JPS60139424A - Resin temperature control for plastics molding machine - Google Patents

Resin temperature control for plastics molding machine

Info

Publication number
JPS60139424A
JPS60139424A JP58249775A JP24977583A JPS60139424A JP S60139424 A JPS60139424 A JP S60139424A JP 58249775 A JP58249775 A JP 58249775A JP 24977583 A JP24977583 A JP 24977583A JP S60139424 A JPS60139424 A JP S60139424A
Authority
JP
Japan
Prior art keywords
temperature
cylinder
resin
distribution
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58249775A
Other languages
Japanese (ja)
Other versions
JPH0380609B2 (en
Inventor
Akira Togawa
戸川 侃
Mitsusachi Nakamoto
中本 光幸
Tomoe Shibuya
渋谷 朋衛
Mitsuo Iwata
岩田 充雄
Katsuhiko Ito
克彦 伊藤
Michio Hirano
平野 道夫
Shuji Akizuki
秋月 修二
Kazuhiro Uchiyama
内山 和広
Tsutomu Tashiro
勉 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58249775A priority Critical patent/JPS60139424A/en
Publication of JPS60139424A publication Critical patent/JPS60139424A/en
Publication of JPH0380609B2 publication Critical patent/JPH0380609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/875Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To achieve a larger discharge capacity of resin, a less scorching and a saved energy by predetermining the temperature distribution in the cylinder itself to be optimal for molding as desired with the type of resin and the revolution of the screw as parameters to control the temperature of the cylinder properly. CONSTITUTION:A microcomputer 11 separately determines what temperature distribution of resin in the cylinder can eliminate troubles such as scorching to ensure a better extrusion work. To secure such a pattern, the temperature of individual temperature measuring zones of the cylinder is controlled for respective revolutions of the screw and the optimum cylinder temperature distributions thus set are recorded individually. Then, this setting is done separately in terms of the brand of resin. The actual temperatures of the individual temperature measuring zones obtained from temperature measuring elements TC2-TC5 are compared with optimum cylinder temperature distributions previously inputted referring to the revolutions of the screw to determine a deviation, based on which a heater 6 or cooler 7 is operated.

Description

【発明の詳細な説明】 技術分野 この発明は、押出機などのプラスチック成形機を用いて
プラスチックを成形する際、成形機内の樹脂温度を成形
に最適な温度に1irlJ御するためのプラスチック成
形機における輌脂温度i8!I御方法に関する。
Detailed Description of the Invention Technical Field The present invention relates to a plastic molding machine for controlling the resin temperature in the molding machine to the optimum temperature for molding when molding plastic using a plastic molding machine such as an extruder. Leech temperature i8! Regarding the control method.

従来技術とその欠点 プラスチックの押出成形などにおいて、押出機のシリン
ダ内の各ゾーンの樹脂温度を使用樹脂に適した温度に制
御することは、押出黛の増加、スコーチの減少、エネル
ギーコストの低減、さらには11ケーブルのM!3縁材
料号としての屯気的特性等の向上などの点から非常に重
要な意味を有している。
Conventional technology and its disadvantages In plastic extrusion molding, controlling the resin temperature in each zone in the extruder cylinder to a temperature suitable for the resin used increases extrusion rate, reduces scorch, reduces energy costs, Furthermore, 11 cable M! It has a very important meaning from the point of view of improving the thermal characteristics as a third-edge material.

従来の押出機の樹脂温度制御は、gg1図に示すように
、押出機1のシリンダ2にシリンダ2を貫通しない複数
の測温穴3・・・を穿設し、この測温穴3・・・に測温
素子4・・・を差し込み、シリンダ2の各測温ゾーン、
(’ l s C,e C,I C4の温度を測定し、
これらの温間を温度調節計5・・・に入力し、シリンダ
2の外側に設けられたバンドヒータ、埋込みヒータ等の
加熱装置t6・・・および冷却ブロア等の冷却装置7・
・・をこれら温度調節1f−i5・・・で制御させる方
法によって行われている。
Conventional extruder resin temperature control involves drilling a plurality of temperature measuring holes 3...in the cylinder 2 of the extruder 1, which do not penetrate the cylinder 2, as shown in Figure gg1.・Insert the temperature measuring element 4... into each temperature measuring zone of the cylinder 2,
(' l s C, e C, I Measure the temperature of C4,
These warm temperatures are input to the temperature controller 5..., and the heating device t6, such as a band heater or embedded heater, provided on the outside of the cylinder 2, and the cooling device 7, such as a cooling blower.
... is controlled by these temperature controls 1f-i5....

しかし、この方法には次のような問題があることが明ら
かとなった。すなわち、上記制御方法では側温素子4に
よる測定温度とシリンダ2内の溶融樹脂の温度との間に
・は、■押出機1の周囲の室温の変化により、シリンダ
2V3面の温度とシリンダ2の温度との間には第2図に
示すような温度差(Δ’l’、)カ各6111温ゾーン
毎(CI 、C1,C4)に発生し、■また押出機1に
樹脂を流したときの押出機1のスクリュ8の回転数の変
化によって第3図に示したような実際の樹脂温度とシリ
ンダ2の温度との温度差が更に618分だけ増加する。
However, it has become clear that this method has the following problems. That is, in the above control method, the difference between the temperature measured by the side temperature element 4 and the temperature of the molten resin in the cylinder 2 is as follows. Temperature differences (Δ'l') as shown in Figure 2 occur in each of the 6111 temperature zones (CI, C1, C4), and when the resin is poured into the extruder 1, Due to the change in the rotational speed of the screw 8 of the extruder 1, the temperature difference between the actual resin temperature and the temperature of the cylinder 2 as shown in FIG. 3 further increases by 618 minutes.

したがって、これらの影響によってシリンダ2内の溶融
樹脂の温度は希望温度以上に加熱された状態となってお
り、無駄なエネルギーを消費していたことが判明した。
Therefore, it was found that due to these influences, the temperature of the molten resin in the cylinder 2 was heated to a temperature higher than the desired temperature, and energy was wasted.

(なお、第2図および第3図中のC,、C,、C4はシ
リンダ2の測温位置を表わすもので第1図中の各温度調
節計5・・・に示されているCI e C1+ C4の
各測温ゾーンに対応している。) さらに最近の恢討によれば、シリンダ2内の溶融樹脂温
度は、前述のように室温やスクリュ回転数だけではなく
、押出rG 1の設定温度、スクリュの形状や構造、溶
融樹脂の種類(同一樹脂のグレードの差異にも)等によ
って影響されることが判明してきている。例えば、ポリ
エチレン樹脂の押出時、温度調節計5の設定温度を12
0℃とし、測温索子4による測定温度が120℃であっ
ても、実際の溶融樹脂温度は130〜150℃にもなっ
ている。
(C, C, C4 in Figures 2 and 3 represent the temperature measurement positions of the cylinder 2, and the CI e shown in each temperature controller 5 in Figure 1. (It corresponds to each temperature measurement zone of C1 + C4.) Furthermore, according to recent research, the temperature of the molten resin in cylinder 2 is determined not only by room temperature and screw rotation speed as described above, but also by the extrusion rG 1 setting. It has become clear that this is influenced by temperature, the shape and structure of the screw, the type of molten resin (even differences in grades of the same resin), etc. For example, when extruding polyethylene resin, set the temperature of the temperature controller 5 to 12
Even if the temperature is 0°C and the temperature measured by the thermometer 4 is 120°C, the actual temperature of the molten resin is 130 to 150°C.

したがって、単なる測温穴3・・・による測温では、実
際の溶融樹脂温度を正確に把握することは不可能であっ
た。
Therefore, it has been impossible to accurately determine the actual temperature of the molten resin by simply measuring the temperature using the temperature measuring holes 3.

そこで、本発明者等は先に冒精度で樹脂温度を制御でき
る樹脂温度制御方法を特願昭58−41038号および
特紬昭s 8二41039号として提案している。
Therefore, the present inventors have previously proposed a resin temperature control method capable of controlling the resin temperature with high accuracy in Japanese Patent Application No. 58-41038 and Tokutsumugisho S8241039.

これらの方法は、プラスチック成形機のシリンダ壁の厚
さ方向にシリンダ内表面からの距離を変えて2個以上の
側温素子を配設し、これら側温素子によって測定された
シリンダの−[7J>らシリンダ内表面の1#!1Kを
め、この温度に、スクリュ回転数、室温、設定m度、ス
クリュ形状、樹脂の種類等の浴融樹脂の温度を変動させ
るパラン・−夕の内、スクリュ回転数、室温を含む少な
くとも3以上のパラメータを用いて補正温度を加昇し、
シリンダ内の溶融樹脂の温度を予測し、この予測温度と
希望樹脂温度との偏差をめ、この偏差に基づいてシリン
ダ内の溶融樹脂の温度を制御するものおよびプラスチッ
ク成形機のシリンダのmFILを測定し、この温度に室
温、スクリュ回転数、スクリュ形状、設定温度、樹脂の
種類等の溶融樹脂温度を変動させるパラメータの内、室
温、スクリュ回転数を含む少なくとも3以上のパラメー
ターから補正温度を加昇してシ1ノンダ内の溶融樹脂温
度を予測し、この予測温度と希望樹脂温度との偏差をめ
、この偏差に基づいてシリンダ内の′t#融樹脂の温度
を制御するものである。
In these methods, two or more side heating elements are arranged at different distances from the inner surface of the cylinder in the thickness direction of the cylinder wall of a plastic molding machine, and the temperature of the cylinder measured by these side heating elements is -[7J >1# on the inner surface of the cylinder! 1 K, and at least 3 degrees including the screw rotation speed, room temperature, temperature of the bath melt resin, etc. Increase the correction temperature using the above parameters,
Predict the temperature of the molten resin in the cylinder, calculate the deviation between this predicted temperature and the desired resin temperature, and measure the mFIL of the cylinder of the plastic molding machine and the one that controls the temperature of the molten resin in the cylinder based on this deviation. Then, the correction temperature is increased from at least three parameters including room temperature, screw rotation speed, among the parameters that vary the molten resin temperature such as room temperature, screw rotation speed, screw shape, set temperature, resin type, etc. The temperature of the molten resin in the cylinder is predicted, the deviation between this predicted temperature and the desired resin temperature is determined, and the temperature of the 't# molten resin in the cylinder is controlled based on this deviation.

これらの方法は、シリンダ内のm#Am脂の希望樹脂温
度の分布(シリンダ内の各側温ゾーンにおける温度)が
どのような分布であっても操業i旧と希望樹脂温度を設
足してやれば、あとは上記パラメータがいかに凌動しよ
うとも自動釣場こ制御可能であり、かつその精度も±0
.5“C〜±1℃程度と極めて高精度であるなどの利点
がある。
These methods can be used regardless of the distribution of the desired resin temperature of the m#Am resin in the cylinder (the temperature in each side temperature zone in the cylinder) by setting the operating temperature and the desired resin temperature. , No matter how much the above parameters change, automatic fishing spot control is possible, and the accuracy is ±0.
.. It has the advantage of extremely high accuracy of about 5"C to ±1°C.

しかしながら、これらの方法を実施するにあたっては、
上記各パラメータを種々に変えてこれらパラメータが溶
融樹脂温度に与える影#(温度変動分)を予めめて基礎
データを作っておくことが必要であり、その基礎データ
の作成に大量の樹脂と長時間を必要とする間鴫があった
However, in implementing these methods,
It is necessary to create basic data in advance of the influence # (temperature fluctuation) that these parameters have on the molten resin temperature by changing each of the above parameters variously. There was a moment when I needed time.

発明の目的 この発明は上記事情に鑑みてなされたもので、基礎デー
タの作成の手間、費用を大きく軽減でき、しかも樹脂温
度を高精度に制御でき、樹脂吐出量・イの増大、スコー
チの減少、エネルギー節約が計られるプラスチック成形
機の樹脂温鍵制御方法を提供することを目的とするもの
である。
Purpose of the Invention This invention was made in view of the above circumstances, and it can greatly reduce the effort and cost of creating basic data, and moreover, it can control the resin temperature with high precision, increase the amount of resin discharged, and reduce scorch. The object of the present invention is to provide a resin temperature key control method for a plastic molding machine that saves energy.

発明の構成 この発明のプラスチック成形機の樹脂温度制御方法は、
プラスチック成形機のシリンダ内の溶融側11&の温度
分布を、成形に最適の所望温度分布とするためのシリン
ダ自体の温度分布を樹脂の檎類およびスクリュ回転数を
パラメータとして予めめておく第1の工程と、この第1
の工程でめておいた上記最適の所望温度分布とするため
のシリンダ自体の温度分布と、シリンダの実際の温度分
布とを比較し、その偏差に基づいてシリンダの各測温ゾ
ーンの設定温度を制御する第2の工程とからなるもので
ある。
Structure of the Invention The resin temperature control method for a plastic molding machine of the present invention is as follows:
In order to make the temperature distribution on the melting side 11 in the cylinder of the plastic molding machine a desired temperature distribution that is optimal for molding, the temperature distribution of the cylinder itself is preliminarily determined using the resin temperature and the screw rotation speed as parameters. process and this first
Compare the temperature distribution of the cylinder itself to achieve the above-mentioned optimal desired temperature distribution determined in the process with the actual temperature distribution of the cylinder, and set the set temperature of each temperature measurement zone of the cylinder based on the deviation. and a second step of controlling.

発明の原理 一般に、プラスチックの成形はこれを例えば電線、ケー
ブル等の架欄ポリエチレン樹脂からなる絶縁体の押出被
覆作業等の特定の作業に限尾すれば、その押出作業に最
適な押出機のシリンダ内の樹脂温度分布(この温度分布
をパターンと呼ぶことがある。)はほぼ数拙に限られる
Principle of the Invention In general, if plastic molding is limited to a specific task, such as extrusion coating of insulators made of polyethylene resin for electric wires, cables, etc., then the cylinder of the extruder that is most suitable for that extrusion task is determined. The resin temperature distribution (this temperature distribution is sometimes called a pattern) is limited to only a few.

したがって、このような限られたパターンを再現するに
は、あえて先の特願昭58−41038号などのように
多くのパラメータを選んでこれの影響を見る必要はなく
、さらにシリンダ内の浴融樹脂温度の分布を予測する必
要もなく、このパターンを再現するに必要なシリンダの
温度分布をこのパターンに対応してめておけばよいこと
になり、基礎データの作成の手間を大きく軽減すること
が可能となる。
Therefore, in order to reproduce such a limited pattern, it is not necessary to select many parameters and examine their effects as in the previous patent application No. 58-41038. There is no need to predict the resin temperature distribution; all you need to do is prepare the cylinder temperature distribution necessary to reproduce this pattern in accordance with this pattern, which greatly reduces the effort required to create basic data. becomes possible.

発明の具体的構成と作用 以下、本発明を押出機に適用した例について具体的ζこ
説明する。
Specific Structure and Function of the Invention Hereinafter, an example in which the present invention is applied to an extruder will be specifically explained.

まず、第1の工程の成形に最適の所望温度分布とするた
めのシリンダー自体の温度分布(M適シリンダ温度と略
称する。)をめる操作を説明する。
First, the operation of determining the temperature distribution of the cylinder itself (abbreviated as M-optimal cylinder temperature) in order to obtain the desired temperature distribution optimal for molding in the first step will be explained.

測温素子を表面に露出して設け、浴融樹脂の温度を直接
測定することのできる測温用スクリューを装備した押出
機を用意し、本押出操業時に使用する樹脂、例えば架橋
剤添加ポリエチレン樹脂銘柄について、実際に押出作業
を行う。
An extruder equipped with a temperature-measuring screw that has a temperature-measuring element exposed on the surface and can directly measure the temperature of the bath melted resin is prepared, and the resin used during the main extrusion operation, such as cross-linking agent-added polyethylene resin, is prepared. We actually carry out extrusion work for each brand.

架橋剤添加ポリエチレン樹脂の押出については、シリン
ダ内の溶融架檎剤添加ポリエチレン使脂の温度分イ0(
パターン)がどのようであればスコーチ等の不都合の発
生がなく、良好に押出作条が行えるかは別途求めておき
、このパターンが得られるようにあるスクリュ回転数、
例えば5rpmにおいてシリンダの谷測温ゾーンの温度
を制御する。
For extrusion of cross-linking agent-added polyethylene resin, the temperature of the molten cross-linking agent-added polyethylene resin in the cylinder is 0 (
Separately determine what kind of pattern (pattern) is needed to ensure good extrusion without causing problems such as scorch, and then determine the screw rotation speed and speed to obtain this pattern.
For example, the temperature in the valley temperature measuring zone of the cylinder is controlled at 5 rpm.

そして、スクリュ回転数srpmにおいて、上記パター
ンが得られた時のシリンダの温度分布(5rprnのと
きの最適シリンダ温度外;fli )を記録する。
Then, at the screw rotation speed srpm, the temperature distribution of the cylinder when the above pattern was obtained (outside the optimum cylinder temperature at 5rprn; fli) is recorded.

つぎに、スクリュ回転数を例えば10 rPmに変更し
て先と同様の所望の温度分イ6が得られるようにシリン
ダの各測温ゾーンの温IWを変えて制御する。先に述べ
たように、スクリュ回転数が変れば、樹脂温度はこれに
伴って変るので、シリンダの最適温度分布は5r四の時
と当然異ってくる。このようにして10 rl)mの時
の最適シリンダ一度分布をめる。そして次々にスクリュ
回転数15rpm。
Next, the screw rotation speed is changed to, for example, 10 rPm, and the temperature IW of each temperature measurement zone of the cylinder is changed and controlled so that the same desired temperature A6 as before is obtained. As mentioned above, if the screw rotation speed changes, the resin temperature will change accordingly, so the optimum temperature distribution of the cylinder will naturally differ from that in the case of 5r4. In this way, the optimal cylinder distribution for 10 rl)m is determined once. Then, the screw rotation speed was 15 rpm one after another.

2Qrprrt ・・・・・・として各スクリュ回転数
における最適シリンダ温度分布をめる。
The optimum cylinder temperature distribution at each screw rotation speed is calculated as 2Qrprrt...

して表されることになる。そしてスクリュ回転数を例え
ば5〜xorpm、ii〜15rpm・・・・・・とい
うようにある狭い範囲に区分すれば、上記函数はY=a
x+bの一次式で表わすことができる。
It will be expressed as If the screw rotation speed is divided into narrow ranges such as 5~xorpm, ii~15rpm, etc., the above function becomes Y=a
It can be expressed by a linear equation of x+b.

よって、シリンダの各測温ゾーンについて常用のスクリ
ュ回転数を例えば4つの範囲に区分すれば次のような関
係式が得られる。
Therefore, by dividing the commonly used screw rotation speed into, for example, four ranges for each temperature measurement zone of the cylinder, the following relational expression can be obtained.

側温ゾーン スクリュ回転数 式 0式% Y:最適シリンダ一温度 Xニスクリユー回転数 上記において、スクリュ回転数の区すは、スクリュ回転
数をスクリュ軸に取り付けた同@Mit機によって1圧
として出力し、この1圧によって区分したものである。
Side temperature zone Screw rotation speed Formula 0 Formula % Y: Optimal cylinder temperature , and are classified according to this one pressure.

そして、これらの関係式を、架橋剤添加ポリエチレン樹
脂の銘柄毎にめて例えばコンピュータにメモリーするな
どして記録しておく。
Then, these relational expressions are recorded for each brand of crosslinking agent-added polyethylene resin, for example, by storing them in a computer memory.

上記関係をグラフ化したものが第4図および第5図であ
る。第4図のグラフはメルトインデックス(MI)3.
.2の、第5図のグラフはメルトインデックス1,2の
架橋剤添加ポリエチレン樹脂について、スクリュ回転数
を5〜aorpmに変えたときの最適シリンダ温度をシ
リンダの測温ゾ”C1t Cm v C4およびアダプ
タ部(C1)毎にプロットしたものである。そしC1こ
のグラフから上Hd関係式における”1%1%・・・5
bts宜、m、・・・が各カーブの直fM部分からめう
ることが理解される。
FIGS. 4 and 5 are graphs of the above relationship. The graph in Figure 4 shows the melt index (MI) of 3.
.. 2, the graph in Figure 5 shows the optimum cylinder temperature when changing the screw rotation speed from 5 to aorpm for crosslinking agent-added polyethylene resins with melt indexes of 1 and 2. It is plotted for each part (C1).Then, from this graph, we can see that "1%1%...5" in the above Hd relational expression.
It is understood that bts, m, . . . can be determined from the direct fM portion of each curve.

そして、これらのグラフからメルトインデックス3.2
の架橋剤添加ポリエチレン樹脂を用い、スクリュ回転数
を例えばzorpmで押出作業する際の最適シリンダ@
度は、C9で123.3℃。
From these graphs, the melt index is 3.2.
Optimal cylinder for extrusion work using cross-linking agent-added polyethylene resin with a screw rotation speed of, for example, zorpm.
The temperature is C9, 123.3°C.

C島で119.6℃、C4で116.2℃、C3で11
5.6℃であることがわかり、スクリュ回転数が2Qr
pmから3grptnに変える際には、各ゾーンの温度
をグラフの直線に沿って、換汀すれば上記−次式で表わ
される関係式によって変えてゆけばよいことになる。
119.6℃ on C island, 116.2℃ on C4, 11 on C3
It was found that the temperature was 5.6℃, and the screw rotation speed was 2Qr.
When changing from pm to 3grptn, the temperature of each zone can be changed along the straight line of the graph according to the relational expression expressed by the above-following equation.

以上によって第1の工程による基礎データ作成が完了す
る。
With the above steps, basic data creation in the first step is completed.

次に、実際の押出作業時の樹脂温度制御を行う第2の工
程について説明する。
Next, the second step of controlling the resin temperature during actual extrusion work will be explained.

第6図(a) 、 (b)は上記側−を行う押出機の構
成例を示すもので、この例の押出機1は、シリンダ2の
加熱装置6としてアルミニウム鋳込みヒータ6aをシリ
ンダ2外周面に城り付け、また冷却装置7として冷却油
が循環する冷却油ジャケット7aをシリンダ2外周面に
設けたものである。冷却油ジャケット7aは、各測温ゾ
ーン毎に設けられた螺線状の溝部7bが形成されてなる
ものであって、を行うものである。そして、この例にあ
っては、第4〜5図に対応してシリンダ2の測温ゾーン
CI ’p Cs F c、t c、において制御を行
うものであり、上記各ゾーンには測1[子IlI C、
、Ill U 、。
FIGS. 6(a) and 6(b) show an example of the configuration of an extruder that performs the above-mentioned side. The extruder 1 of this example has an aluminum cast heater 6a as a heating device 6 for the cylinder 2. In addition, a cooling oil jacket 7a serving as a cooling device 7 through which cooling oil circulates is provided on the outer peripheral surface of the cylinder 2. The cooling oil jacket 7a is formed with a spiral groove 7b provided for each temperature measurement zone, and serves to perform the following steps. In this example, control is performed in the temperature measuring zone CI'pCsFc,tc of the cylinder 2 corresponding to FIGS. Child IlI C,
,Ill U,.

’l’c’4 、TC,がシリンダ2内表面から約lo
朋程度のJ!Jみを残して穿設された測温穴3・・・に
挿入されている。この測己穴3・・・の深さは、押出機
lや押出条件等を考燻して決められるが、先の第1の工
程での基礎データ作成の際の測温穴の深さと同一とする
ことが必要である。また、スクリュ8の基部にはこのス
クリュ8の回転数を検出してこれζこ比例する1圧を出
力する回転発電機9が取り付けられている。
'l'c'4, TC, is approximately lo from the inner surface of cylinder 2
J at my level! It is inserted into the temperature measuring hole 3, which is drilled with a J gap. The depth of this temperature measurement hole 3 is determined by considering the extruder l, extrusion conditions, etc., but it is the same as the depth of the temperature measurement hole when creating the basic data in the first step. It is necessary to. Further, a rotary generator 9 is attached to the base of the screw 8 for detecting the rotation speed of the screw 8 and outputting one pressure proportional to the rotation speed.

そして、上記測ll!素子+il C,、Ill C,
、Ill C,。
And the above measurements! Element+il C,, Ill C,
, Ill C,.

+1+ CBおよび回転元を機9からの出力信号は、例
えば第7図に示されるような処理システムに送られて、
処理される。
The output signals from the +1+ CB and rotation source machine 9 are sent to a processing system as shown in FIG. 7, for example, and
It is processed.

回転発電機9からの出力はA/L)変換器10ζこ入力
され、ディジタル化されたうえ、マイクロコンピュータ
11に入力される。マイクロコンピュータ11には、第
1の工程でめられた上記関係式(スクリュ回転数および
樹脂の銘柄の変化に対応する最適シリンダ温度)が予め
入力されている。
The output from the rotary generator 9 is input to the A/L converter 10ζ, digitized, and input to the microcomputer 11. The above relational expression (optimum cylinder temperature corresponding to changes in screw rotation speed and resin brand) determined in the first step is input into the microcomputer 11 in advance.

換言すればスクリュ回転数および樹脂の種類をパラメー
タとする最適シリンダ温度分布(パターン)が入力され
ている。
In other words, the optimum cylinder temperature distribution (pattern) using the screw rotation speed and the type of resin as parameters is input.

また、上記各側温素子T 、C、、Ill C、、Il
l (、+4゜TCsから送られる出力信号は、これら
測温素子に対応して設けられた温度調節計12・・・に
送られる。これらの温度調節計12・・・はA/1)変
換機能。
In addition, each of the above-mentioned side temperature elements T, C,, Ill C,, Il
l (, +4° The output signal sent from the TCs is sent to the temperature controllers 12... provided corresponding to these temperature measuring elements. These temperature controllers 12... are A/1) conversion function.

D/A変換機能およびリニアライズ機能を備えており、
上記出力信号は、ここでリニアライズおよびA/D変換
されたうえマイクロコンピュータft’iに゛入力され
る。そして、マイクロコンピュータ11は、予め入力さ
れている最適シリンダ温度分布と側温素子TO,〜r1
y C1からの各測温ゾーンの温度とを、上述のように
別に入力されているスクリュ回転数を参照して比較し、
その偏走をめ、この偏差に基づいて温度調節計12・・
・の設定温度を演算する。
Equipped with D/A conversion function and linearization function,
The above output signal is linearized and A/D converted here, and then input to the microcomputer ft'i. Then, the microcomputer 11 calculates the optimal cylinder temperature distribution inputted in advance and the side temperature element TO, ~r1.
Compare the temperature of each temperature measurement zone from y C1 with reference to the screw rotation speed input separately as described above,
Based on this deviation, the temperature controller 12...
・Calculate the set temperature.

この設定温度は、マイクロコンピュータ11から測温ゾ
ーンに対応して各温度調節計12・・・に送られる。温
度調節計12・・・は、この設定温度と測温索子1゛C
!〜fil e、からの谷測温ゾーンのシリンダ2の温
11とを比較して、バンドヒータや埋め込みヒータなど
の加熱装置6あるいは冷却油循環装置などの冷却袋■^
゛ニアを動作させて、設定温度とシリンダ温度とを一致
させる。かくして、上記演算比較処理を2〜3回繰り返
えすと、シリンダ2の各測温ゾーンの温度分布は、最適
シリンダ温度分布に−1:にシ、シリンダ2内の溶融樹
脂の温度は、押出に最適の温度分布(希望樹脂温度分布
)に一致する。
This set temperature is sent from the microcomputer 11 to each temperature controller 12 corresponding to the temperature measuring zone. The temperature controller 12... is set to this set temperature and the temperature measuring cord 1゛C.
! Compare the temperature 11 of the cylinder 2 in the valley temperature measurement zone from ~fil e, and compare it with the temperature 11 of the cylinder 2 in the valley temperature measurement zone, and compare it with the temperature 11 of the cylinder 2 in the valley temperature measurement zone from
Operate the cylinder to match the set temperature and cylinder temperature. Thus, by repeating the above calculation and comparison process 2 to 3 times, the temperature distribution in each temperature measurement zone of cylinder 2 will be -1 to the optimum cylinder temperature distribution, and the temperature of the molten resin in cylinder 2 will be the same as the extrusion temperature distribution. matches the optimum temperature distribution (desired resin temperature distribution).

また、押出作業中、スクリュ回転数を変更すると、マイ
クロコンピュータ11に入力されるスクリュ回転数信号
が変化し、上記関係式によって新しいスクリュ回転数に
おける最適シリンダ温1(分布が演算されてめられる。
Furthermore, when the screw rotation speed is changed during extrusion work, the screw rotation speed signal input to the microcomputer 11 changes, and the optimum cylinder temperature 1 (distribution) at the new screw rotation speed is calculated and determined using the above relational expression.

そして、この新しい最適シリンダ温度分布に対して、先
と同様の処理が行われ、どリンダ2内の浴融向脂の温度
分布は希望樹脂温度分布に一致せしめられる。
Then, the same process as before is performed on this new optimum cylinder temperature distribution, and the temperature distribution of the bath melting resin in the cylinder 2 is made to match the desired resin temperature distribution.

また、樹脂の棹類、銘柄が変る場合には、新しい棟類、
−銘柄の樹脂について予めめられ°Cいる上記関係式が
マイクロコンピュータ11に呼び込まれ、上記演算、制
御処理が行われる。
In addition, when resin rods and brands change, new ridges,
- The above-mentioned relational expression, which is set in advance at °C for the brand of resin, is read into the microcomputer 11, and the above-mentioned calculation and control processing is performed.

以上がこの発明における第2の工程である。The above is the second step in this invention.

このような温度制御方法によれば、予め決めた数種の希
望の樹脂温度分布に対応する最適シリンダ温度をめてお
いて、この最適シリンダ温間を指標として制御するもの
であるので、最適シリンダ温度をめるための費用(樹脂
使用量、試験時間)がわずかで済む。しかし、限られた
温度分布だけしか制御できないが、一般の押出作業であ
れば、上述のように押出作業条件は自ずと限られるので
、実用上さして不都合を来すことはない。また、樹脂温
度を大きく変動させるパラメータであるスクリュ回転数
、園脂44類による温度変動に対応して最適シリンダ温
度をめているので、常に高精度の制御が可能である。さ
らにまた、本発明においては、希望樹脂温度分布が限ら
れた範囲であり、力1つ制御中に樹脂温度予測という過
程がないので特に室温について考慮を払う必要がなく、
シリンダ自体の温度分布さえ決められた温度に保持し°
Cおけば、常に希望(対脂温度分布を得ることができる
According to such a temperature control method, the optimum cylinder temperature corresponding to several desired resin temperature distributions determined in advance is determined, and control is performed using this optimum cylinder temperature as an index. The cost to raise the temperature (amount of resin used, test time) is minimal. However, although only a limited temperature distribution can be controlled, in the case of general extrusion work, the extrusion work conditions are naturally limited as described above, so this does not cause any practical problems. In addition, since the optimum cylinder temperature is determined in response to the screw rotation speed, which is a parameter that greatly changes the resin temperature, and temperature fluctuations due to resin 44, highly accurate control is always possible. Furthermore, in the present invention, the desired resin temperature distribution is within a limited range and there is no process of predicting the resin temperature during one force control, so there is no need to particularly consider the room temperature.
Even the temperature distribution of the cylinder itself is maintained at a determined temperature.
If you set C, you can always obtain the desired fat temperature distribution.

なお、上記の例では、押出機1の測温ゾーンに対応する
測温素子’l’c、、TC,,TC4、TC。
In the above example, the temperature measuring elements 'l'c, TC, TC4, and TC corresponding to the temperature measuring zones of the extruder 1.

についてのみこの温度制御方法を適用しているが、ポツ
パー側の測温ゾーンに対応する測温素子Ill C2に
ついても同様にこの温/、f制御方法を適用してもよい
。しかし、通常の押出作条では上記4ゾーンの温度制御
で充分である。また、シリンダ2の加熱、冷却手段も上
記例に限られることなく、例えばシリコーン油などの流
体熱媒を用いた加熱、冷却手段あるいはブロワ−を用い
る冷却手段などを用いてもよい。
Although this temperature control method is applied only to the temperature measurement zone on the popper side, this temperature/f control method may be similarly applied to the temperature measurement element IllC2 corresponding to the temperature measurement zone on the popper side. However, for ordinary extrusion strips, temperature control in the four zones described above is sufficient. Further, the heating and cooling means for the cylinder 2 are not limited to the above examples, and heating and cooling means using a fluid heat medium such as silicone oil, cooling means using a blower, etc. may also be used.

発明の動床 以上の説明のようにこの発明の樹脂温度制御方法によれ
ば、浴融樹脂温度をある限定された樹脂温度分布にしか
制御できないものの基硫データ作成の費用が微かで済み
、しかも常用の樹脂温度分布を遍んでおけば実用上さし
て不便を招くこともない。また、常時高精度で樹脂温度
を制御できるので、吐出枇増大、スコーチの減少、熱エ
ネルギーの節約が計られる。
Moving bed of the invention As explained above, according to the resin temperature control method of the present invention, although the bath melt resin temperature can only be controlled within a certain limited resin temperature distribution, the cost of creating base sulfur data is negligible. If the commonly used resin temperature distribution is uniform, there will be no practical inconvenience. In addition, since the resin temperature can be controlled with high precision at all times, it is possible to increase discharge capacity, reduce scorch, and save thermal energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の樹脂温度制御方法を適用した押出機を示
す概略構成図、第2図は室温とΔ′烏との関係を示すグ
ラフ、第3、図はスクリュ回転数と△T!との関係を示
すグラフ、第4図および第5図はいずれも架橋剤添加ポ
リエチレン樹脂の最適シリンダ温度分布をスクリュ回転
数を変えてめたグラフ、第6図(a)はこの温度制fi
11方法を適用した押出機の例を示す概略構成図、第6
図(b)はこの押出機のシリンダの概略断面図、第7図
はこの温度制御方法に用いられる制御処理システムの一
例を示すブロック図である。 1・・・・・・押出機、2・・・・・・シリンダ、6・
・・・・・加熱装置、7・・・・・・冷却装置、8・・
・:・・スクリュ、9・・・・・・回転発電M、11・
・・・・・マイクロコンピュータ、12・・・・・・温
度−節計、TC,、TC番 IlI C,、Ill C
1・・・・・測温素子。 出願人藤倉箪線株式会社 第2図 □室、 ;L (’CJ
Figure 1 is a schematic configuration diagram showing an extruder using a conventional resin temperature control method, Figure 2 is a graph showing the relationship between room temperature and ΔT, and Figure 3 is a graph showing the relationship between screw rotation speed and ΔT! Figures 4 and 5 are graphs showing the optimum cylinder temperature distribution for cross-linking agent-added polyethylene resin as the screw rotation speed is changed, and Figure 6 (a) is a graph showing the relationship between fi.
Schematic configuration diagram showing an example of an extruder to which method 11 is applied, No. 6
Figure (b) is a schematic sectional view of the cylinder of this extruder, and Figure 7 is a block diagram showing an example of a control processing system used in this temperature control method. 1... Extruder, 2... Cylinder, 6...
...Heating device, 7...Cooling device, 8...
・:・・・Screw, 9・・・Rotating power generation M, 11・
...Microcomputer, 12...Temperature-saving meter, TC,, TC number IlI C,, Ill C
1... Temperature measuring element. Applicant Fujikura Kansen Co., Ltd. Figure 2 Room □ ;L ('CJ

Claims (1)

【特許請求の範囲】 プラスチック成形機のシリンダ内の浴#Is樹脂の温度
分布を成形に最適の所望温度分布とするためのシリンダ
自体の![分布を、樹脂のmMおよびスクリュ回転数を
パラメータとして予めめておく第1の工程と、 この第1の工程でめておいた上記シリンダ自体の最適温
度分布と、シリンダの実際の温度分布とを比軟し、その
偏差に基づいてシリンダの各測温ゾーンの設定温度を制
御する第2の工程とからなることを特徴とするプラスチ
ック成形機の樹脂温度制御方法。
[Claims] To make the temperature distribution of the bath #Is resin in the cylinder of a plastic molding machine a desired temperature distribution optimal for molding, the cylinder itself! [A first step in which the distribution is pre-prepared using resin mmM and screw rotation speed as parameters, the optimum temperature distribution of the cylinder itself determined in this first step, and the actual temperature distribution of the cylinder. A method for controlling a resin temperature in a plastic molding machine, comprising a second step of softening the temperature and controlling the set temperature of each temperature measurement zone of the cylinder based on the deviation.
JP58249775A 1983-12-27 1983-12-27 Resin temperature control for plastics molding machine Granted JPS60139424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58249775A JPS60139424A (en) 1983-12-27 1983-12-27 Resin temperature control for plastics molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249775A JPS60139424A (en) 1983-12-27 1983-12-27 Resin temperature control for plastics molding machine

Publications (2)

Publication Number Publication Date
JPS60139424A true JPS60139424A (en) 1985-07-24
JPH0380609B2 JPH0380609B2 (en) 1991-12-25

Family

ID=17198036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249775A Granted JPS60139424A (en) 1983-12-27 1983-12-27 Resin temperature control for plastics molding machine

Country Status (1)

Country Link
JP (1) JPS60139424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115719A (en) * 1986-11-04 1988-05-20 Toshiba Mach Co Ltd Method of control ling cylinder temperature of extrusion machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115719A (en) * 1986-11-04 1988-05-20 Toshiba Mach Co Ltd Method of control ling cylinder temperature of extrusion machine

Also Published As

Publication number Publication date
JPH0380609B2 (en) 1991-12-25

Similar Documents

Publication Publication Date Title
US4480981A (en) System for controlling temperature of molten resin in cylinder of extruder
EP0748680B1 (en) Temperature regulating system, method and apparatus
US4241602A (en) Rheometer
CA1308530C (en) Procedure for manufacturing pipes and sections out of thermoplastic plastics
CA1141005A (en) Extruder temperature controller
CA2159161C (en) Method for controlling the temperature of a plastic mold
EP0390696B1 (en) Apparatus for controlling thickness of film formed by melt extrusion
WO2021246524A1 (en) Control device and program for injection molding machine
USRE31903E (en) Extruder temperature controller
JPS60139424A (en) Resin temperature control for plastics molding machine
JP2530684B2 (en) Simulation system with multi-zone temperature control system
US4376623A (en) Extruder with temperature control
JP3083757B2 (en) Temperature control method and temperature control device for resin plasticizing cylinder
JP2685405B2 (en) Semiconductor resin sealing device
JPS6149094B2 (en)
JPS606426A (en) Non-interacting controlling apparatus of injection molder heating cylinder
JPS58126131A (en) Resin temperature controlling method of plastic molding machine
JPS59167241A (en) Controlling method of temperature of resin in plastic molding machine
JPS59167242A (en) Controlling method of temperature of resin in plastic molding machine
JPS58185237A (en) Detection of temperature pattern of injection molder, etc.
Lenir Computerization of wire insulating lines–An industrial approach
JPH0655600A (en) Control method of plasticized state of resin in molding machine with screw by measuring temperature of heating cylinder and nozzle
JP3233984B2 (en) Vulcanizer temperature controller
CA2274885C (en) Temperature regulating system, method and apparatus
JP3164660B2 (en) Method for evaluating runner diameter of injection mold