JPS59167242A - Controlling method of temperature of resin in plastic molding machine - Google Patents

Controlling method of temperature of resin in plastic molding machine

Info

Publication number
JPS59167242A
JPS59167242A JP58041039A JP4103983A JPS59167242A JP S59167242 A JPS59167242 A JP S59167242A JP 58041039 A JP58041039 A JP 58041039A JP 4103983 A JP4103983 A JP 4103983A JP S59167242 A JPS59167242 A JP S59167242A
Authority
JP
Japan
Prior art keywords
temperature
resin
cylinder
screw
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58041039A
Other languages
Japanese (ja)
Inventor
Akira Togawa
戸川 侃
Mitsusachi Nakamoto
中本 光幸
Mitsuo Iwata
岩田 充雄
Katsuhiko Ito
克彦 伊藤
Hideo Sano
英雄 佐野
Nobutaka Sekine
関根 伸隆
Tomoe Shibuya
渋谷 朋衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58041039A priority Critical patent/JPS59167242A/en
Publication of JPS59167242A publication Critical patent/JPS59167242A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Abstract

PURPOSE:To attain the increase in the amount of resin to be discharged, the reduction of scorching, and saving of energy by a method in which measured temperature of a cylinder is added by a correcting temperature from at least three or more parameters including room temperature and the revolving number of screw to estimate the temperature of molten resin, and on the basis of the deviation of the temperature from a desired temperature, the temperature of the resin is controlled. CONSTITUTION:Thermocouples C1-C4 to measure the temperatures of each zone in a cylinder 2, a tachometer generator 9 to detect the revolving number of a screw 8, and a temperature-sensing resistor 10 to measure the ambient temperature of an extruder 1 are provided. A correcting temperature calculated from at least three or more parameters including room temperature and screw revolving number among the parameters such as room temperature, screw revolving number, screw shape, set temperature, the kinds of resins, etc., to vary the temperatures of resin is added to the measured temperature of the cylinder 2 to estimate the temperature of the resin. The deviation between the estimated temperature and a desired temperature is obtained, and on the basis of the deviation, the temperature of the resin is controlled.

Description

【発明の詳細な説明】 この発明は、押出量などのプラスチック成形機を用いて
プラスチックを成形する除、成形機内の樹脂温度を成形
に最適な温度に制御するためのプラスチック成形機にお
ける樹脂温度制御方法に関する。
Detailed Description of the Invention This invention provides resin temperature control in a plastic molding machine to control the resin temperature in the molding machine to the optimum temperature for molding, in addition to molding plastic using a plastic molding machine such as extrusion rate. Regarding the method.

プラスチックの押出酸形などにおいて、押出機のシリン
ダ内の各ゾーンの&J脂湿温度筐用飼脂に適した温度に
fiilJ御することは、押出量の増加、スコーチの減
少、エネルギーコストの低減、さらには電融・ケーブル
の絶縁材料等としての電気的層性等の向上などの点から
非常に重要な意味を有している。
In the case of extruded acid type plastics, etc., controlling the humidity and temperature of each zone in the cylinder of the extruder to a temperature suitable for the feed fat for the housing increases the extrusion amount, reduces scorch, reduces energy costs, Furthermore, it has a very important meaning from the point of view of improving electrical layer properties as an insulating material for electrofusion/cables, etc.

従来の押出様の樹脂゛温度制御は、第1図に示すように
、押出機1のシリンダ2にシリンダ2を貫通しない複数
の測温穴3・・・を穿設し、この測温穴3・・・に測温
素子4・・・を差し込み、シリンダ2の各測温ゾーン、
CI  、c、103  、c、の温度を測定し、こt
らの温度を温度調節計5・・・に入力し、シリンダ2の
外側に設けられたバンドヒータ、埋込みヒータ等の加熱
装置6・・・および冷却ブロア等、の冷却装置7・・・
をこれら温度、lil、11節酎耐・・・で制御させる
方法によって行われている。
Conventional extrusion-like resin temperature control involves drilling a plurality of temperature-measuring holes 3 in the cylinder 2 of an extruder 1 that do not penetrate the cylinder 2, as shown in FIG. Insert temperature measuring element 4... into each temperature measuring zone of cylinder 2,
Measure the temperature of CI,c,103,c, and
These temperatures are input to the temperature controller 5..., and the heating device 6, such as a band heater or embedded heater, provided on the outside of the cylinder 2, and the cooling device 7, such as a cooling blower.
This is done by controlling the temperature, lil, and 11-section shuchu resistance.

しかし、この方法には次のような問題があること力ζ明
らかとなった。すなわち、上記制御方法では測温素子4
による測定温度とシリンダ2内の溶融樹脂の温にとの間
には、■押出機Jの周囲の室温の変化により、シリンダ
2内■の温度とシリンダ2の温度との間には第2図に示
すような温度差(△T、)か各測温ゾーン毎(C2r 
03  r 04)に発生し、■また押出機1に樹脂を
流したときの押出機1のスクリュ80回転数の変化によ
って第3図に示したような実除の樹脂温度とシリンダ2
の温にとの温度差が更にへT2分だけ瑠加する。
However, it has become clear that this method has the following problems. That is, in the above control method, the temperature measuring element 4
There is a difference between the measured temperature by The temperature difference (△T,) or each temperature measurement zone (C2r
03 r 04), and ■ Also, due to the change in the rotation speed of the screw 80 of the extruder 1 when the resin is poured into the extruder 1, the actual resin temperature and cylinder 2 as shown in FIG.
The temperature difference between the temperature and the temperature is further increased by T2 minutes.

したがって、これらの影響によってシリンダ2内の溶融
樹脂の温度は希望温度以上に加熱された状態となってお
り、無駄なエネルギーを消費していたことが判明した。
Therefore, it was found that due to these influences, the temperature of the molten resin in the cylinder 2 was heated to a temperature higher than the desired temperature, and energy was wasted.

(なお、第2図および第3図中の02  、C3+ 0
4はシリンダ2の測温位置を表わすもので第1図中の各
温度調節計5・・・に示されているC2+C3+04の
各測温ゾーンに対応している。) さらに最近の検討によれば、シリンダ2内の浴融4釘脂
温度は、前述のように電磁やスクリュ回転数だけではな
く、押出機1の設定温1琥、スクリュの形状や構造、沼
賊促脂の4里類(同一樹脂のグレードの差異にも)等に
よって影響されること力=tU明してきている。例えば
、ポリエチレン樹脂の押出時、温り脚負I]計5の設定
温度を120℃とし、測温索子4による迎j定温度か1
20℃であっても、実際の浴融梢IJTh温薦は130
〜140℃にもなっている。
(In addition, 02, C3+ 0 in Figures 2 and 3
4 represents the temperature measurement position of the cylinder 2, which corresponds to each temperature measurement zone of C2+C3+04 shown in each temperature controller 5... in FIG. ) Furthermore, according to recent studies, the temperature of the bath melted fat in the cylinder 2 is determined by not only the electromagnetic and screw rotation speeds as mentioned above, but also the set temperature of the extruder 1, the shape and structure of the screw, and the temperature of the extruder 1. It has become clear that it is influenced by the four different grades of resin (including differences in grades of the same resin). For example, when extruding polyethylene resin, the set temperature of the heating leg 5 is set to 120°C, and the temperature measured by the thermometer 4 is set to 1.
Even at 20°C, the actual bath melting temperature IJTh recommendation is 130°C.
The temperature has reached ~140℃.

したかつて、単なる測温穴3・・・による鉤温では、太
陽の浴は樹脂温波を正確に把握することは不可nしであ
った。
In the past, it was impossible to accurately determine the temperature waves of the resin in the sun's bath by simply measuring the temperature using the temperature measurement hole 3.

そこで、このような従米万式の改良として、特囲昭55
−121042号に示された押出機の樹脂温度制御装置
か提案されている。この温度制御装置は、押出機のシリ
ンダの内壁面よりや\外方の位置に設置し、d位置の温
度検出信号としてとりだす第1の温に検出器と、前記押
出機のシリンダの外壁面よシやや内方の位置設置し、隊
位置の’fJjhlli検出信号としてとシだす第2の
温度検出器と、前記落lの瓢IE検出器か設置されてい
る位置の目標温度信号を設定出力とする熱lの温l屹設
定器と、F?iJ記第2の温度検出器が設置されている
位置の目標温度信号を設定出力とする第2の温度設定器
と、Mil記第1の温度検出器が検出した温度信号と、
前記第1の温度設定器からの第1の目標温度信号とを比
軟演算する第1の比軟演算益と、MiJ記第2の温度検
出器が検出した温度信号と、前記第1の比軟演算器出力
信号によシ削記第2の温に設定器からの第2の目標温度
信号の修正信号とを比軟演算する第2の比べ演舞器と、
試第2の比軟演其器出力信号に応じて、前記加熱冷却装
置の熱量を遂択的に加減する出力装置とを伽えたもので
ある。
Therefore, as an improvement to this type of Jubei Banshiki, the special
A resin temperature control device for an extruder has been proposed as shown in Japanese Patent No. 121042. This temperature control device is installed at a position outside the inner wall surface of the cylinder of the extruder, and includes a first temperature detector which is output as a temperature detection signal at position d, and a temperature sensor located outside the outside wall surface of the cylinder of the extruder. A second temperature sensor is installed at a position in the sea or inside, and outputs a detection signal as a 'fJjhlli detection signal at the team position, and a target temperature signal at the position where the droplet IE detector is installed is set as the output. The temperature setting device of the heat l and F? a second temperature setter whose set output is a target temperature signal at a position where the second temperature detector is installed; a temperature signal detected by the first temperature detector;
A first ratio soft operation gain that performs a ratio soft calculation on the first target temperature signal from the first temperature setting device, the temperature signal detected by the second temperature detector written in MiJ, and the first ratio a second comparison device that performs a soft calculation to compare the correction signal of the second target temperature signal from the setting device to the second temperature based on the soft calculation device output signal;
The present invention includes an output device that selectively adjusts the amount of heat of the heating/cooling device according to the output signal of the second ratio controller.

そして、シリンダの内嚢面近傍の温度か、第1の温度設
定器の設定温度より低い場合、第1の比軟器が止の出力
信号な送り、この信号は@2の温に設定器からの目標温
度信号に加算されて第2の比軟器に送られ、この第2の
比柩器からの出力信号に基づいて加熱冷却装置が加熱作
動てれ、シリンダの内底面近傍の温度が高められる。逆
に、シリンダの内六面近傍の温度がその目標温度よシ高
い場合、加熱冷却装置か冷却作動される。同様に、シリ
ンダの外表面近傍の温度が第10比戟器の出力信号によ
シ修正された第2の温度設定器の目標温度よシ低い場合
、第2の比w、器を介して加熱冷却装置が加熱作動され
る。逆に、シリンダの外表面近傍の温度が前記修正され
た目標温度よシ高い場合、加熱冷却装置が冷却作動され
る。しかしなから、この従来の樹脂温度制御装置でもシ
リンダ壁の温度を測定して単にシリンダの温度を制御し
ているだけなので、前述したように、設定温度と実際の
樹脂温度とには、槌々のパラメータによって大きな温度
差が見られるので、このような温度制御装置でも、実際
の樹脂温度を正確に制御できない欠点がある。
Then, when the temperature near the inner capsule surface of the cylinder is lower than the set temperature of the first temperature setting device, the first ratio softener sends an output signal to stop, and this signal is sent from the setting device to the temperature of @2. The target temperature signal is added to the target temperature signal and sent to the second ratio softener, and the heating/cooling device is heated based on the output signal from the second ratio softener, increasing the temperature near the inner bottom surface of the cylinder. It will be done. Conversely, if the temperature near the inner six surfaces of the cylinder is higher than the target temperature, the heating/cooling device is operated for cooling. Similarly, if the temperature near the outer surface of the cylinder is lower than the target temperature of the second temperature setter, which is corrected by the output signal of the tenth ratio, the second ratio w is heated via the second temperature setter. The cooling device is heated. Conversely, if the temperature near the outer surface of the cylinder is higher than the revised target temperature, the heating/cooling device is operated for cooling. However, even with this conventional resin temperature control device, the temperature of the cylinder is simply controlled by measuring the temperature of the cylinder wall, so as mentioned above, there is a difference between the set temperature and the actual resin temperature. Since there is a large temperature difference depending on the parameters, even such a temperature control device has the disadvantage that the actual resin temperature cannot be accurately controlled.

そこで、不発明者らは前記二つの従来の樹脂温度制御方
法の欠点をカ早泊するため、シリンダ内表面やスクリュ
の外表面に演1」温素子の感温部を直接溶融樹脂に接触
するように設け、シリンダ内の溶融樹脂の温良を直接測
定する方法を提案してきたが、これらの方法では測温索
子の感温部が直接浴融状態の樹脂に常時接触しているの
で、辿j温素子の感温部の摩耗や樹脂の滞留の問題がち
シ、測温集子をたびたび取シ換えねばならず、押出機の
長期連続稼動上の問題がある。また、シリンダに貫通孔
を設けたものは長期の使用によって貫通孔周辺にクラン
ク等が生じる等の問題も刊明した。
Therefore, in order to overcome the shortcomings of the two conventional resin temperature control methods mentioned above, the inventors of the present invention directly contact the molten resin with the temperature-sensing part of the temperature element on the inner surface of the cylinder or the outer surface of the screw. We have proposed a method of directly measuring the temperature of the molten resin in the cylinder by setting it up as a thermometer, but in these methods, the temperature sensing part of the thermometer is constantly in direct contact with the resin in the bath molten state, so it is difficult to trace the temperature. The temperature sensing part of the temperature sensor is prone to wear and resin retention, and the temperature sensor must be replaced frequently, which poses problems in the long-term continuous operation of the extruder. The publication also revealed that cylinders with through-holes have problems such as crank formation around the through-holes due to long-term use.

そこでさらに、成形機のスクリュ回転数や室温による樹
脂温度の変動を補正する手段を備えた温度制御方法が、
特願昭56−191906号として不発四巻等によって
提案されている。
Therefore, a temperature control method that includes means for correcting fluctuations in resin temperature due to molding machine screw rotation speed and room temperature has been developed.
It has been proposed in Japanese Patent Application No. 191906/1986 in four volumes of misfires.

この方法は、シリンダの温度を測定し、この温度に室温
、スクリュ(9)転数などの浴融樹脂温紋を変動さげる
バラメー〆から算出された温良を補正してシリンダ内の
溶酬樹脂温波を予測し、この予測樹脂温度と希望樹脂温
度との偏差を求め、この偏差に基づいてシリンダ内の溶
la樹脂の温度を制御するもΩである力脣この方法によ
っても目的とする¥f4波で′jf8脂温汲を制御する
ことは不可能であった。
This method measures the temperature of the cylinder, and corrects the temperature value calculated from the room temperature, the rotary speed of the screw (9), and other variables that reduce the temperature of the melted resin in the cylinder. The wave is predicted, the deviation between the predicted resin temperature and the desired resin temperature is found, and the temperature of the molten la resin in the cylinder is controlled based on this deviation. It was impossible to control 'jf8 fat temperature with waves.

この発明は上記事情に鑑みてなされたもので、シリンダ
内の浴融樹脂の温腋を正確に予測でき、樹脂温度を常に
希望温度に保持することができ、樹脂吐出量の増大、ス
コーチの減少、エネルギー節約が計られ、しかも測温素
子の摩耗かなく、押出機などを−bC期連続橡動させる
ことのできるグラスチック成形機の樹脂温度制御方法を
提供することを目的とし、プラスチック成形機のシリン
ダの温度を測定し、この温度に室温、スクリュ回転数、
スクリュ形状、設定温波、樹脂の値類笠の俗融樹脂温I
梃を変動さ?るバ之メー〆の同、室温、スクリュ同転数
を冨む少なくとも3以上のパラメーターから補正温度を
加算してシリンダ内の浴融樹脂温度を予測し、この予測
温度と希望樹脂温度との偏差を求め、この偏差に基づい
てシリンダ内の浴f8i樹脂の温良を制御することを行
値とするものである。
This invention was made in view of the above circumstances, and it is possible to accurately predict the temperature of the bath melted resin in the cylinder, to maintain the resin temperature at the desired temperature, to increase the amount of resin discharged, and to reduce scorch. The purpose of the present invention is to provide a resin temperature control method for a plastic molding machine that saves energy, does not wear out the temperature measuring element, and can operate an extruder etc. continuously during the -bC period. Measure the temperature of the cylinder, and adjust this temperature to room temperature, screw rotation speed,
Screw shape, temperature setting, resin value classification Kasa's general melting resin temperature I
Change the lever? The temperature of the melted resin in the cylinder is predicted by adding the corrected temperature from at least three parameters including the temperature, room temperature, and rotational speed of the screw, and the deviation between this predicted temperature and the desired resin temperature is calculated. is determined, and the temperature of the bath f8i resin in the cylinder is controlled based on this deviation.

以下、図Wjをυ照してこの発明を硅しぐ説明する。Hereinafter, this invention will be explained in detail with reference to Figure Wj.

第4図はこの発明の温度制御方法を適用して温度制御さ
れる押出機の構成例を示すもので、第1図と同一@4■
部分には同一符号を付して七の睨明を省略する。押出機
1のシリンダ2の各ゾーンには、このシリンダ2の各ゾ
ーンの温till ’It 6ii1定する熱′i1対
CI Z+ a2ZT O’B  + C4か設けられ
ている。こn c)熱電対Cは第5図に示すように、シ
リンダ2の内表面から約10mF程度の厚みを残して穿
設されたシ1」温水3・・・に挿入さしている。なお、
測温穴3・・・の深さは、押出機1や押出条件等を考広
して選定するのか艮い。また、スクリュ80基部には、
このスクリュ80回転数を横比する回転発電機9か取り
付けらit、さらに押出機1の周囲の室温を測定する測
温抵抗体10が設けられている。そして、これら熱電対
C9回転発電機9および抑」温抵抗体10からの出力は
、第6図に示されたこの発明の温度制御方法に好適な処
理システムに送られる。すなわち、熱電対C!2  、
03  、 C!4および室温測温抵抗体10からの出
力信号はリニアライザ11・・・に入力され、リニアラ
イズされる。
Figure 4 shows an example of the configuration of an extruder whose temperature is controlled by applying the temperature control method of the present invention, and is the same as Figure 1.
Parts are given the same reference numerals and the 7th line is omitted. Each zone of the cylinder 2 of the extruder 1 is provided with a heat which determines the temperature of each zone of the cylinder 2. c) As shown in FIG. 5, the thermocouple C is inserted into the hot water 3, which is drilled from the inner surface of the cylinder 2, leaving a thickness of about 10 mF. In addition,
The depth of the temperature measurement hole 3... should be selected by considering the extruder 1, extrusion conditions, etc. In addition, at the base of the screw 80,
A rotary generator 9 is installed to measure the rotational speed of the screw 80, and a resistance temperature detector 10 is provided to measure the room temperature around the extruder 1. The outputs from the thermocouple C9 rotary generator 9 and the temperature suppressor 10 are sent to a processing system suitable for the temperature control method of the present invention shown in FIG. That is, thermocouple C! 2,
03, C! 4 and the room temperature resistance thermometer 10 are input to the linearizer 11... and linearized.

そして、このリニアライズされた信号はスキャナ12に
込らf、スキャナ12で、マイクロプロセッサ13から
のスキャン指令に基づいて、順次A / D変換器14
に入力され、ディジタル化され、さらにマイクロプロセ
ッサ13に入力される。また、スクリュ回転発電機9か
らの信号は、別のA / D変換器14に人力されてデ
ィジタル化され、マイクロプロセッサ13に入力される
Then, this linearized signal is sent to the scanner 12, which sequentially sends it to the A/D converter 14 based on a scan command from the microprocessor 13.
The data is input to the microprocessor 13, digitized, and further input to the microprocessor 13. Further, the signal from the screw rotation generator 9 is manually input to another A/D converter 14, digitized, and input to the microprocessor 13.

また、同時にマイクロプロセッサ13には、別にスクリ
ュ8の形状、樹脂の梅類(同一樹脂におけるグレードの
差異をも宮む)、設定温度等の浴融樹脂温度を変動させ
るパラメータに関するテークが入力される。なお、前述
のリニアライザ11オ、t: U A / D変換器1
4は、各検知手段にそれぞれ組み込まれている場合には
不要となる。
At the same time, the microprocessor 13 is also input with information regarding parameters for varying the temperature of the melted resin, such as the shape of the screw 8, the type of resin (which also accounts for differences in grade within the same resin), and the set temperature. . In addition, the above-mentioned linearizer 11, t: U A/D converter 1
4 becomes unnecessary when each detection means is incorporated in each detection means.

そして、マイクロプロセッサ13は、予じめメモリされ
た第2図および第3図の室温と△T1との関係およびス
クリュ回転数と△T、との関係に基づき、その室温とス
クリュ回転数とから、各測温位置における△T1と△T
、を演算するとともに上記パラメータから、予めメモリ
されているプログラムによって求められたこれらパラメ
ータによって定まる補正温度が演算される。っき゛に、
上記△TI+△T2および補正温度に、熱電対C2゜C
!3.04でそれぞれ測定されたシリンダ2の各側温シ
ー/に対応する温度が加算されて、シリンダ2内の樹脂
温度が各測温ゾーン毎に予測される。
Then, the microprocessor 13 calculates the room temperature and the screw rotation speed based on the relationship between the room temperature and ΔT1 and the relationship between the screw rotation speed and ΔT shown in FIGS. 2 and 3 which are stored in advance. , △T1 and △T at each temperature measurement position
, and from the above parameters, a corrected temperature determined by these parameters determined by a program stored in advance is calculated. clearly,
At the above △TI+△T2 and correction temperature, thermocouple C2°C
! The temperatures corresponding to the respective side temperatures of the cylinder 2 measured in step 3.04 are added, and the resin temperature inside the cylinder 2 is predicted for each temperature measurement zone.

さらに、これら予測樹脂温度は、別にメモリされた希望
樹脂温I及と比較され、その偏差が求められ、この偏差
に基づいて温度調節計5の設定温度が演算される。この
設定温度は、マイクロプロセッサ13から出力側のスキ
ーヤナ15に送られ、マイクロプロセッサlからのスキ
ャン指令に基づいて、順次D/A変換器16・・・に送
られる。この除、各ゾーンの〃[シい設定温度は、その
ゾーンに対応して設けられfc D / A変換器16
に入力され、アナログ化され、さらに各ゾーンに対応し
て設けられた温度調節計5・・・に送られる。また、こ
の設定温度は、熱電対(’2  + 03  r 04
からの信号を参考にしてマイクロプロセッサ13が定め
たタイミングに従って温度調節計5・・・に送られる。
Further, these predicted resin temperatures are compared with the desired resin temperature I and the separately stored desired resin temperature, the deviation thereof is determined, and the set temperature of the temperature controller 5 is calculated based on this deviation. This set temperature is sent from the microprocessor 13 to the ski scanner 15 on the output side, and is sequentially sent to the D/A converters 16 . . . based on a scan command from the microprocessor 1. Except for this, the set temperature of each zone is set corresponding to that zone.
The temperature is input to the temperature controller 5, converted into an analog signal, and sent to the temperature controller 5 provided corresponding to each zone. In addition, this set temperature can be set using a thermocouple ('2 + 03 r 04
The signals are sent to the temperature controllers 5, .

温度調節計5・・・には、別にそれぞれ熱′電対02 
 + 08  +04からの信号が入力されておシ、こ
の信号と上記設定温度とを比較して、バンドヒータや埋
込みヒータなどの加熱装置6あるいは冷却プロアなどの
冷却装置7を動作させて、各熱電対Cでの測定温kを設
定温度と一致させる。かくして、シリンダ2P′3の浴
融樹脂の温度は、希望樹脂温度と一致するようになる。
Temperature controller 5... has a separate thermocouple 02.
+08 A signal from +04 is input, and this signal is compared with the above-mentioned set temperature to operate the heating device 6 such as a band heater or embedded heater or the cooling device 7 such as a cooling prower to cool down each thermoelectric element. Make the measured temperature k at pair C match the set temperature. In this way, the temperature of the bath melted resin in the cylinder 2P'3 comes to match the desired resin temperature.

このような温度制御方法によnば、シリンダ2内の浴融
樹脂の樹脂温度を変動させるスクリュ8の回転数、室温
、スクリュ8の形状、設定温度、樹脂の種類等のパラメ
ータが変化しても、この変化に伴って生じる樹脂温度の
変動量がマイクロプロセッサ13にてぽちに求められ、
常にこの震動証が加味さnた耕しい設定温度によって、
温度調節計5か樹脂温度を制御することになり、シリン
ダ2内の樹脂の1JA度は速かに希望樹脂温度に一致し
、適正な温度に維持される。
According to such a temperature control method, parameters such as the rotation speed of the screw 8, room temperature, the shape of the screw 8, the set temperature, and the type of resin that vary the resin temperature of the bath melted resin in the cylinder 2 are changed. Also, the amount of variation in resin temperature that occurs due to this change is determined by the microprocessor 13,
This vibration proof is always taken into consideration, and the temperature is carefully set.
The temperature controller 5 controls the resin temperature, and the 1JA degree of resin in the cylinder 2 quickly matches the desired resin temperature and is maintained at an appropriate temperature.

なお、上記の例では、押出機1の測温シー/に対応する
熱電対C2+CB+”4についてのみ本発明に詠る温度
制御方法を適用しているが、ホッパー側の測温ゾーンに
対応する熱電対OI についても同様にこの温度制御方
法を適用してもよい。
In the above example, the temperature control method described in the present invention is applied only to the thermocouple C2+CB+"4 corresponding to the temperature measurement zone on the extruder 1, but This temperature control method may be similarly applied to OI.

しかし、通常の押出作業ではC2+C3+C4の三ゾー
ンの温度制御で充分である。また、シリンダ2の加熱、
冷却手段も上記例に限られることなく、例えばシリコ−
/油などの流体熱媒を用いた加熱、冷却手段を用いても
よい。
However, in normal extrusion operations, temperature control in three zones, C2+C3+C4, is sufficient. In addition, heating of cylinder 2,
The cooling means is not limited to the above example, and for example, silicone
/ Heating and cooling means using a fluid heat medium such as oil may be used.

以下、実施例を示して、具体的に説明する。Hereinafter, a specific explanation will be given by showing examples.

〔実施例〕〔Example〕

スクリュ径50石m、L/D=20、シリンダ肉N−2
51nz、ヒータ容量c、  2.2kW、  C!2
  + Os  rC40,7kW、 P T D温度
調節計付き押出様を用い、本発明の温度制御方法を適用
して架橋剤入り低密度ポリエチレンを押出成形した。
Screw diameter 50 kokum, L/D=20, cylinder thickness N-2
51nz, heater capacity c, 2.2kW, C! 2
+OsrC40,7kW, PTD Extrusion mode equipped with a temperature controller was used to extrude low density polyethylene containing a crosslinking agent by applying the temperature control method of the present invention.

(1)設定温度 熱′電対をシリンダ内表面から10mNの距離に配置し
て、 C1・・・・・・120℃固定とし C2+ ”、+ C4,・・・・・・マイクロプロセッ
サからの指令による。
(1) Place the set temperature thermocouple at a distance of 10 mN from the inner surface of the cylinder, fix C1 to 120°C, and issue commands from the microprocessor to C2+ ”, + C4, and so on. by.

(2)各ゾーンの希望樹脂温度E C,・・・・・・特に定めず C2・・・・・・126°G (3)樹脂温度予測式 %式% y:熱電対Cによるシリンダの温度 △T、:室温による補正温度 △T2 :スクリュ回転数による補正温度△T、二設定
設定温度る補正温度 ΔT4 :スクリュ形状による補正温度△T、:樹脂の
種類による補正温度 (4)制御方法 次式によって耕しい設定温度を演算して温度調節計5へ
指令する方式とする。
(2) Desired resin temperature for each zone E C,... Not specified C2...126°G (3) Resin temperature prediction formula % formula % y: Cylinder temperature measured by thermocouple C △T,: Correction temperature according to room temperature △T2: Correction temperature according to screw rotation speed △T, 2 set temperature correction temperature ΔT4: Correction temperature according to screw shape △T,: Correction temperature according to resin type (4) Control method: A method is adopted in which a precise set temperature is calculated using a formula and then commanded to the temperature controller 5.

耕設定温展=現在の設定温度−(y−z)xO,9上式
におけるファクタ0.9は希望樹脂温式に笑除樹脂温度
を低目から漸近さぎるようにしたもので、1でもよいが
1では希望樹脂温度なオーバすることがある。
Cultivation setting temperature expansion = Current setting temperature - (y - z) It is good, but if it is 1, the desired resin temperature may be exceeded.

以上の条件下で、スクリュ回転数を3011311.6
0rll11.70甲と変化させて実際8A話温度Aを
測定し、宿望樹脂温MEとの差を比較した。第1表は、
押開開始後、2〜4回の設定温度変更指令の後の各ゾー
ンのシリンダの温度y1予測樹脂温iY、 実際樹脂温
fJtA、希望樹脂温度E、およびA−Eを示す。
Under the above conditions, the screw rotation speed was set to 3011311.6
The actual 8A temperature A was measured by changing it to 0rll11.70A, and the difference with the desired resin temperature ME was compared. Table 1 is
After the push-opening starts, the cylinder temperature y1 of each zone after two to four set temperature change commands, the predicted resin temperature iY, the actual resin temperature fJtA, the desired resin temperature E, and A-E are shown.

なお、実際樹脂温Iwhはシリンダの各ゾーンに貫通孔
を穿設して、測温素子を浴融樹脂に接触するまで挿入し
て測定した。
The actual resin temperature Iwh was measured by drilling a through hole in each zone of the cylinder and inserting a temperature measuring element until it came into contact with the bath melted resin.

第1表より実際樹脂温度Aと一希望樹脂温度Eとの偏差
IA−Elは、最高でも約2.0℃であシ、後述する従
来方式に比べて大幅に温度偏差が少なくなっている。
From Table 1, the deviation IA-El between the actual resin temperature A and the desired resin temperature E is approximately 2.0° C. at most, and the temperature deviation is significantly smaller than in the conventional method described below.

次に、従来の温度制御法を適用した従来例を示す。Next, a conventional example to which a conventional temperature control method is applied will be shown.

〔従来例1〕 実施例の押出機と同一の押出機を用い、温度調節に通常
のPrD式温度調節計を用いて、各ゾーンを120℃に
調節した以外は実施例と同様にして押出作業を行った。
[Conventional Example 1] Extrusion work was carried out in the same manner as in the example except that the same extruder as in the example was used, and each zone was adjusted to 120°C using a regular PrD temperature controller for temperature control. I did it.

この温度制御方法は、第1図に示した従来の一般的な伸
出様の温度制御方法である。第2表に、シリンダの温度
y1実際樹脂温度A1希望樹脂温度E、およびA−Kを
示した。
This temperature control method is a conventional general extension-like temperature control method shown in FIG. Table 2 shows cylinder temperature y1 actual resin temperature A1 desired resin temperature E and A-K.

第2表 第2表から、寅除樹脂温度Aと希望樹脂温波Eとの偏差
IA−Elが最高で約8℃となることがわかる。な2、
この1直はスクリュー回転数を更に上げた場合には偏差
(A−E)か10℃以上にもなることがある。このよう
な大きな温度偏差がある状態では押出成形品の品實上柚
々の問題が生じる。
Table 2 From Table 2, it can be seen that the deviation IA-El between the removed resin temperature A and the desired resin temperature wave E is about 8° C. at maximum. Na2,
If the screw rotation speed is further increased during this one shift, the deviation (A-E) may exceed 10°C. In such a state where there is a large temperature deviation, problems arise in terms of the quality of the extruded product.

〔従来例2〕 実施例1において柄脂温吸予測式として次式を用い冬瓜
外は全く同様にして押出作業を行った。
[Conventional Example 2] Extrusion work was carried out in exactly the same manner as in Example 1, except for the winter melon, using the following equation as the pattern fat absorption prediction equation.

この方法は、特願昭56−191906号に示さtLf
c温度制御方法の例である。
This method is shown in Japanese Patent Application No. 191906/1982.
c is an example of a temperature control method.

Y = y+△T1+ΔTt Y :予測樹脂温度 y :熱電対Cによるシリンダの11M1△T1 :呈
温による補正温度 △T2 :スクリュ回転数による柿正温吸鵠3表に、谷
ゾーンのシリンダの諷l礼、予池」樹脂温度Y1実際樹
月旨温丸A1希望衝月□ゴ温阪EおよびA−Eを示す。
Y = y + △T1 + ∆Tt Y: Predicted resin temperature y: 11M1 of the cylinder by thermocouple C △T1: Corrected temperature by temperature △T2: Persimmon positive temperature suction by screw rotation speed Table 3 shows the cylinder in the valley zone. Regards, Yoike"Resin temperature Y1 Actual Kizuki Umenmaru A1 Hopeful month □ Go Onsaka E and A-E are shown.

第3表 第3抄よシ、火除イ爵脂温良Aと希望樹脂温度Eとの偏
差IA−Elは最高で約4.5℃となって、従来例1に
比べると小さくなっているが、まだ梢密な樹J1i温度
制御とは言えない状態である。
The deviation IA-El between the temperature A of the resin and the desired resin temperature E is approximately 4.5°C at maximum, which is smaller than that of Conventional Example 1. , the temperature control of the tree J1i cannot be said to be yet dense.

以上説明したように、この発明のプラスチック成形機の
樹脂温度制御方法は、プラスチック成形(双のシリンダ
の温液を測定し、この温度に、室温、スクリュ回転数、
スクリュ形状、設定温波、m脂の線類等の樹脂温度を変
動させるパラメータの内、室温およびスクリュ回転数を
富む少なくとも3以上のパラメータから算出さtした補
正温j徒を加算して樹脂戴置を予仰1し、この予測温良
と希望樹脂温度との偏差なボめ、この偏差に基づいて樹
脂益度を制御するものである。したがって、この温度制
御方法によれは、上記パラメータが変化しても常に高い
循度で浴融樹脂温緘を希望樹脂IA既に保つことができ
る。よって、吐出量の増大、スコーチの處少、熱エネル
ギーの節約か計ね、高品負の成形品を低コストで製造で
きる。また、測温素子を直接情態樹脂に接触させる方法
に比べて測温素子をほとんど取替える必要がなくなり、
さらにまたシリンダ、スクリュの破損というトラブルも
なくなり、成形伝の長期連続稼動か可能となる。
As explained above, the resin temperature control method for the plastic molding machine of the present invention involves measuring the hot liquid in the twin cylinders for plastic molding, and adjusting the temperature to the room temperature, screw rotation speed,
Among the parameters that fluctuate the resin temperature, such as screw shape, set temperature wave, and resin wires, calculate the resin by adding the corrected temperature calculated from at least three parameters including room temperature and screw rotation speed. The resin temperature is controlled based on the deviation between the predicted resin temperature and the desired resin temperature. Therefore, with this temperature control method, even if the above-mentioned parameters change, the temperature of the desired resin IA can always be maintained at a high circulation rate. Therefore, by increasing the discharge amount, reducing scorch, and saving thermal energy, high-quality molded products can be manufactured at low cost. In addition, compared to the method of directly contacting the temperature measuring element with the thermoplastic resin, there is almost no need to replace the temperature measuring element.
Furthermore, troubles such as damage to cylinders and screws are eliminated, and long-term continuous operation during molding is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の側脂温厩制御方法馨適用した押出法を示
す概略@成因、第2図は室温と△T1 とのIA係を示
すグラフ、第3図はスクリュ回転数と△T、との関係を
示すグシ7、第4図はこの発明   □の温度制御方法
を適用した押出機の例を示す概略構成図、第5図は第4
図の測温素子の取付状態を示す概略断面図、第6図はこ
の温度制御方法に用いられる制御システムの一例を示す
ブロック図である。 ■・・・押出機、2・・・シリンダ、5・・・温度調節
計、6・・・加熱装置、7・・・Q却装置、C・・・熱
篭刈、9・・・回転発電機、10・・・測温抵仇体、1
3・・・マイクロプロセッサ。 出願人藤倉電線株式会社 第1図 「 [ 第2図 一一一−−→−’1jiF’C) 第3図 □ ス’Illニー@%菟  (R,P、Mン第5図 第6図。 東京都江東区木場−丁目5番1 号藤倉電線株式会社内
Figure 1 is a schematic diagram showing the extrusion method applied to the conventional side fat temperature control method, Figure 2 is a graph showing the IA relationship between room temperature and △T1, Figure 3 is a graph showing the relationship between screw rotation speed and △T, Figure 4 is a schematic configuration diagram showing an example of an extruder to which the temperature control method of this invention is applied, and Figure 5 is a diagram showing the relationship between
FIG. 6 is a schematic cross-sectional view showing the mounting state of the temperature measuring element shown in the figure, and FIG. 6 is a block diagram showing an example of a control system used in this temperature control method. ■...Extruder, 2...Cylinder, 5...Temperature controller, 6...Heating device, 7...Q cooling device, C...Hot basket cutting, 9...Rotary power generation Machine, 10... Temperature measuring resistor, 1
3...Microprocessor. Applicant Fujikura Electric Wire Co., Ltd. Figure 1 [ Figure 2 111--→-'1jiF'C] Figure 3 Inside Fujikura Electric Wire Co., Ltd., 5-1 Kiba-chome, Koto-ku, Tokyo.

Claims (1)

【特許請求の範囲】 プラスチック成形機のシリンダの温度を測定し、との縣
iに室温、スクリュ回転数、スクリュ形状。 設定温匿、樹脂の他類等の浴ra樹脂温度を変動さぜる
パラメータの内、室温、スクリュ回転数をぽむ少なくと
も3以上のパラメーターから補正温度を加算してシリン
ダ内の浴M樹脂温度を予測し、この予測温度と荒型樹脂
温度との偏差を求め、この偏走に基づいてシリンダ内の
溶融樹脂の温度を制御することを%徴とするプラスチッ
ク成形機の栢脂温匿制御方法。
[Claims] The temperature of the cylinder of a plastic molding machine is measured, and the information includes room temperature, screw rotation speed, and screw shape. Bath M resin temperature in the cylinder is determined by adding correction temperature from at least 3 or more parameters including room temperature and screw rotation speed among the parameters that fluctuate the bath RA resin temperature such as setting temperature and other types of resin. A resin preservation control method for a plastic molding machine that involves predicting the temperature, determining the deviation between the predicted temperature and the rough mold resin temperature, and controlling the temperature of the molten resin in the cylinder based on this deviation. .
JP58041039A 1983-03-12 1983-03-12 Controlling method of temperature of resin in plastic molding machine Pending JPS59167242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041039A JPS59167242A (en) 1983-03-12 1983-03-12 Controlling method of temperature of resin in plastic molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041039A JPS59167242A (en) 1983-03-12 1983-03-12 Controlling method of temperature of resin in plastic molding machine

Publications (1)

Publication Number Publication Date
JPS59167242A true JPS59167242A (en) 1984-09-20

Family

ID=12597257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041039A Pending JPS59167242A (en) 1983-03-12 1983-03-12 Controlling method of temperature of resin in plastic molding machine

Country Status (1)

Country Link
JP (1) JPS59167242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485618A1 (en) * 1990-06-01 1992-05-20 Fanuc Ltd. Method of determining acceptability of products of injection molding machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149095A (en) * 1984-08-17 1986-03-10 出光地熱開発株式会社 Heat loss preventing apparatus of geothermal well

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149095A (en) * 1984-08-17 1986-03-10 出光地熱開発株式会社 Heat loss preventing apparatus of geothermal well

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485618A1 (en) * 1990-06-01 1992-05-20 Fanuc Ltd. Method of determining acceptability of products of injection molding machine

Similar Documents

Publication Publication Date Title
US4480981A (en) System for controlling temperature of molten resin in cylinder of extruder
CA2096005C (en) Temperature regulating system, method and apparatus
CA1249435A (en) Apparatus for tempering tools for use on the form tools of extrusion forming machines
US4068615A (en) Control for wire coating line
CA2159161C (en) Method for controlling the temperature of a plastic mold
WO2001058668A2 (en) Method for operating extruder temperature controller with stable temperature reset
CA2660482C (en) Thermal management of extruder of molding system
CA1227308A (en) Process and apparatus for vulcanising / pneumatic tires /
EP0495829B1 (en) Rotational moulding apparatus and process
JPS59167242A (en) Controlling method of temperature of resin in plastic molding machine
KR100783657B1 (en) Injection molding machine and method
JP3842868B2 (en) Injection molding method and apparatus
JP3784659B2 (en) Extruder temperature control device and temperature control method
JPS6149094B2 (en)
US5391860A (en) Temperature-controlling method, for example in systems for injection of plastics materials, and respective system
JPH0355292B2 (en)
JPS58108120A (en) Controlling method for temperature of resin in plastic molding machine
KR101822173B1 (en) Method for producing a molded plastics part
US3489344A (en) Roll temperature control
JPS58126131A (en) Resin temperature controlling method of plastic molding machine
JP4340366B2 (en) Casting method
JPH0380609B2 (en)
JP2002160276A (en) Method for controlling nozzle temperature of injection molding machine and nozzle temperature control device
JPS58114925A (en) Method of controlling resin temperature of plastic molder
JPS58126132A (en) Resin temperature controlling method of plastic molding machine