JPS60140778A - Measuring device for astigmatism of semiconductor laser - Google Patents

Measuring device for astigmatism of semiconductor laser

Info

Publication number
JPS60140778A
JPS60140778A JP25063483A JP25063483A JPS60140778A JP S60140778 A JPS60140778 A JP S60140778A JP 25063483 A JP25063483 A JP 25063483A JP 25063483 A JP25063483 A JP 25063483A JP S60140778 A JPS60140778 A JP S60140778A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
astigmatism
amount
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25063483A
Other languages
Japanese (ja)
Other versions
JPH0422035B2 (en
Inventor
Noboru Ito
昇 伊藤
Sadao Mizuno
定夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25063483A priority Critical patent/JPS60140778A/en
Publication of JPS60140778A publication Critical patent/JPS60140778A/en
Publication of JPH0422035B2 publication Critical patent/JPH0422035B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Abstract

PURPOSE:To measure the astigmatism of a semiconductor laser with high accuracy by cutting the enlarged image of a light-emitting section for the semiconductor laser from two directions of the joining surface of the semiconductor laser and the direction rectangular to the joining surface at the same time. CONSTITUTION:Knife edges 15a, 15b capable of moving in the direction x of the joining surface and the y direction of the direction orthogonal to the joining surface of a semiconductor laser 1 progress toward an optical axis, and luminous flux is interrupted in succession by the edges. When the knife blades of these edges 15a, 15b are moved and cross optical beams, the total amount of light reception of a light-amount measuring section 16 is kept constant where beams are not interrupted at all, and slowly reduces with the interruption of beams, and the amount of light is brought to 0 where more separate from a position where beams are interrupted completely. An output from the measuring section 16 is differentiated by a differentiating circuit 19 and light intensity is obtained becuase light intensity is in proportion to the change of the amount of light in the case when the edges 15a, 15b are moved by an extremely slight fixed amount, that is, it takes the differentiating value of the amount of light received. When astigmatism is measured actually, positional difference in the direction of a Z axis at the maximum intensity point in the x and y directions is obtaind, and the difference is divided by the square of the longitudinal magnification of an objective 14, thus acquiring astigmatism.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光学的な情報の記録、再生および伝送に用いる
半導体レーザの非点収差測定に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to astigmatism measurement of semiconductor lasers used for recording, reproducing, and transmitting optical information.

従来例の構成とその問題点 光学的な情報の記録、再生方式は他の方式に比べ、記録
密度が格段に高いという利点を有する。
Conventional Structure and Problems The optical information recording and reproducing method has the advantage that the recording density is much higher than other methods.

これは光学的記録方式の最小記録単位が小さくできると
とに起因している。ちなみに最小記録単位の大きさは約
3μm2である。そしてこのような小さな単位で記録再
生するためには、この光学系に用いる光源も高い性能の
ものが要求される。従来光源としてHeNe ガスレー
ザが用いられて来たが近年装置の小型化に有利な半導体
レーザを用いる試みが各所で外されている。しかし半導
体レーザはHeNeガスレーザに比較して特有の問題を
有し、以下半導体レーザを用いる場合について詳しく述
べる。
This is due to the fact that the minimum recording unit of the optical recording method can be made small. Incidentally, the size of the minimum recording unit is approximately 3 μm2. In order to perform recording and reproduction in such small units, the light source used in this optical system is also required to have high performance. Conventionally, a HeNe gas laser has been used as a light source, but in recent years attempts to use a semiconductor laser, which is advantageous for downsizing the device, have been abandoned in many places. However, semiconductor lasers have specific problems compared to HeNe gas lasers, and the case where semiconductor lasers are used will be described in detail below.

半導体レーザの発光特性を第1図に示す。1は半導体レ
ーザであり、2は接合面である。半導体レーザの発光角
は接合面の面内X方向とこれに直角なy方向で異々るた
めに、発光パターンは楕円となる。さらに半導体レーザ
1は接合面内方向と直角方向の等個発光点が異なる。こ
れを第1図中のPx、Pyとして示す。この発光点の食
い違いを半導体レーザの非点収差と名付けており、光学
系の絞り特性に重大な影響を及ぼすが、これを次に説明
する。
Figure 1 shows the emission characteristics of a semiconductor laser. 1 is a semiconductor laser, and 2 is a junction surface. Since the emission angle of the semiconductor laser is different in the in-plane X direction of the bonded surface and in the Y direction perpendicular thereto, the emission pattern becomes an ellipse. Furthermore, the semiconductor laser 1 has different light emitting points in equal numbers in the in-plane direction and in the orthogonal direction. This is shown as Px and Py in FIG. This discrepancy between the light emitting points is called astigmatism of the semiconductor laser, and it has a serious effect on the aperture characteristics of the optical system, which will be explained next.

第2図は実際の光学系の1例を示す0第2図(a)は接
合面に直角外面内の光線の軌跡を、第2図(b)は接合
面内の光線の軌跡を示す。
FIG. 2 shows an example of an actual optical system. FIG. 2(a) shows the trajectory of a light ray within the outer surface perpendicular to the cemented surface, and FIG. 2(b) shows the trajectory of the light ray within the cemented surface.

1は半導体レーザ、3はコリメータレンズであり半導体
レーザ1を出た光を平行にする機能を果たす。4,6は
円柱口、凸レンズであり、接合面内の平行光線を光線幅
の広い平行光線に拡大する。
1 is a semiconductor laser, and 3 is a collimator lens, which functions to collimate the light emitted from the semiconductor laser 1. 4 and 6 are cylindrical openings and convex lenses, which expand parallel rays within the cemented surface into parallel rays with a wide beam width.

しかし、接合面内の光線に対しては何の変化も加えない
。こうして凹凸の円柱レンズ4,5を用いて発光角の小
さな接合面内の光線を拡大し、楕円状発光パターンを円
形化する。6は絞りレンズであり、記録媒体7上に平行
光を絞ってスポットを形成する機能をもち、このスポッ
トに凝集された熱エネルギにより、媒体を蒸発あるいは
相変化させて情報が記録される。
However, no changes are made to the light rays within the bonded surface. In this way, the concave and convex cylindrical lenses 4 and 5 are used to expand the light rays within the cemented surface with a small emission angle, thereby making the elliptical emission pattern circular. Reference numeral 6 denotes an aperture lens, which has the function of narrowing parallel light to form a spot on the recording medium 7, and the thermal energy condensed in this spot causes the medium to evaporate or undergo a phase change, thereby recording information.

記録再生特性と絞りビーム径は直接的外関係があり、絞
りビーム径が小さいほど記録再生特性は−向上する。こ
のため、常に媒体上にピントを合わせることか必要とな
り、図示してい力いが、絞りレンズ6を光軸方向に移動
させてこの調整を行なっている。また半導体レーザ1に
非点収差がある場合も絞りビーム径に影響を及ぼす。第
2図において接合面内の発光点PXとこれに直角な面内
の発光点Pyに光軸方向のずれすなわち非点収差がある
とすれば、Px を出た光がレンズ6に平行に入射する
ように光学系を調整した場合、Py を出た光は図中の
点線に示すようにレンズ6に平行に入射しない。そのた
めレンズ6による結像位砲アは媒体7上に位置しないた
め、絞りビーム径は広がり、記録再生特性の劣化を招く
。このため半導体レーザの非点収差を極力小さくするこ
とが重要となってくる。また装置に実装する半導体レー
ザについては検査選別することが必要であり、正確迅速
な非点収差測定法の開発が望まれている。
There is a direct relationship between the recording and reproducing characteristics and the aperture beam diameter, and the smaller the aperture beam diameter, the better the recording and reproducing characteristics. Therefore, it is necessary to always focus on the medium, and although not shown in the figure, this adjustment is performed by moving the aperture lens 6 in the optical axis direction. Furthermore, when the semiconductor laser 1 has astigmatism, it also affects the aperture beam diameter. In Fig. 2, if there is a deviation in the optical axis direction, that is, astigmatism, between the light-emitting point PX in the cemented surface and the light-emitting point Py in the plane perpendicular to this, then the light that exits Px enters the lens 6 in parallel. When the optical system is adjusted so that the light emitted from Py does not enter the lens 6 in parallel, as shown by the dotted line in the figure. Therefore, since the imaging position gun a by the lens 6 is not located on the medium 7, the diameter of the aperture beam increases, leading to deterioration of recording and reproducing characteristics. Therefore, it is important to minimize the astigmatism of the semiconductor laser. Furthermore, it is necessary to inspect and select the semiconductor lasers to be mounted in the device, and it is desired to develop an accurate and quick method for measuring astigmatism.

次に従来の半導体レーザ非点収差測定法について説明す
る。第3図に光源に非点収差がある場合のレンズ結像特
性を示す。Px、Py をX−0゜y=○平面内の光線
の等何点光源とすると、レンズ8による光源Px、Py
の像Px′、Py′ も光軸方向にずれをもつ。幾何光
学的にはp、/における像はX軸方向の直線11 とな
り、Py′における像はy軸方向の直線I5となるOP
x′とPy′の中間の像はp/からPy′に近づくにつ
れてX軸方向に長い楕円からy軸方向に長い楕円まで連
続的に変化する。Px′とPy′の距離a′とPxとP
y との半導体レーザの非点収差aとはレンズ8の縦倍
率をαとすれば a−a/α ・・・・・・(1) なる関係があるため、半導体レーザの非点収差aはa′
を測定することにより(1)式を用いて知ることができ
る。距離a′は第3図に示すX方向の線像11とy方向
の線像I5の距離であるから、像観察位置を光軸方向に
順次移動させて、像の形の変化をみることによって半導
体レーザ非点収差が測定することができる。この具体例
を第4図に示す。1は半導体レーザ、8はレンズ、9は
テレビカメラ、10Id、テレビモニタである。半導体
レーザ1の発光部の像11はテレビモニタ10に映像1
2として写し出され、テレビカメラ9を光軸方向Zに順
次移動させることにより発光部の像11の観察位置を変
えて、テレビモニタ9の映像12の変化をみる。第3図
における距離a′はテレビモニタ9の映像12のx、y
方向の幅Wx、Wyが各々最小となるときのテレビカメ
ラの光軸Z方向の位置変化量として知れ、半導体レーザ
1の非点収差aは先にも記したように距離a′をレンズ
縦倍率の2乗で除してまる。
Next, a conventional semiconductor laser astigmatism measuring method will be explained. FIG. 3 shows the lens imaging characteristics when the light source has astigmatism. Assuming that Px, Py are the equal number of light sources of light rays in the plane
The images Px' and Py' also have deviations in the optical axis direction. In terms of geometrical optics, the image at p, / is a straight line 11 in the X-axis direction, and the image at Py' is a straight line I5 in the y-axis direction, OP.
The intermediate image between x' and Py' changes continuously from an ellipse long in the X-axis direction to an ellipse long in the y-axis direction as it approaches Py' from p/. Distance a' between Px' and Py' and Px and P
The astigmatism a of the semiconductor laser with respect to a′
By measuring , it can be known using equation (1). Since the distance a' is the distance between the line image 11 in the X direction and the line image I5 in the y direction shown in FIG. 3, by sequentially moving the image observation position in the optical axis direction and observing changes in the shape of the image, Semiconductor laser astigmatism can be measured. A concrete example of this is shown in FIG. 1 is a semiconductor laser, 8 is a lens, 9 is a television camera, and 10Id is a television monitor. An image 11 of the light emitting part of the semiconductor laser 1 is displayed as an image 1 on the television monitor 10.
By sequentially moving the television camera 9 in the optical axis direction Z, the observation position of the image 11 of the light emitting section is changed, and changes in the image 12 on the television monitor 9 are observed. The distance a' in FIG. 3 is x, y of the image 12 on the TV monitor 9.
It is known as the amount of positional change in the optical axis Z direction of the television camera when the widths Wx and Wy of the directions are respectively minimum. Divide by the square of the square.

従来はこのように像の形を直接観察する方法を用いてい
たが、ここで実際に得られる像は幾何光学で示されるよ
うな輪郭のはっきりとしたものでないため、第4図に示
すテレビモニタ9の映像12の最小幅WX、Wyは正確
に測定することができない。また半導体レーザ1に要求
される非点収差aは5μm以下と非常に小さなものであ
り、この程度の非点収差aでは、W、、Wyの最小と々
る状態が実際にはほぼ同時に起り、これを分離して測定
することはできないという・欠点を有していた。
Conventionally, this method of directly observing the shape of the image was used, but since the image actually obtained here does not have a clear outline as shown by geometric optics, the TV monitor shown in Figure 4 was used. The minimum widths WX and Wy of the image 12 of No. 9 cannot be measured accurately. In addition, the astigmatism a required for the semiconductor laser 1 is very small, 5 μm or less, and with this level of astigmatism a, the minimum states of W, , and Wy actually occur almost simultaneously. This had the disadvantage that it could not be measured separately.

発明の目的 本発明は半導体レーザの非点収差を数μmの精度で容易
に測定可能な半導体レーザ非点収差測定装置を提供する
ことを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a semiconductor laser astigmatism measuring device that can easily measure the astigmatism of a semiconductor laser with an accuracy of several μm.

発明の構成 本発明は半導体レーザ発光部を拡大結像する対物レンズ
と、この拡大像近傍において光軸に直交する平面内を一
方は半導体レーザ接合面方向、他方は接合面直角方向に
移動して順次光路を遮断する2つのナイフェツジと、ナ
イフェツジを光軸方向に移動させる移送部と、ナイフェ
ツジに対して光路後方に配置された光量測定部と、測定
光量を微分する演算部より構成される。
Structure of the Invention The present invention includes an objective lens that forms an enlarged image of a semiconductor laser emitting part, and an objective lens that moves in the vicinity of the enlarged image in a plane perpendicular to the optical axis, one in the direction of the semiconductor laser junction surface and the other in the direction perpendicular to the junction surface. It is composed of two knives that sequentially block the optical path, a transfer section that moves the knives in the optical axis direction, a light amount measuring section that is arranged behind the optical path with respect to the knife, and a calculation section that differentiates the measured light amount.

実施例の説明 以下本発明の一実施例の半導体レーザ非点収差測定装置
の構成図を第5図に示す。1は半導体レーザ、14は半
導体レーザ1の発光部13を拡大スル対物レンズ、15
a、15bは光軸Zに対して直角な載置台17上を半導
体レーザ1の接合面方向X、および接合面直交方向y方
向に移動可能なナイフェツジであり、光軸に向かって進
み、エツジ18により順次光束を遮断する。16はナイ
フェツジ15a、15bより光路後方のほぼ光軸上に設
置される光量測定部であり、ナイフェツジで遮断されな
い光がここで受光される。19は光量測定部16の出力
を微分回路、20はナイフェツジ15a、15bを光軸
2方向に送るための移送部である。ナイフェツジ16a
、16bと光量測定部16によって絞りビームの形状を
測定するが、これを以下に説明する。
DESCRIPTION OF EMBODIMENTS FIG. 5 shows a configuration diagram of a semiconductor laser astigmatism measuring apparatus according to an embodiment of the present invention. 1 is a semiconductor laser, 14 is an objective lens that magnifies the light emitting part 13 of the semiconductor laser 1, 15
Reference numerals a and 15b designate knives movable on the mounting table 17 perpendicular to the optical axis Z in the direction of the bonded surface of the semiconductor laser 1 in the X direction and in the direction orthogonal to the bonded surface in the y direction. The light flux is sequentially blocked by Reference numeral 16 denotes a light amount measuring section installed approximately on the optical axis behind the optical path of the knives 15a and 15b, and the light not blocked by the knives is received here. Reference numeral 19 is a differential circuit for the output of the light amount measuring section 16, and reference numeral 20 is a transfer section for sending the knives 15a and 15b in two directions of the optical axis. Naifetsuji 16a
, 16b and the light quantity measuring section 16 measure the shape of the aperture beam, which will be explained below.

第6図においてナイフェツジ15a、15bの刃先が矢
印右方向にdl からd6へ移動して光ビーム21を横
切るとき、光量測定部16の受光総量は第6図(均の曲
線のように、全く光を遮ぎらない位置d2 より左では
一定であり、位置d2 より右に移動するにつれて除々
に減少し、光を完全に遮ぎる位置d5 より右では光量
0となる。光強度はナイフェツジ16a、1sbがごく
わずかの一定量移動したときの光量変化に比例、すなわ
ち受光量の微分値となるので第6図(b)の曲線を微分
して、第6図(C)が得られ、これが光強度となる。第
5図の微分回路19はこのために用いられる。非点収差
を測定する場合は従来例第3図に示したように半導体レ
ーザの接合面方向および接合面直角方向の光ビーム幅W
工、Wyを測定しなければならない。そのため第6図に
示したように直交する2方向に移動する2つのナイフェ
ツジ15a、15bを設けたが、これと同じ機能を果す
V字型ナイフェツジを等7図に示す。V字型ナイフェツ
ジ23は第7図の上下方向に往復運動し、ナイフェツジ
切先22a、22bは上下の送り方向に対して45°傾
いて設けられる。V字型ナイフェツジ23が上下運動す
れば、ナイフェツジ切先22a。
When the cutting edges of the knives 15a and 15b move in the right direction of the arrow from dl to d6 and cross the light beam 21 in FIG. The light intensity is constant to the left of the position d2 that does not block the light, gradually decreases as you move to the right of the position d2, and becomes 0 to the right of the position d5 that completely blocks the light. It is proportional to the change in light intensity when moving by a very small fixed amount, that is, it is a differential value of the amount of received light, so by differentiating the curve in Fig. 6 (b), Fig. 6 (C) is obtained, and this is the light intensity. The differentiating circuit 19 shown in Fig. 5 is used for this purpose.When measuring astigmatism, as shown in the conventional example Fig. 3, the light beam width W in the direction of the cemented surface and the direction perpendicular to the cemented surface of the semiconductor laser is used.
We must measure the mechanical strength and Wy. Therefore, as shown in FIG. 6, two knives 15a and 15b that move in two orthogonal directions are provided, and FIG. 7 shows a V-shaped knife that performs the same function. The V-shaped knife 23 reciprocates in the vertical direction in FIG. 7, and the knife tips 22a, 22b are provided at an angle of 45° with respect to the vertical feeding direction. When the V-shaped knife 23 moves up and down, the knife tip 22a.

22bは点線で示すように各々ナイフェツジ切先と直角
なy、X方向に光ビームを切断する。
22b cuts the light beam in the Y and X directions perpendicular to the knife tip, respectively, as shown by dotted lines.

このようにV字型ナイフェツジを採用することにより、
構造が簡単になると同時に2つのナイフェツジ切先22
 a 、、 22 bの切断面を同一面上に設定するこ
とが可能となる。
By adopting the V-shaped knife in this way,
The structure is simplified and at the same time two knife tips 22
It becomes possible to set the cutting planes of a, 22b on the same plane.

以上説明した方法により半導体レーザの接合面方向およ
びこれに直角な方向の半導体レーザ発光部13の拡大像
の強度分布を測定することができる。この光ビーム強度
の測定を載置台17を光軸Z方向に順次移動して行ない
、従来と同様に第4図に示す最小幅W工、Wyをめれば
良いのであるが本発明では最小幅W工9wyをめる替り
に最大強度点をめる方法を採用している。これは光ビー
ムの分布幅と最大強度が反比例的関係にあるからである
By the method described above, it is possible to measure the intensity distribution of an enlarged image of the semiconductor laser light emitting section 13 in the direction of the junction surface of the semiconductor laser and in the direction perpendicular thereto. The light beam intensity can be measured by sequentially moving the mounting table 17 in the optical axis Z direction and measuring the minimum width W and Wy shown in FIG. Instead of determining the W work 9wy, a method of determining the maximum strength point is adopted. This is because the distribution width of the light beam and the maximum intensity are inversely proportional to each other.

実際の非点収差の測定は次のようにして行なう。Actual measurement of astigmatism is performed as follows.

第8図に示すようにナイフェツジを光軸方向に送りなが
ら光ビームを切断して光強度分布を測定し半導体レーザ
接合面方向X、これに直角なy方向の最大強度点max
1.max2のZ軸方向の位置差(第3図に示した距離
8勺をめ、これを対物レンズの縦倍率の2乗で除して半
導体レーザの非点収差がまる。
As shown in Fig. 8, the light beam is cut while sending a knife in the direction of the optical axis, and the light intensity distribution is measured.
1. Astigmatism of the semiconductor laser is reduced by taking the positional difference in the Z-axis direction of max2 (distance 8 mm shown in FIG. 3) and dividing this by the square of the vertical magnification of the objective lens.

本実施例はこのように光強度分布そのものを測定できる
ため前述した最小幅w、、’wyの測定をする用するた
め、この点においても精度の向上が図られている。オだ
本実施例では半導体レーザ発光部を拡大した像の強度分
布を測定対象としているためナイフェツジの切断位置の
設定誤差を押えることかできる。この結果非点収差測定
精度2μmを得ることができる。
In this embodiment, since the light intensity distribution itself can be measured in this way, the minimum widths w, , 'wy mentioned above are measured, so that the accuracy is improved in this respect as well. Additionally, in this embodiment, since the intensity distribution of an enlarged image of the semiconductor laser light emitting section is measured, errors in setting the cutting position of the knife can be suppressed. As a result, an astigmatism measurement accuracy of 2 μm can be obtained.

発明の効果 本発明は半導体レーザ発光部の5拡大像を7字型のナイ
フェツジを用いて同時に半導体レーザ接合面および接合
面直角方向の2方向より切断することにより、半導体レ
ーザの非点収差を2μmの高精度で測定することが可能
となり、さらに自動化が容易にでき、高速測定も可能で
あり、その効果は犬である。
Effects of the Invention The present invention reduces the astigmatism of the semiconductor laser to 2 μm by simultaneously cutting the 5-magnified image of the semiconductor laser light emitting part from two directions: the semiconductor laser bonding surface and the direction perpendicular to the bonding surface using a 7-shaped knife. It is possible to measure with high accuracy, and it is also easy to automate and high-speed measurement, and its effects are outstanding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体レーザの発光特性図、第2図は光学的情
報記録再生装置の光学系の構成図、第3図は非点収差が
ある場合のレンズ結像特性図、第4図は従来の半導体レ
ーザ非点収差測定装置の構成図、第5図は本発明の一実
施例の半導体レーザ非点収差測定装置の構成図、第6図
は同ナイフェツジによる光強度測定に関する図、第7図
は同V字型ナイフェツジの構成図、第8図は同光強度分
布図である。 1・・・・・・半導体レーザ、13・・・・・・発光部
、14・・・・・・対物レンズ、15a、15b・・・
・・・ナイフェツジ、16・・・・・・光量測定部、1
9・・・・・・微分回路、20・・・・・・移送部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 (1) (1)) 第 3 図 I′ 第4[1ii1 /?10 第5図 I 粥6図 第7図 ?2α
Figure 1 is a diagram of the emission characteristics of a semiconductor laser, Figure 2 is a diagram of the configuration of the optical system of an optical information recording/reproducing device, Figure 3 is a diagram of lens imaging characteristics when there is astigmatism, and Figure 4 is a diagram of conventional FIG. 5 is a block diagram of a semiconductor laser astigmatism measuring device according to an embodiment of the present invention, FIG. 6 is a diagram relating to light intensity measurement using the same knife, and FIG. is a configuration diagram of the same V-shaped knife, and FIG. 8 is a diagram of the same light intensity distribution. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 13... Light emitting part, 14... Objective lens, 15a, 15b...
... Naifetsuji, 16 ... Light amount measuring section, 1
9...differentiation circuit, 20...transfer section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (1) (1)) Figure 3 Figure I' 4 [1ii1 /? 10 Figure 5 I Porridge Figure 6 Figure 7? 2α

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザ発光部を拡大結像する対物レンズと、この
拡大像近傍において光軸に直交する平面内を一方は前記
半導体レーザ接合面方向、他方は接合面直角方向に移動
して順次光路を遮断する2つのナイフェツジと、前記ナ
イフェツジを光軸方向に移動させる移送部と、前記ナイ
フェツジに対して光路後方光軸に配置された光量測定部
と、測定光量を微分する演算部よりなる半導体レーザ非
点収差測定装置。
An objective lens that forms an enlarged image of the semiconductor laser light-emitting part, and in the vicinity of this enlarged image, one moves in the direction of the semiconductor laser junction surface and the other moves in the direction perpendicular to the junction surface in a plane perpendicular to the optical axis to sequentially block the optical path. Semiconductor laser astigmatism comprising two knives, a transfer section for moving the knife in the optical axis direction, a light amount measuring section disposed on the optical axis behind the optical path with respect to the knife, and a calculation section for differentiating the measured light amount. measuring device.
JP25063483A 1983-12-27 1983-12-27 Measuring device for astigmatism of semiconductor laser Granted JPS60140778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25063483A JPS60140778A (en) 1983-12-27 1983-12-27 Measuring device for astigmatism of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25063483A JPS60140778A (en) 1983-12-27 1983-12-27 Measuring device for astigmatism of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS60140778A true JPS60140778A (en) 1985-07-25
JPH0422035B2 JPH0422035B2 (en) 1992-04-15

Family

ID=17210769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25063483A Granted JPS60140778A (en) 1983-12-27 1983-12-27 Measuring device for astigmatism of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60140778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806251A (en) * 2016-03-11 2016-07-27 西北工业大学 Four-axis measuring system based on line laser sensor and measuring method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806251A (en) * 2016-03-11 2016-07-27 西北工业大学 Four-axis measuring system based on line laser sensor and measuring method thereof

Also Published As

Publication number Publication date
JPH0422035B2 (en) 1992-04-15

Similar Documents

Publication Publication Date Title
US5609780A (en) Laser system
CN110895364B (en) High-coupling-efficiency fiber laser debugging device and method
JPS61208023A (en) Semiconductor laser beam source device
JPS60140778A (en) Measuring device for astigmatism of semiconductor laser
KR102246791B1 (en) Focusing and leveling device
US4611115A (en) Laser etch monitoring system
JP3590508B2 (en) Optical system assembly adjustment device and assembly adjustment method
Takeda Fringe formula for projection type moiré topography
JP2862715B2 (en) Flat beam projector for light cutting measurement
JPS603529A (en) Measuring method of optical beam diameter
JPS61161781A (en) Laser adjusting device
JP2021030295A (en) Laser processing device and optical adjustment method
JPH02300613A (en) Measuring instrument
JPS5973712A (en) Flatness measuring device
SU1675827A1 (en) Microscope
JPS608728A (en) Optical measuring device
JP3222755B2 (en) Scanning optical device
RU2421949C1 (en) Laser centraliser for x-ray emitter
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
RU2242846C1 (en) Laser localizer for x-ray radiation
JPH0455805A (en) Method for adjusting parallelish of beam of apparatus for measuring optical performance
JPH043291Y2 (en)
JP2021169978A (en) Emission angle measuring device and emission angle measuring method for optical fiber having inclined end
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects
JP2000258116A (en) Height measuring device