a depth of 0.21 mm is prepared, and 15 secondary mothers moistened with pure water in the groove. The materials are arranged in a row, dried and covered with a quartz glass plate having a width of 48 mm, a thickness of 2.5 mm, and a length of 500 mm, and the overlapped portion of both quartz glass plates is welded with an oxyhydrogen burner to form a tertiary base material. did. A dummy quartz glass plate is welded to one end of the tertiary base material and a quartz tube is welded to the other end, and the dummy quartz glass plate side is heated to 2170 ° C. while evacuating from the quartz tube side, and melt drawing is performed. A tape-shaped multi-core fiber having a length of 160 m, a width of 2.4 mm, a thickness of 0.25 mm, and a core number of 225 was coated with an ultraviolet curable resin to a thickness of 100 μm.
The obtained tape-shaped multi-core fiber had no pixel deviation and no pixel vacancy despite the thin pixel diameter of 7.5 μm.
[0013]
Example 2
The same secondary base material as in Example 1 was used. On the other hand, a quartz glass plate having a width of 48 mm, a thickness of 5 mm, a length of 500 mm, a slit width of 45 mm, and a height of 0.21 mm is prepared, and ultrasonic vibration is applied to 15 secondary base materials in the slit in pure water. They were arranged in a row while being applied, and dried to obtain a tertiary base material.
Thereafter, in the same manner as in Example 1, a tape-shaped multi-core fiber having a length of 160 m, a width of 2.4 mm, a thickness of 0.25 mm, and a core number of 225 was formed, and an ultraviolet curable resin was coated thereon to a thickness of 100 μm.
The obtained tape-shaped multi-core fiber had no pixel deviation and no pixel vacancy despite the thin pixel diameter of 7.5 μm.
[0014]
【The invention's effect】
In the method of the present invention, a plurality of fibers are prepared in advance, arranged in a row and fixed to each other to form an interdigital shape, and melted and drawn into a plurality of grooves or slits formed in a plate-like body. Therefore, it is easy to align the fibers, and a tape-shaped multi-core fiber that does not disturb the pixel arrangement even when a thin fiber is used can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view of multi-core fibers arranged in a tape shape.
FIG. 2 is a perspective view of a quartz plate that accommodates multi-core fibers arranged in a tape shape.
FIG. 3 is a perspective view showing a state in which a secondary base material is accommodated in a quartz plate.
FIG. 4 is a perspective view of a state in which a secondary base material is accommodated in a quartz plate and covered.
FIG. 5 is a side view of a state in which a quartz tube is attached to one end of a tertiary base material and a dummy quartz tube is attached to the other end.
FIG. 6 is a perspective view of a quartz plate 10 having slit-like through holes.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Primary base material 2 Quartz plate 22 Groove 3 Quartz plate cover 4 Tertiary base material 5 Quartz tube 6 Dummy quartz plate 10 Quartz plate 100 Slit strip through-hole

Claims (2)

所定長さの石英ガラス系の光ファイバを複数本並列させて相互に固着して一次母材とする工程と、この一次母材をその一端から溶融線引きした後、所定長さに切断して二次母材とする工程と、この二次母材を純水に湿らせて、その複数個を溝付の石英ガラス系の板状体の溝内に整列させて収容し、その上に石英ガラス系の板状体を被せ相互に固着させて三次母材とする工程と、この三次母材をその一端から溶融線引きしてテープ状マルチコアファイバとする工程とからなることを特徴とするテープ状マルチコアファイバの製造方法。A process in which a plurality of silica glass optical fibers having a predetermined length are arranged in parallel and fixed to each other to form a primary base material, and the primary base material is melt-drawn from one end thereof, and then cut into a predetermined length. a step of the next preform, the secondary preform moistened in pure water, the plurality houses are aligned in the groove of the plate-like body of silica glass-based grooved quartz glass thereon A tape-shaped multi-core comprising a step of covering a system plate-like body and fixing them together to form a tertiary base material, and a step of melting and drawing the tertiary base material from one end thereof to form a tape-shaped multi-core fiber Fiber manufacturing method. 所定長さの石英ガラス系の光ファイバを複数本並列させて相互に固着して一次母材とする工程と、この一次母材をその一端から溶融線引きした後、所定長さに切断して二次母材とする工程と、この二次母材の複数個をスリット付の石英ガラス系の板状体のスリット内に純水中で超音波振動をかけながら挿入させて三次母材とする工程と、この三次母材をその一端から溶融線引きしてテープ状マルチコアファイバとする工程とからなることを特徴とするテープ状マルチコアファイバの製造方法。A process in which a plurality of silica glass optical fibers having a predetermined length are arranged in parallel and fixed to each other to form a primary base material, and the primary base material is melt-drawn from one end thereof, and then cut into a predetermined length. A step of forming a secondary base material, and a step of inserting a plurality of secondary base materials into a slit of a quartz glass plate with a slit while applying ultrasonic vibration in pure water to form a tertiary base material And a step of melting and drawing the tertiary base material from one end thereof to form a tape-shaped multicore fiber.
JP20757096A 1996-07-19 1996-07-19 Manufacturing method of tape-shaped multi-core fiber Expired - Fee Related JP3871737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20757096A JP3871737B2 (en) 1996-07-19 1996-07-19 Manufacturing method of tape-shaped multi-core fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20757096A JP3871737B2 (en) 1996-07-19 1996-07-19 Manufacturing method of tape-shaped multi-core fiber

Publications (2)

Publication Number Publication Date
JPH1039148A JPH1039148A (en) 1998-02-13
JP3871737B2 true JP3871737B2 (en) 2007-01-24

Family

ID=16541947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20757096A Expired - Fee Related JP3871737B2 (en) 1996-07-19 1996-07-19 Manufacturing method of tape-shaped multi-core fiber

Country Status (1)

Country Link
JP (1) JP3871737B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528755B2 (en) * 2000-04-11 2003-03-04 Branson Ultrasonics Corporation Light guide for laser welding
KR102315128B1 (en) * 2018-05-25 2021-10-19 주식회사 케이티 Apparatus for converting multi-core optical cable and method thereof
CN113843706B (en) * 2021-10-21 2023-08-15 湖州东科电子石英股份有限公司 Method for machining long holes of quartz base

Also Published As

Publication number Publication date
JPH1039148A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
US6078716A (en) Thermally expanded multiple core fiber
US3920432A (en) Method of fabricating an optical fiber ribbon
JP3292882B2 (en) Method of forming an enlarged tapered hole in a shaft hole of a capillary tube
JPS6240403A (en) Method and apparatus for forming fiber optic coupler
JP3362329B2 (en) Optical fiber connecting member, manufacturing method and connecting method
EP0212954A2 (en) Method of making low loss fiber optic coupler
JP2533014Y2 (en) Permanent splicer for ribbon-shaped multi-core optical fiber
JPS6240404A (en) Low loss fiber optic coupler and manufacture thereof
JPH0447285B2 (en)
JPH06214135A (en) Fiber optic coupler and its formation method
JP3871737B2 (en) Manufacturing method of tape-shaped multi-core fiber
JPS62253105A (en) Single mode optical fiber coupler and manufacture thereof
US5889908A (en) 1xN fiber optic coupler/splitter
JPS63217314A (en) Production of optical branching filter
JPH0548445B2 (en)
JPH0574804B2 (en)
EP0672923A1 (en) Method for fabricating star coupler for interconnecting optical fibers and a star coupler
JPS6114489B2 (en)
JPH07294755A (en) Production of tape-shaped multicore fiber
JP3816128B2 (en) Method for producing radiation-resistant tape-type multi-core fiber
JPH0130768B2 (en)
JP3792275B2 (en) Method for producing radiation-resistant tape-type multi-core fiber
JP2677666B2 (en) Manufacturing method of optical fiber coupler
JPS6234695B2 (en)
JPS62164009A (en) Production of optical distributor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees