JPH0380609B2 - - Google Patents

Info

Publication number
JPH0380609B2
JPH0380609B2 JP58249775A JP24977583A JPH0380609B2 JP H0380609 B2 JPH0380609 B2 JP H0380609B2 JP 58249775 A JP58249775 A JP 58249775A JP 24977583 A JP24977583 A JP 24977583A JP H0380609 B2 JPH0380609 B2 JP H0380609B2
Authority
JP
Japan
Prior art keywords
temperature
cylinder
resin
distribution
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58249775A
Other languages
Japanese (ja)
Other versions
JPS60139424A (en
Inventor
Akira Togawa
Mitsusachi Nakamoto
Tomoe Shibuya
Mitsuo Iwata
Katsuhiko Ito
Michio Hirano
Shuji Akizuki
Kazuhiro Uchama
Tsutomu Tashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58249775A priority Critical patent/JPS60139424A/en
Publication of JPS60139424A publication Critical patent/JPS60139424A/en
Publication of JPH0380609B2 publication Critical patent/JPH0380609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/875Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 この発明は、押出機などのプラスチツク成形機
を用いてプラスチツクを成形する際、成形機内の
樹脂温度を成形に最適な温度に制御するためのプ
ラスチツク成形機における樹脂温度制御方法に関
する。 従来技術とその欠点 プラスチツクの押出成形などにおいて、押出機
のシリンダ内の各ゾーンの樹脂温度を使用樹脂に
適した温度に制御することは、押出量の増加、ス
コーチの減少、エネルギーコストの低減、さらに
は電源・ケーブルの絶縁材料等としての電気的特
性等の向上などの点から非常に重要な意味を有し
ている。 従来の押出機の樹脂温度制御は、第1図に示す
ように、押出機1のシリンダ2にシリンダ2を貫
通しない複数の測温穴3…を穿設し、この測温穴
3…に測温素子4…を差し込み、シリンダ2の各
測温ゾーン、C1,C2,C3,C4の温度を測定し、
これらの温度を温度調節計5…に入力し、シリン
ダ2の外側に設けられたバンドヒータ、埋込みヒ
ータ等の加熱装置6…および冷却ブロア等の冷却
装置7…をこれら温度調節計…5で制御させる方
法によつて行われている。 しかし、この方法には次のような問題があるこ
とが明らかとなつた。すなわち、上記制御方法で
は測温素子4による測定温度とシリンダ2内の溶
融樹脂の温度との間には、押出機1の周囲の室
温の変化により、シリンダ2内面の温度とシリン
ダ2の温度との間には第2図に示すような温度差
(△T1)が各測温ゾーン毎(C2,C3,C4)に発生
し、または押出機1に樹脂を流したときの押出
機1のスクリユ8の回転数の変化によつて第3図
に示したような実際の樹脂温度とシリンダ2の温
度との温度差が更に△T2分だけ増加する。した
がつて、これらの影響によつてシリンダ2内の溶
融樹脂の温度は希望温度以上に加熱された状態と
なつており、無駄なエネルギーを消費していたこ
とが判明した。(なお、第2図および第3図中の
C2,C3,C4はシリンダ2の測温位置を表わすも
ので第1図中の各温度調節計5…に示されている
C2,C3,C4の各測温ゾーンに対応している。) さらに最近の検討によれば、シリンダ2内の溶
融樹脂温度は、前述のように室温やスクリユ回転
数だけではなく、押出機1の設定温度、スクリユ
の形状や構造、溶融樹脂の種類(同一樹脂のグレ
ードの差異にも)等によつて影響されることが判
明してきている。例えば、ポリエチレン樹脂の押
出時、温度調節計5の設定温度を120℃とし、測
温素子4による測定温度が120℃であつても、実
際の溶融樹脂温度は130〜150℃にもなつている。 したがつて、単なる測温穴3…による測温で
は、実際の溶融樹脂温度を性格に把握することは
不可能であつた。 そこで、本発明者等は先に高精度で樹脂温度を
制御できる樹脂温度制御方法を特願昭58−41038
号(特開昭59−167241号公報参照)および特願昭
58−41039号(特開昭59−167242号公報参照)と
して提案している。 これらの方法は、プラスチツク成形機のシリン
ダ壁の厚さ方向にシリンダ内表面からの距離を変
えて2個以上の測温素子を配設し、これら測温素
子によつて測定されたシリンダの温度からシリン
ダ内表面の温度を求め、この温度に、スクリユ回
転数、室温、設定温度、スクリユ形状、樹脂の種
類等の溶融樹脂の温度を変動させるパラメータの
内、スクリユ回転数、室温を含む少なくとも3以
上のパラメータを用いて補正温度を加算し、シリ
ンダ内の溶融樹脂の温度を予測し、この予測温度
と希望樹脂温度との偏差を求め、この偏差に基づ
いてシリンダ内の溶融樹脂の温度を制御するもの
およびプラスチツク成形機のシリンダの温度を測
定し、この温度に室温、スクリユ回転数、スクリ
ユ形状、設定温度、樹脂の種類等の溶融樹脂温度
を変動させるパラメータの内、室温、スクリユ回
転数を含む少なくとも3以上のパラメーターから
補正温度を加算してシリンダ内の溶融樹脂温度を
予測し、この予測温度と希望樹脂温度との偏差を
求め、この偏差に基づいてシリンダ内の溶融樹脂
の温度を制御するものである。 これらの方法は、シリンダ内の溶融樹脂の希望
樹脂温度の分布(シリンダ内の各測温ゾーンにお
ける温度)がどのような分布であつても操業前に
希望樹脂温度を設定してやれば、あとは上記パラ
メータがいかに変動しようとも自動的に制御可能
であり、かつその精度も±0.5℃〜±1℃程度と
極めて高精度であるなどの利点がある。 しかしながら、これらの方法を実施するにあた
つては、上記各パラメータを種々に変えてこれら
パラメータが溶融樹脂温度に与える影響(温度変
動分)を予め求めて基礎データを作つておくこと
が必要であり、その基礎データの作成に大量の樹
脂と長時間を必要とする問題があつた。 発明の目的 この発明は上記事情に鑑みてなされたもので、
基礎データの作成の手間、費用を大きく軽減で
き、しかも樹脂温度を高精度に制御でき、樹脂吐
出量の増大、スコーチの減少、エネルギー節約が
計られるプラスチツク成形機の樹脂温度制御方法
を提供することを目的とするものである。 発明の構成 この発明のプラスチツク成形機の樹脂温度制御
方法は、ある樹脂について、それの成形に最適な
シリンダ内の溶融樹脂の最適樹脂温度分布を別途
設定しておき、つぎに、溶融樹脂の温度を直接測
温することのできる測温用スクリユーを装備し、
かつシリンダの各測温ゾーンに対応した複数の測
温素子を設けてシリンダ自体の温度をも測温でき
る構造の測温用のプラスチツク成形機を用い、あ
るスクリユ回転数において、上記測温用スクリユ
ーで求められるその樹脂の溶融樹脂温度分布と上
記最適樹脂温度分布とを比較し、これら両温度分
布が一致するようにシリンダの各測温ゾーンに設
けられた上記測温素子で得られるシリンダ自体の
温度分布を上記測温素子と温度調節計を用いて温
度調節することで、その樹脂の上記最適樹脂温度
分布が得られるシリンダ自体の最適シリンダ温度
分布を定め、ついで、スクリユ回転数を変化させ
てスクリユ回転数の変化に対応したシリンダ自体
の最適シリンダ温度分布の変化を関係式として求
める第1の工程と、シリンダの各測温ゾーンに対
応した複数の測温素子を設け、シリンダ自体の温
度を測温できる構造の操業用のプラスチツク成形
機を用い、第1の工程で求めた関係式と、その樹
脂を実際に成形するときのシリンダ自体の温度分
布とをスクリユ回転数を参照して比較し、その偏
差分布を求め、この偏差分布に基づいてシリンダ
の設定温度分布を求め、この設定温度分布にシリ
ンダ自体の温度分布を一致させる第2の工程とか
らなるものである。 発明の原理 一般に、プラスチツクの成形はこれを例えば電
線、ケールブ等の架橋ポリエチレン樹脂からなる
絶縁体の押出被覆作業等の特定の作業に限定すれ
ば、その押出作業に最適な押出機のシリンダ内の
樹脂温度分布(この温度分布をパターンと呼ぶこ
とがある。)はほぼ数種に限られる。 したがつて、このような限られたパターンを再
現するには、あえて先の特願昭58−41038号など
のように多くのパラメータを選んでこれの影響を
見る必要はなく、さらにシリンダ内の溶融樹脂温
度の分布を予測する必要もなく、このパターンを
再現するに必要なシリンダの温度分布をこのパタ
ーンに対応して求めておけばよいことになり、基
礎データの作成の手間を大きく軽減することが可
能となる。 発明の具体的構成と作用 以下、本発明を押出機に適用し、加橋剤添加ポ
リエチレン樹脂を押出成形する例について具体的
に説明する。 まず、架橋剤添加ポリエチレン樹脂のある銘柄
について、これを押出成形する際、押出機のシリ
ンダ内の溶融状の架橋剤添加ポリエチレン樹脂の
温度分布(シリンダの長手方向の各測温ゾーン
C1,C2,C3…などの測温位置での温度の分布)
がどのようであればスコーチ等の不都合の発生が
なく、良好に押出成形作業が行えるかを別途求め
ておく。これは、通常同一銘柄の架橋剤添加ポリ
エチレン樹脂がそれ以前に押出成形されているこ
とが多く、これらの作業の際に採取された温度デ
ータの集積により、ほぼ判明している場合が多
い。したがつて、改めてこの温度分布を求める必
要がない場合が多い。この温度分布を最適樹脂温
度分布とする。 次に、第1の工程について説明する。この第1
の工程は、上記銘柄の架橋剤添加ポリエチレン樹
脂の押出成形に好適な最適樹脂温度分布(これは
上述のようにして得られている。)を得るための
押出機のシリンダ自体の温度分布(最適シリンダ
温度分布と略称する。)を求め、さらにスクリユ
回転数を変化させてスクリユ回転数の変化に対応
した最適シリンダ温度分布の変化を関係式として
求める工程である。 この工程では、測温素子を表面に露出して設
け、溶融樹脂の温度を直接測温できる測温用スク
リユーを装備し、かつシリンダの各測温ゾーン
C1,C2,C3…に従来と同様に複数の測温素子を
設け、シリンダ自体の温度も同時に測温できる構
造の測温用の押出機を用いて行われる。 この押出機を使用し、上記銘柄の架橋剤添加ポ
リエチレン樹脂を実際に押出成形し、溶融樹脂の
温度分布が予め上述のように知られている最適樹
脂温度分布に一致するようにあるスクリユ回転
数、例えば5rpmにおいてシリンダ自体の温度分
布を制御する。 この制御は、具体的には次のようにして行われ
る。すなわち、測温用スクリユーで求められる溶
融状態の架橋剤添加ポリエチレン樹脂の温度分布
と上記最適樹脂温度分布とを比較する。この比較
は、予め知られている上記最適樹脂温度分布をマ
イクロコンピユータなどのメモリーに記録させて
おき、測温用スクリユーから得られる溶融状態の
ポリエチレン樹脂の温度分布をマイクロコンピユ
ータに入力し、減算処理して、その差分を演算す
る。この演算処理は、一定時間例えば2〜10分毎
に行われ、そのつどその差分が得られるようにな
つている。 そして、この差分がゼロとなるように、換言す
れば、これら両温度分布が一致するようにシリン
ダの各測温ゾーンに設けられた測温素子から得ら
れるシリンダ自体の温度分布を調節する。 この温度分布の調節は、シリンダの各測温ゾー
ン毎に上記測温素子と通常の温度調節計などを使
用して行われる。すなわち、上記差分が温度調節
計に入力され、温度調節計はこの差分と上記測温
素子からの得られるシリンダ自体の温度とに基づ
いてシリンダ自体の設定温度を新しく設定し、シ
リンダ自体の温度を各測温ゾーン毎に変化させ
る。これによつて、溶融ポリエチレン樹脂の温度
分布は変化する。この変化した樹脂温度分布は、
測温用スクリユーで測温され、マイクロコンピユ
ータに入力され、先と同様にして上記最適樹脂温
度分布と比較され、減算処理が行われ、新しい差
分が求められる。この新しい差分は、先と同様に
して再び温度調節計に入力され、新しい設定温度
分布を求めるためのデータとなる。 このような温度制御操作を数回繰り返すことに
より、やがて測温用スクリユーで求められる溶融
ポリエチレン樹脂の温度分布が上記最適樹脂温度
分布に接近してゆき、ついには一致する。 この両者の温度分布が一致したときのシリンダ
自体の温度分布が、最適シリンダ温度分布とな
る。このようにしてスクリユ回転数5rpmでの最
適シリンダ温度分布が求められると、これを
5rpmのときの最適シリンダ温度分布として記録
しておく。 つぎに、スクリユ回転数を例えば10rpmに変更
して先と同様の所望の温度分布が得られるように
シリンダの各測温ゾーンの温度を変えて制御す
る。先に述べたように、スクリユ回転数が変れ
ば、樹脂温度はこれに伴つて変るので、シリンダ
の最適温度分布は5rpmの時と当然異つてくる。
このようにして10rpmの時の最適シリンダ温度分
布を求める。そして次々にスクリユ回転数
15rpm、20rmp…として各スクリユ回転数におけ
る最適シリンダ温度分布を求める。 かくして、シリンダの各測温ゾーンにおける最
適シリンダ温度はスクリユ回転数を変数とする函
数として表されることになる。そしてスクリユ回
転数を例えば5〜10rpm、11〜15rpm…というよ
うにある狭い範囲に区分すれば、上記函数はY=
ax+bの一次式で表わすことができる。 よつて、シリンダの各測温ゾーンについて常用
のスクリユ回転数を例えば4つの範囲に区分すれ
ば次のような関係式が得られる。
TECHNICAL FIELD This invention relates to a resin temperature control method in a plastic molding machine for controlling the resin temperature in the molding machine to the optimum temperature for molding when plastic is molded using a plastic molding machine such as an extruder. Prior art and its disadvantages In plastic extrusion molding, etc., controlling the resin temperature in each zone in the extruder cylinder to a temperature suitable for the resin used increases the extrusion amount, reduces scorch, reduces energy costs, Furthermore, it has a very important meaning from the point of view of improving electrical properties as an insulating material for power supplies and cables. As shown in Fig. 1, conventional extruder resin temperature control involves drilling a plurality of temperature measuring holes 3 in the cylinder 2 of the extruder 1, which do not penetrate the cylinder 2, and inserting the temperature into the temperature measuring holes 3. Insert the temperature element 4... and measure the temperature of each temperature measurement zone of the cylinder 2, C 1 , C 2 , C 3 , C 4 ,
These temperatures are input to the temperature controllers 5, and the heating devices 6, such as band heaters and embedded heaters, provided outside the cylinder 2, and the cooling devices 7, such as cooling blowers, are controlled by these temperature controllers 5. This is done by the method of However, it has become clear that this method has the following problems. That is, in the above control method, there is a difference between the temperature measured by the temperature measuring element 4 and the temperature of the molten resin in the cylinder 2 due to changes in the room temperature around the extruder 1. During the extrusion process, a temperature difference (△T 1 ) as shown in Figure 2 occurs in each temperature measurement zone (C 2 , C 3 , C 4 ), or when the resin is poured into the extruder 1. Due to a change in the rotational speed of the screw 8 of the machine 1, the temperature difference between the actual resin temperature and the temperature of the cylinder 2 as shown in FIG. 3 further increases by ΔT 2 . Therefore, it was found that due to these influences, the temperature of the molten resin in the cylinder 2 was heated to a temperature higher than the desired temperature, and energy was wasted. (Please note that in Figures 2 and 3
C 2 , C 3 , C 4 represent the temperature measurement positions of cylinder 2, and are shown in each temperature controller 5 in Figure 1.
It corresponds to each temperature measurement zone of C 2 , C 3 and C 4 . ) Furthermore, according to recent studies, the temperature of the molten resin in the cylinder 2 is determined by not only the room temperature and screw rotation speed as mentioned above, but also the set temperature of the extruder 1, the shape and structure of the screw, and the type of molten resin (same It has become clear that this is influenced by differences in resin grades. For example, when extruding polyethylene resin, even if the set temperature of the temperature controller 5 is 120°C and the temperature measured by the temperature measuring element 4 is 120°C, the actual molten resin temperature is 130 to 150°C. . Therefore, it has been impossible to accurately determine the actual temperature of the molten resin by simply measuring the temperature using the temperature measuring holes 3. Therefore, the present inventors first proposed a resin temperature control method that can control the resin temperature with high precision in patent application No. 58-41038.
No. (see Japanese Patent Application Publication No. 59-167241) and patent application No.
It is proposed as No. 58-41039 (see Japanese Patent Application Laid-open No. 59-167242). These methods involve arranging two or more temperature measuring elements at different distances from the inner surface of the cylinder in the thickness direction of the cylinder wall of a plastic molding machine, and measuring the temperature of the cylinder measured by these temperature measuring elements. The temperature of the inner surface of the cylinder is determined from the temperature, and at least 3 of the parameters that vary the temperature of the molten resin, such as the screw rotation speed, room temperature, set temperature, screw shape, and type of resin, are determined, including the screw rotation speed and room temperature. Add the corrected temperature using the above parameters, predict the temperature of the molten resin in the cylinder, find the deviation between this predicted temperature and the desired resin temperature, and control the temperature of the molten resin in the cylinder based on this deviation. Measure the temperature of the plastic molding machine and the cylinder of the plastic molding machine, and add to this temperature the room temperature, screw rotation speed, screw shape, set temperature, type of resin, and other parameters that change the molten resin temperature. The temperature of the molten resin in the cylinder is predicted by adding the corrected temperature from at least three or more parameters, the deviation between this predicted temperature and the desired resin temperature is determined, and the temperature of the molten resin in the cylinder is controlled based on this deviation. It is something to do. In these methods, no matter what the distribution of the desired resin temperature of the molten resin in the cylinder (temperature in each temperature measurement zone in the cylinder), once the desired resin temperature is set before operation, the rest is as described above. It has the advantage that it can be automatically controlled no matter how much the parameters fluctuate, and its accuracy is extremely high at about ±0.5°C to ±1°C. However, in implementing these methods, it is necessary to create basic data by varying each of the above parameters and determining in advance the influence of these parameters on the molten resin temperature (temperature fluctuation). However, there was a problem in that creating the basic data required a large amount of resin and a long time. Purpose of the invention This invention was made in view of the above circumstances,
To provide a resin temperature control method for a plastic molding machine that can greatly reduce the effort and cost of creating basic data, can control the resin temperature with high precision, increases resin discharge amount, reduces scorch, and saves energy. The purpose is to Structure of the Invention The resin temperature control method for a plastic molding machine of the present invention involves separately setting the optimal resin temperature distribution of the molten resin in a cylinder that is optimal for molding the resin, and then controlling the temperature of the molten resin. Equipped with a temperature measuring screw that can directly measure the temperature of
In addition, using a temperature measuring plastic molding machine that is equipped with a plurality of temperature measuring elements corresponding to each temperature measuring zone of the cylinder so that the temperature of the cylinder itself can also be measured, at a certain screw rotation speed, the temperature measuring screw Compare the molten resin temperature distribution of the resin determined by the method with the above-mentioned optimum resin temperature distribution, and calculate the temperature of the cylinder itself obtained by the above-mentioned temperature measuring elements installed in each temperature measuring zone of the cylinder so that both temperature distributions match. By adjusting the temperature distribution using the above-mentioned temperature measuring element and temperature controller, the optimum cylinder temperature distribution of the cylinder itself that can obtain the above-mentioned optimum resin temperature distribution for the resin is determined, and then the screw rotation speed is changed. The first step is to calculate the change in the optimum cylinder temperature distribution of the cylinder itself corresponding to the change in the screw rotation speed as a relational expression, and the temperature of the cylinder itself is determined by providing a plurality of temperature measuring elements corresponding to each temperature measuring zone of the cylinder. Using an operational plastic molding machine with a structure that allows temperature measurement, the relational expression obtained in the first step and the temperature distribution of the cylinder itself when actually molding the resin are compared with reference to the screw rotation speed. , a second step of determining the deviation distribution, determining the set temperature distribution of the cylinder based on this deviation distribution, and matching the temperature distribution of the cylinder itself with this set temperature distribution. Principle of the Invention In general, if plastic molding is limited to a specific operation such as extrusion coating of insulators made of cross-linked polyethylene resin for electric wires, cables, etc., then Resin temperature distribution (this temperature distribution is sometimes called a pattern) is limited to only a few types. Therefore, in order to reproduce such a limited pattern, it is not necessary to deliberately select many parameters and examine their effects as in the previous patent application No. 58-41038, and in addition, There is no need to predict the distribution of molten resin temperature; all you need to do is find the cylinder temperature distribution necessary to reproduce this pattern, which greatly reduces the effort required to create basic data. becomes possible. Specific Structure and Effects of the Invention Hereinafter, an example in which the present invention is applied to an extruder and extrusion molds a crosslinking agent-added polyethylene resin will be specifically described. First, when extrusion molding a certain brand of crosslinking agent-added polyethylene resin, the temperature distribution of the molten crosslinking agent-added polyethylene resin in the cylinder of the extruder (each temperature measurement zone in the longitudinal direction of the cylinder)
(Temperature distribution at temperature measurement positions such as C 1 , C 2 , C 3 ...)
It is necessary to separately find out what the conditions are for extrusion molding work to be carried out successfully without the occurrence of inconveniences such as scorch. This is because the same brand of crosslinking agent-added polyethylene resin has often been extruded previously, and this can often be determined by collecting temperature data collected during these operations. Therefore, in many cases, it is not necessary to obtain this temperature distribution again. This temperature distribution is defined as the optimum resin temperature distribution. Next, the first step will be explained. This first
The process involves determining the temperature distribution (optimum This is a step in which the cylinder temperature distribution (hereinafter referred to as cylinder temperature distribution for short) is determined, and then the screw rotation speed is changed to determine a change in the optimum cylinder temperature distribution corresponding to the change in the screw rotation speed as a relational expression. In this process, a temperature measuring element is exposed on the surface, a temperature measuring screw is installed that can directly measure the temperature of the molten resin, and each temperature measuring zone of the cylinder is equipped with a temperature measuring screw that can directly measure the temperature of the molten resin.
C 1 , C 2 , C 3 . . . are provided with a plurality of temperature measuring elements in the same manner as in the past, and an extruder for temperature measurement is used, which is structured so that the temperature of the cylinder itself can be measured at the same time. This extruder is used to actually extrude the above-mentioned brand of cross-linking agent-added polyethylene resin, and the screw rotation speed is set so that the temperature distribution of the molten resin matches the optimal resin temperature distribution known in advance as described above. , for example, at 5 rpm to control the temperature distribution of the cylinder itself. Specifically, this control is performed as follows. That is, the temperature distribution of the crosslinking agent-added polyethylene resin in the molten state determined by the temperature measuring screw is compared with the optimum resin temperature distribution. This comparison is performed by recording the optimal resin temperature distribution known in advance in the memory of a microcomputer, etc., inputting the temperature distribution of the molten polyethylene resin obtained from the temperature measuring screw into the microcomputer, and performing the subtraction process. and calculate the difference. This arithmetic processing is performed for a certain period of time, for example, every 2 to 10 minutes, and the difference is obtained each time. Then, the temperature distribution of the cylinder itself obtained from the temperature measuring elements provided in each temperature measuring zone of the cylinder is adjusted so that this difference becomes zero, in other words, so that both temperature distributions match. Adjustment of this temperature distribution is performed for each temperature measuring zone of the cylinder using the temperature measuring element and a normal temperature controller. That is, the above difference is input to the temperature controller, and the temperature controller sets a new set temperature of the cylinder itself based on this difference and the temperature of the cylinder itself obtained from the temperature measuring element, and adjusts the temperature of the cylinder itself. Change for each temperature measurement zone. This changes the temperature distribution of the molten polyethylene resin. This changed resin temperature distribution is
The temperature is measured by the temperature measuring screw, inputted to the microcomputer, and compared with the above-mentioned optimum resin temperature distribution in the same way as before, and a subtraction process is performed to obtain a new difference. This new difference is again input to the temperature controller in the same manner as before, and becomes data for determining a new set temperature distribution. By repeating such a temperature control operation several times, the temperature distribution of the molten polyethylene resin determined by the temperature measuring screw gradually approaches and finally coincides with the optimum resin temperature distribution. The temperature distribution of the cylinder itself when these two temperature distributions match becomes the optimum cylinder temperature distribution. Once the optimum cylinder temperature distribution at a screw rotation speed of 5 rpm is determined in this way,
Record the optimum cylinder temperature distribution at 5 rpm. Next, the screw rotation speed is changed to, for example, 10 rpm, and the temperature in each temperature measurement zone of the cylinder is changed and controlled so that the same desired temperature distribution as before is obtained. As mentioned earlier, if the screw rotation speed changes, the resin temperature will change accordingly, so the optimum temperature distribution of the cylinder will naturally be different from that at 5 rpm.
In this way, the optimum cylinder temperature distribution at 10 rpm is determined. Then, one after another, the screw rotation speed
Find the optimum cylinder temperature distribution at each screw rotation speed as 15 rpm, 20 rpm, etc. Thus, the optimum cylinder temperature in each temperature measurement zone of the cylinder is expressed as a function using the screw rotation speed as a variable. Then, if the screw rotation speed is divided into narrow ranges such as 5 to 10 rpm, 11 to 15 rpm, etc., the above function becomes Y=
It can be expressed as a linear expression of ax+b. Therefore, by dividing the commonly used screw rotation speed into, for example, four ranges for each temperature measurement zone of the cylinder, the following relational expression can be obtained.

【表】 上記において、スクリユ回転数の区分は、スク
リユ回転数をスクリユ軸に取り付けた回転発電機
によつて電圧として出力し、この電圧によつて区
分したものである。そして、これらの関係式を、
架橋剤添加ポリエチレン樹脂の銘柄毎に求めて例
えばコンピユータにメモリーするなどして記録し
ておく。 上記関係をグラフ化したものが第4図および第
5図である。第4図のグラフはメルトインデツク
ス(MI)3、2の、第5図のグラフはメルトイ
ンデツクス1、2の架橋剤添加ポリエチレン樹脂
について、スクリユ回転数を5〜30rpmに変えた
ときの最適シリンダ温度をシリンダの測温ゾーン
C2,C3,C4およびアダプタ部(C5毎にプロツト
したものである。そして、このグラフから上記関
係式におけるa12…、b123、…が各カーブの直
線部分から求めうることが理解される。 そして、これらのグラフからメルトインデツク
ス3、2の架橋剤添加ポリエチレン樹脂を用い、
スクリユ回転数を例えば20rpmで押出作業する際
の最適シリンダ温度は、C2で123.3℃、C3で119.6
℃、C4で116.2℃、C5で115.6℃であることがわか
り、スクリユ回転数が20rpmから30rpmに変える
際には、各ゾーンの温度をグラフの直線に沿つ
て、換言すれば上記一次式で表わされる関係式に
よつて変えてゆけばよいことになる。 以上によつて第1の工程による基礎データ作成
が完了する。 次に、実際の押出作業操業時の樹脂温度制御を
行う第2の工程について説明する。 第6図a,bは上記制御を行う操業用押出機の
構成例を示すもので、この例の押出機1は、シリ
ンダ2の加熱装置6としてアルミニウム鋳込みヒ
ータ6aをシリンダ2外周面に取り付け、また冷
却装置7として冷却油が循環する冷却油ジヤケツ
ト7aをシリンダ2外周面に設けたものである。
冷却油ジヤケツト7aは、各測温ゾーン毎に設け
られた螺線状の溝部7bが形成されてなるもので
あつて、図示しない冷却油循環装置から送られる
冷却油をこの溝部7bに流通せしめることにより
シリンダ2の冷却を行うものである。そして、こ
の例にあつては、第4〜5図に対応してシリンダ
2の測温ゾーンC2,C3,C4,C5において制御を
行うものであり、上記各ゾーンには測温素子
TC2,TC3,TC4,TC5がシリンダ2内表面から
約10mm程度の厚みを残して穿設された測温穴3…
に挿入されている。この測温穴3…の深さは、押
出機1や押出条件等を考慮して決められるが、先
の第1の工程での基礎データ作成の際の測温穴の
深さと同一とすることが必要である。また、スク
リユ8の基部にはこのスクリユ8の回転数を検出
してこれに比例する電圧を出力する回転発電機9
が取り付けられている。 そして、上記測温素子TC2,TC3,TC4,TC5
および回転発電機9からの出力信号は、例えば第
7図に示されるような処理システムに送られて、
処理される。 回転発電機9からの出力はA/D変換器10に
入力され、デイジタル化されたうえ、マイクロコ
ンピユータ11に入力される。マイクロコンピユ
ータ11には、第1の工程で求められた上記関係
式(スクリユ回転数および樹脂の銘柄の変化に対
応する最適シリンダ温度)が予め入力されてい
る。換言すればスクリユ回転数および樹脂の種類
をパラメータとする最適シリンダ温度分布(パタ
ーン)が入力されている。 また、上記各測温素子TC2,TC3,TC4,TC5
から送られる出力信号は、これら測温素子に対応
して設けられた温度調節計12…に送られる。こ
れらの温度調節計12…はA/D変換機能、D/
A変換機能およびリニアライズ機能を備えてお
り、上記出力信号は、ここでリニアライズおよび
A/D変換されたうえマイクロコンピユータ11
に入力される。そして、マイクロコンピユータ1
1は、予め入力されている最適シリンダ温度分布
と測温素子TC2〜TC5からの各測温ゾーンの温度
とを、上述のように別に入力されているスクリユ
回転数を参照して比較し、その偏差を求める。す
なわち、例えばスクリユ回転数が10rpmであれ
ば、マイクロコンピータ11に予めメモリーされ
ている最適シリンダ温度分布(前記関係式)のう
ちからスクリユ回転数が10rpmの時の最適シリン
ダ温度分布を呼び出し、この最適シリンダ温度分
布と上記各測温ゾーンの温度、換言すればシリン
ダ自体の温度分布とを比較して、その偏差分布、
換言すればシリンダの各測温ゾーンごとの温度偏
差を求める。そして、この偏差に基づいて温度調
節計12…の設定温度を演算する。 この設定温度は、マイクロコンピユータ11か
ら測温ゾーンに対応して各温度調節計12…に送
られる。温度調節計12…は、この設定温度と測
温素子TC2〜TC5からの各測温ゾーンのシリンダ
2の温度とを比較して、バンドヒータや埋め込み
ヒータなどの加熱装置6あるいは冷却油循環装置
などの冷却装置7を動作させて、設定温度とシリ
ンダ温度とを一致させる。かくして、上記演算比
較処理を2〜3回繰り返すと、シリンダ2の各測
温ゾーンの温度分布は、最適シリンダ温度分布に
一致し、シリンダ2内の溶融樹脂の温度は、押出
に最適の温度分布(希望樹脂温度分布)に一致す
る。 また、押出作業中、スクリユ回転数を変更する
と、マイクロコンピユータ11に入力されるスク
リユ回転数信号が変化し、上記関係式によつて新
しいスクリユ回転数における最適シリンダ温度分
布が演算されて求められる。そして、この新しい
最適シリンダ温度分布に対して、先と同様の処理
が行われ、シリンダ2内の溶融樹脂の温度分布は
希望樹脂温度分布に一致せしめられる。 また、樹脂の種類、銘柄が変る場合には、新し
い種類、銘柄の樹脂について予め求められている
上記関係式がマイクロコンピユータ11に呼び込
まれ、上記演算、制御処理が行われる。 以上がこの発明における第2の工程である。 このような温度制御方法によれば、予め決めた
数種の希望の樹脂温度分布に対応する最適シリン
ダ温度を求めておいて、この最適シリンダ温度を
指標として制御するものであるので、最適シリン
ダ温度を求めるための費用(樹脂使用量、試験時
間)がわずかで済む。しかし、限られた温度分布
だけしか制御できないが、一般の押出作業であれ
ば、上述のように押出作業条件は自ずと限られる
ので、実用上さして不都合を来すことはない。ま
た、樹脂温度を大きく変動させるパラメータであ
るスクリユ回転数、樹脂種類による温度変動に対
応して最適シリンダ温度を求めているので、常に
高精度の制御が可能である。さらにまた、本発明
においては、希望樹脂温度分布が限られた範囲で
あり、かつ制御中に樹脂温度予測という過程がな
いので特に室温について考慮を払う必要がなく、
シリンダ自体の温度分布さえ決められた温度に保
持しておけば、常に希望樹脂温度分布を得ること
ができる。 なお、上記の例では、押出機1の測温ゾーンに
対応する測温素子TC2,TC3,TC4,TC5につい
てのみこの温度制御方法を適用しているが、ポツ
パー側の測温ゾーンに対応する測温素子TC1につ
いても同様にこの温度制御方法を適用してもよ
い。しかし、通常の押出作業では上記4ゾーンの
温度制御で充分である。また、シリンダ2の加
熱、冷却手段も上記例に限られることなく、例え
ばシリコーン油などの液体熱媒を用いた加熱、冷
却手段あるいはブロワーを用いる冷却手段などを
用いてもよい。 発明の効果 以上の説明のようにこの発明の樹脂温度制御方
法によれば、溶融樹脂温度をある限定された樹脂
温度分布にしか制御できないものの基礎データ作
成の費用が微かで済み、しかも常用の樹脂温度分
布を選んでおけば実用上さして不便を招くことも
ない。また、常時高精度で樹脂温度を制御できる
ので、吐出量増大、スコーチの減少、熱エネルギ
ーの節約が計られる。
[Table] In the above, the screw rotation speed is classified by outputting the screw rotation speed as a voltage by a rotary generator attached to the screw shaft, and classifying the screw rotation speed based on this voltage. Then, these relational expressions are
It is determined for each brand of crosslinking agent-added polyethylene resin and recorded, for example, by storing it in a computer memory. FIGS. 4 and 5 are graphs of the above relationship. The graph in Figure 4 shows the optimum results when the screw rotation speed is changed from 5 to 30 rpm for melt index (MI) 3 and 2, and the graph in Figure 5 shows the optimum cross-linking agent-added polyethylene resin with melt index (MI) 1 and 2. Cylinder temperature measurement zone
It is plotted for C 2 , C 3 , C 4 and the adapter part (C 5 ) . From this graph, a 1 , 2 ..., b 1 , 2 , 3 , ... in the above relational expression are the straight lines of each curve. From these graphs, using crosslinking agent-added polyethylene resins with melt indexes of 3 and 2,
The optimum cylinder temperature when extruding at a screw rotation speed of 20 rpm, for example, is 123.3℃ for C2 and 119.6℃ for C3 .
℃, 116.2℃ at C 4 and 115.6℃ at C 5. When changing the screw rotation speed from 20 rpm to 30 rpm, the temperature of each zone is changed along the straight line of the graph, in other words, the above linear equation All you have to do is change it according to the relational expression expressed by . With the above steps, basic data creation in the first step is completed. Next, the second step of controlling the resin temperature during actual extrusion operation will be described. 6a and 6b show an example of the configuration of an operating extruder that performs the above control, and the extruder 1 in this example has an aluminum casting heater 6a attached to the outer peripheral surface of the cylinder 2 as a heating device 6 for the cylinder 2, Further, as a cooling device 7, a cooling oil jacket 7a through which cooling oil circulates is provided on the outer peripheral surface of the cylinder 2.
The cooling oil jacket 7a is formed with a spiral groove 7b provided for each temperature measurement zone, and allows cooling oil sent from a cooling oil circulation device (not shown) to flow through the groove 7b. The cylinder 2 is cooled by this. In this example, control is performed in temperature measurement zones C 2 , C 3 , C 4 , and C 5 of cylinder 2 corresponding to FIGS. element
Temperature measuring holes 3 where TC 2 , TC 3 , TC 4 , and TC 5 are bored from the inner surface of the cylinder 2 leaving a thickness of about 10 mm...
is inserted into. The depth of the temperature measurement hole 3 is determined by considering the extruder 1, extrusion conditions, etc., but it should be the same as the depth of the temperature measurement hole when creating the basic data in the first step. is necessary. Further, at the base of the screw 8, there is a rotary generator 9 that detects the rotation speed of the screw 8 and outputs a voltage proportional to this.
is installed. And the temperature measuring elements TC 2 , TC 3 , TC 4 , TC 5
The output signal from the rotary generator 9 is sent to a processing system as shown in FIG. 7, for example.
It is processed. The output from the rotary generator 9 is input to an A/D converter 10, digitized, and then input to a microcomputer 11. The above relational expression (optimum cylinder temperature corresponding to changes in screw rotation speed and resin brand) determined in the first step is input into the microcomputer 11 in advance. In other words, the optimum cylinder temperature distribution (pattern) using the screw rotation speed and the type of resin as parameters is input. In addition, each of the above temperature measuring elements TC 2 , TC 3 , TC 4 , TC 5
Output signals sent from the temperature measuring elements are sent to temperature controllers 12 provided corresponding to these temperature measuring elements. These temperature controllers 12... have A/D conversion function, D/
It is equipped with an A conversion function and a linearization function, and the above output signal is linearized and A/D converted here, and then sent to the microcomputer 11.
is input. And microcomputer 1
1 compares the optimal cylinder temperature distribution input in advance and the temperature of each temperature measurement zone from temperature measurement elements TC 2 to TC 5 with reference to the screw rotation speed input separately as described above. , find its deviation. That is, for example, if the screw rotation speed is 10 rpm, the optimum cylinder temperature distribution when the screw rotation speed is 10 rpm is called from among the optimum cylinder temperature distributions (the above-mentioned relational expression) stored in advance in the microcomputer 11, and this optimum cylinder temperature distribution is called. Compare the cylinder temperature distribution and the temperature of each temperature measurement zone mentioned above, in other words, the temperature distribution of the cylinder itself, and determine the deviation distribution.
In other words, the temperature deviation for each temperature measurement zone of the cylinder is determined. Then, the set temperature of the temperature controller 12 is calculated based on this deviation. This set temperature is sent from the microcomputer 11 to each temperature controller 12 corresponding to the temperature measurement zone. The temperature controller 12... compares this set temperature with the temperature of the cylinder 2 in each temperature measurement zone from the temperature measurement elements TC 2 to TC 5 , and controls the heating device 6 such as a band heater or embedded heater or the cooling oil circulation. A cooling device 7 such as a device is operated to match the set temperature and the cylinder temperature. Thus, by repeating the above calculation and comparison process two to three times, the temperature distribution in each temperature measurement zone of cylinder 2 matches the optimum cylinder temperature distribution, and the temperature of the molten resin in cylinder 2 matches the optimum temperature distribution for extrusion. (desired resin temperature distribution). Furthermore, when the screw rotation speed is changed during extrusion work, the screw rotation speed signal input to the microcomputer 11 changes, and the optimum cylinder temperature distribution at the new screw rotation speed is calculated and determined using the above relational expression. Then, the same process as before is performed on this new optimum cylinder temperature distribution, and the temperature distribution of the molten resin in the cylinder 2 is made to match the desired resin temperature distribution. Furthermore, when the type or brand of resin changes, the above-mentioned relational expression previously determined for the new type or brand of resin is read into the microcomputer 11, and the above-mentioned calculation and control processing is performed. The above is the second step in this invention. According to such a temperature control method, the optimum cylinder temperature corresponding to several predetermined desired resin temperature distributions is determined, and control is performed using this optimum cylinder temperature as an index. The cost (amount of resin used, testing time) to determine the value is small. However, although only a limited temperature distribution can be controlled, in the case of general extrusion work, the extrusion work conditions are naturally limited as described above, so this does not cause any practical problems. In addition, since the optimum cylinder temperature is determined in response to temperature fluctuations due to the screw rotation speed and resin type, which are parameters that cause large fluctuations in resin temperature, highly accurate control is always possible. Furthermore, in the present invention, the desired resin temperature distribution is within a limited range, and there is no process of predicting the resin temperature during control, so there is no need to particularly consider the room temperature.
As long as the temperature distribution of the cylinder itself is maintained at a predetermined temperature, the desired resin temperature distribution can always be obtained. In the above example, this temperature control method is applied only to the temperature measuring elements TC 2 , TC 3 , TC 4 , and TC 5 corresponding to the temperature measuring zones of the extruder 1, but the temperature measuring elements on the popper side This temperature control method may be similarly applied to the temperature measuring element TC1 corresponding to . However, in normal extrusion operations, temperature control in the four zones described above is sufficient. Further, the heating and cooling means for the cylinder 2 are not limited to the above examples, and heating and cooling means using a liquid heat medium such as silicone oil, cooling means using a blower, etc. may be used. Effects of the Invention As explained above, according to the resin temperature control method of the present invention, although the molten resin temperature can only be controlled within a certain limited resin temperature distribution, the cost of creating basic data is small, and moreover, the resin temperature control method of the present invention If the temperature distribution is selected, there will be no practical inconvenience. In addition, since the resin temperature can be controlled with high precision at all times, it is possible to increase the discharge amount, reduce scorch, and save thermal energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の樹脂温度制御方法を適用した押
出機を示す概略構成図、第2図は室温と△T1
の関係を示すグラフ、第3図はスクリユ回転数と
△T2との関係を示すグラフ、第4図および第5
図はいずれも架橋剤添加ポリエチレン樹脂の最適
シリンダ温度分布をスクリユ回転数を変えて求め
たグラフ、第6図aはこの温度制御方法を適用し
た押出機の例を示す概略構成図、第6図bはこの
押出機のシリンダの概略断面図、第7図はこの温
度制御方法に用いられる制御処理システムの一例
を示すブロツク図である。 1……押出機、2……シリンダ、6……加熱装
置、7……冷却装置、8……スクリユ、9……回
転発電機、11……マイクロコンピユータ、12
……温度調節計、TC2,TC3,TC4,TC5……測
温素子。
Figure 1 is a schematic configuration diagram showing an extruder using a conventional resin temperature control method, Figure 2 is a graph showing the relationship between room temperature and △T 1 , and Figure 3 is a graph showing the relationship between screw rotation speed and △T 2 . Graphs showing the relationship, Figures 4 and 5
Both figures are graphs of the optimum cylinder temperature distribution of crosslinking agent-added polyethylene resin obtained by varying the screw rotation speed. Figure 6a is a schematic configuration diagram showing an example of an extruder to which this temperature control method is applied. Figure 6 b is a schematic sectional view of the cylinder of this extruder, and FIG. 7 is a block diagram showing an example of a control processing system used in this temperature control method. DESCRIPTION OF SYMBOLS 1...Extruder, 2...Cylinder, 6...Heating device, 7...Cooling device, 8...Screw, 9...Rotary generator, 11...Microcomputer, 12
... Temperature controller, TC 2 , TC 3 , TC 4 , TC 5 ... Temperature measuring element.

Claims (1)

【特許請求の範囲】 1 ある樹脂について、それの成形に最適なシリ
ンダ内の溶融樹脂の最適樹脂温度分布を別途設定
しておき、つぎに、溶融樹脂の温度を直接測温で
きる測温用スクリユーを装備し、かつシリンダの
各測温ゾーンに対応した複数の測温素子を設けて
シリンダ自体の温度をも測温できる構造の測温用
のプラスチツク成形機を用い、あるスクリユ回転
数において、上記測温用スクリユーで求められる
その樹脂の溶融樹脂温度分布と上記最適樹脂温度
分布とを比較し、これら両温度分布が一致するよ
うに、シリンダの各測温ゾーンに設けられた上記
測温素子で得られるシリンダ自体の温度分布を上
記測温素子と温度調節計を用いて温度調節するこ
とで、その樹脂の上記最適樹脂温度分布が得られ
るシリンダ自体の最適シリンダ温度分布を定め、
ついで、スクリユ回転数を変化させてスクリユ回
転数の変化に対応したシリンダ自体の最適シリン
ダ温度分布の変化を関係式として求める第1の工
程と、 シリンダの各測温ゾーンに対応した複数の測温
素子を設け、シリンダ自体の温度を測温できる構
造の操業用のプラスチツク成形機を用い、第1の
工程で求めた関係式と、その樹脂を実際に成形す
るときの上記複数の測温素子で測定されるシリン
ダ自体の温度分布とをスクリユ回転数を参照して
比較し、その偏差分布を求め、この偏差分布に基
づいてシリンダの設定温度分布を求め、この設定
温度分布にシリンダ自体の温度分布を一致させる
第2の工程とからなることを特徴とするプラスチ
ツク成形機の樹脂温度制御方法。
[Claims] 1. For a certain resin, the optimal resin temperature distribution of the molten resin in the cylinder that is optimal for molding the resin is separately set, and then a temperature measuring screw that can directly measure the temperature of the molten resin is provided. Using a plastic molding machine for temperature measurement, which is equipped with a thermometer and is equipped with multiple temperature measurement elements corresponding to each temperature measurement zone of the cylinder so that the temperature of the cylinder itself can also be measured, at a certain screw rotation speed, Compare the molten resin temperature distribution of the resin determined by the temperature measuring screw with the above optimal resin temperature distribution, and use the temperature measuring element installed in each temperature measuring zone of the cylinder to make sure that both temperature distributions match. By adjusting the temperature distribution of the obtained cylinder itself using the temperature measuring element and temperature controller, determining the optimum cylinder temperature distribution of the cylinder itself that can obtain the optimum resin temperature distribution of the resin,
Next, the first step is to change the screw rotation speed and calculate the change in the optimum cylinder temperature distribution of the cylinder itself corresponding to the change in the screw rotation speed as a relational expression, and to measure a plurality of temperatures corresponding to each temperature measurement zone of the cylinder. Using an operating plastic molding machine with a structure that allows temperature measurement of the cylinder itself, the relational expression obtained in the first step and the above-mentioned temperature measurement elements when actually molding the resin are used. Compare the temperature distribution of the cylinder itself to be measured with reference to the screw rotation speed, find the deviation distribution, find the set temperature distribution of the cylinder based on this deviation distribution, and add the temperature distribution of the cylinder itself to this set temperature distribution. A method for controlling resin temperature in a plastic molding machine, characterized in that the method comprises a second step of matching the temperature of the resin.
JP58249775A 1983-12-27 1983-12-27 Resin temperature control for plastics molding machine Granted JPS60139424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58249775A JPS60139424A (en) 1983-12-27 1983-12-27 Resin temperature control for plastics molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249775A JPS60139424A (en) 1983-12-27 1983-12-27 Resin temperature control for plastics molding machine

Publications (2)

Publication Number Publication Date
JPS60139424A JPS60139424A (en) 1985-07-24
JPH0380609B2 true JPH0380609B2 (en) 1991-12-25

Family

ID=17198036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249775A Granted JPS60139424A (en) 1983-12-27 1983-12-27 Resin temperature control for plastics molding machine

Country Status (1)

Country Link
JP (1) JPS60139424A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115719A (en) * 1986-11-04 1988-05-20 Toshiba Mach Co Ltd Method of control ling cylinder temperature of extrusion machine

Also Published As

Publication number Publication date
JPS60139424A (en) 1985-07-24

Similar Documents

Publication Publication Date Title
US4480981A (en) System for controlling temperature of molten resin in cylinder of extruder
CA1308530C (en) Procedure for manufacturing pipes and sections out of thermoplastic plastics
US4262737A (en) Extruder temperature controller
EP1254013B1 (en) Method for operating extruder temperature controller with stable temperature reset
NL8304451A (en) METHOD AND APPARATUS FOR CONTROLLING THE WALL THICKNESS OF EXTRUDED PLASTIC TUBE.
JPH064266B2 (en) Non-interference temperature control method for injection molding machine
EP0390696B1 (en) Apparatus for controlling thickness of film formed by melt extrusion
JPH0380609B2 (en)
CN1056706C (en) Apparatus for sealing of semiconductor with resin
JPH0355292B2 (en)
JP3083757B2 (en) Temperature control method and temperature control device for resin plasticizing cylinder
JPS606426A (en) Non-interacting controlling apparatus of injection molder heating cylinder
JPS6149094B2 (en)
JPS58126131A (en) Resin temperature controlling method of plastic molding machine
Schöppner et al. Investigation of the barrel temperature profile on the process behavior of single screw extruders and strategies to determine the optimal temperature control
JPH11353035A (en) Device and method for analyzing characteristics of heating medium
JPS59167242A (en) Controlling method of temperature of resin in plastic molding machine
JPS6216665Y2 (en)
Lenir Computerization of wire insulating lines–An industrial approach
Hopmann et al. Analysis of Radial Heat Transfer in an Injection Mold with Highly Dynamic Segmented Mold Tempering
SU1431665A3 (en) Method and apparatus for regulating screw extruder
Boysen An analysis of the continuous vulcanizing process for polyethylenes
JPH05220806A (en) Resin extruder
JP3233994B2 (en) Vulcanizer temperature controller
JPS5892546A (en) Resin temperature control of plastic molding machine