JP3164660B2 - Method for evaluating runner diameter of injection mold - Google Patents

Method for evaluating runner diameter of injection mold

Info

Publication number
JP3164660B2
JP3164660B2 JP24764892A JP24764892A JP3164660B2 JP 3164660 B2 JP3164660 B2 JP 3164660B2 JP 24764892 A JP24764892 A JP 24764892A JP 24764892 A JP24764892 A JP 24764892A JP 3164660 B2 JP3164660 B2 JP 3164660B2
Authority
JP
Japan
Prior art keywords
runner
temperature
diameter
wall surface
connection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24764892A
Other languages
Japanese (ja)
Other versions
JPH0691703A (en
Inventor
義一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP24764892A priority Critical patent/JP3164660B2/en
Publication of JPH0691703A publication Critical patent/JPH0691703A/en
Application granted granted Critical
Publication of JP3164660B2 publication Critical patent/JP3164660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2703Means for controlling the runner flow, e.g. runner switches, adjustable runners or gates
    • B29C45/2704Controlling the filling rates or the filling times of two or more mould cavities by controlling the cross section or the length of the runners or the gates

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、射出成形用金型のラン
ナー径評価方法に関し、特に、スプルから連続する第1
ランナー部の先端部が少なくともT字状に分岐されて第
2ランナー部に形成された多数個取り金型を用いて樹脂
流動解析を行うシステムに適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the diameter of a runner of an injection mold, and more particularly to a method for evaluating a first runner from a sprue.
The present invention is applied to a system in which a resin flow analysis is performed by using a multi-cavity mold formed at a second runner portion by branching at least a T-shaped tip of a runner portion.

【0002】[0002]

【従来の技術】多数個取り金型では、スプル部に連続す
るランナー部が複数通路に分岐されることから、充填樹
脂の流れはこのランナー部分において複雑なものとなっ
ている。
2. Description of the Related Art In a multi-cavity mold, since a runner portion following a sprue portion is branched into a plurality of passages, the flow of a filling resin is complicated in the runner portion.

【0003】すなわち、樹脂の有限領域内流れにおい
て、壁面近傍では必ず剪断応力による剪断熱が発生し、
温度が高くなる。一方、中心部は壁面からの冷却が壁面
近傍に比べて小さいが、温度が上昇するような外的要因
及び内的要因は存在しない。
That is, in the flow of resin in a finite region, shear heat is always generated near a wall surface due to shear stress.
Temperature rises. On the other hand, although cooling from the wall surface is smaller in the central portion than in the vicinity of the wall surface, there are no external factors or internal factors that increase the temperature.

【0004】そこで、流路の非常に狭いランナー部にお
いては、剪断熱による温度上昇の方が大きく、ランナー
分岐部では、壁面近傍を流れる樹脂温度の方が中心部を
流れる樹脂温度より高くなっている。そのため、分岐後
は、壁面温度を継承した内側(すなわち、分岐前のラン
ナー部を第1ランナー部とし、分岐後のランナー部を第
2ランナー部とすると、第1ランナー部が接続された側
の第2ランナー部の側壁)の方が、外側(接続された第
1ランナー部とは反対の側の第2ランナー部の側壁)よ
りも温度が高くなる。
Therefore, in a very narrow runner portion of the flow path, the temperature rise due to shear heat insulation is larger, and in the runner branch portion, the resin temperature flowing near the wall surface is higher than the resin temperature flowing in the central portion. I have. For this reason, after the branch, the inside that inherits the wall surface temperature (that is, if the runner part before the branch is the first runner part and the runner part after the branch is the second runner part), the first runner part is connected. The temperature of the outside of the second runner section (side wall of the second runner section) is higher than that of the outside (the side wall of the second runner section opposite to the connected first runner section).

【0005】すなわち、第2ランナー部内を幅方向に見
た場合、内側の樹脂温度が高く、外側の樹脂温度が低い
パターンの温度分布が存在し、内側の流速が増加するこ
とになる。そのため、内側のキャビティの方が外側のキ
ャビティより流量が多くなって先に充填されることにな
る。
That is, when the inside of the second runner portion is viewed in the width direction, there is a temperature distribution of a pattern in which the inside resin temperature is high and the outside resin temperature is low, and the inside flow velocity increases. Therefore, the flow rate of the inner cavity is larger than that of the outer cavity, so that the inner cavity is filled first.

【0006】このような理由から、ランナーが複数流路
に分岐された複雑な形状の金型では、ランナー部分のバ
ランスを取る必要がある。
For this reason, in a mold having a complicated shape in which a runner is branched into a plurality of flow paths, it is necessary to balance the runner portion.

【0007】そして、従来はこのランナーバランスを取
るために、作製後の金型によって一度成形テストを実施
し、そのときの成形品のバラツキから、熟練技術者の経
験と勘とによってゲート径をわざとアンバランスにし
て、成形品のバランスを取るようにしていた。
Conventionally, in order to achieve this runner balance, a molding test is performed once using a mold after fabrication, and the gate diameter is deliberately determined based on the experience and intuition of a skilled technician from variations in the molded product at that time. Unbalanced to balance the molded product.

【0008】[0008]

【発明が解決しようとする課題】このように、従来の方
法では、一度成形した後に、熟練者の経験と勘とにより
何度も金型修正を行っており、科学的計算に基づいた定
量的な評価は行われていなかった。そのため、金型の設
計が変更される度に、成形テストと金型修正とを行わな
ければならなかった。
As described above, in the conventional method, after molding once, the mold is corrected many times based on the experience and intuition of a skilled person, and a quantitative calculation based on scientific calculations is performed. Has not been evaluated. Therefore, every time the design of the mold is changed, a molding test and a mold correction have to be performed.

【0009】本発明はかかる実情に鑑みてなされたもの
で、その目的は、科学的計算に基づいて定量的な評価を
可能とした射出成形用金型のランナー径評価方法を提供
することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for evaluating a runner diameter of a mold for injection molding, which enables quantitative evaluation based on scientific calculations. .

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明に係わる射出成形用金型のランナー径評価方
法は、スプル部から連続する第1ランナー部の先端部が
少なくともT字状に分岐されて第2ランナー部に形成さ
れた多数個取り金型を用いて樹脂流動解析を行うシステ
ムであって、樹脂流動解析時に与えられる形状データか
ら、前記第1ランナー部の壁面と前記第2ランナー部の
壁面との接続点、及びこの接続点と径方向において対向
する前記第2ランナー部の壁面の対向点とを求め、樹脂
流動解析により得られた各時刻における温度データよ
り、前記接続点及び前記対向点における温度差を算出
し、この算出した温度差と各キャビティへの充填時間差
及び前記第1ランナー部の径との関係を求め、これらの
関係から最適なランナー径の評価を行うものである。
In order to solve the above-mentioned problems, a method for evaluating a runner diameter of an injection mold according to the present invention is characterized in that at least a tip of a first runner portion continuous from a sprue portion has a T-shape. A system for performing resin flow analysis using a multi-cavity mold that is branched and formed in a second runner portion, wherein a wall surface of the first runner portion and the second A connection point between the wall of the runner portion and a connection point between the connection point and the wall of the second runner portion radially opposite to the connection point is obtained, and the connection point is obtained from the temperature data at each time obtained by resin flow analysis. And a temperature difference at the opposed point is calculated, and a relationship between the calculated temperature difference, a difference in filling time into each cavity, and a diameter of the first runner portion is determined. And performs the evaluation.

【0011】[0011]

【作用】樹脂流動解析時に与えられる形状データから、
第1ランナー部の壁面と第2ランナー部の壁面との接続
点、及びこの接続点と径方向において対向する第2ラン
ナー部の壁面の対向点とを求め、樹脂流動解析により得
られた各時刻における温度データより、前記接続点及び
前記対向点における温度差を算出する。つまり、ランナ
ー分岐後の内外温度差(接続点と対向点との温度差)を
金型設計段階で事前に予測する。
[Function] From the shape data given at the time of resin flow analysis,
A connection point between the wall surface of the first runner portion and the wall surface of the second runner portion, and an opposing point of the wall surface of the second runner portion that radially opposes the connection point are obtained, and each time obtained by the resin flow analysis is obtained. Is calculated from the temperature data at the connection point and the opposite point. That is, the inside / outside temperature difference (the temperature difference between the connection point and the opposing point) after the runner branch is predicted in advance in the mold design stage.

【0012】そして、この算出した温度差と各キャビテ
ィへの充填時間差及び前記第1ランナー部の径との関係
を求めることにより、これらの関係から最適なランナー
径の評価を行う。
Then, the relationship between the calculated temperature difference, the difference between the filling time into each cavity, and the diameter of the first runner portion is obtained, and the optimum runner diameter is evaluated from these relationships.

【0013】すなわち、不良が発生しない充填時間差は
実験により求められているので、温度差と各キャビティ
への充填時間差との関係から、温度差の許容範囲が分か
る。そのため、温度差と第1ランナー部の径との関係か
ら、温度差が許容範囲内となる第1ランナー部の径の値
(許容範囲)が分かるから、第1ランナー部の径をこの
許容範囲内の値に設定することにより、ランナーアンバ
ランスの発生しないランナー設計が可能となる。
That is, since the filling time difference at which no defect occurs is determined by an experiment, the allowable range of the temperature difference can be determined from the relationship between the temperature difference and the filling time difference for each cavity. Therefore, from the relationship between the temperature difference and the diameter of the first runner portion, the value (allowable range) of the diameter of the first runner portion at which the temperature difference falls within the allowable range can be determined. By setting the value within, a runner design that does not cause runner unbalance can be realized.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0015】本発明のランナー径評価方法は、入力デー
タとして、メッシュジェネレータ(これは従来より一般
に提供されている)で作成された形状データ、樹脂物性
データ、成形条件データを用いる。ここで、樹脂物性デ
ータとは、粘度、密度、熱特性(熱伝導率、比熱、固化
温度、結晶化熱等)のことであり、成形条件データと
は、充填時間、射出率、保圧圧力、保圧時間、金型温度
分布、注入樹脂温度等のデータのことである。この後、
形状データを読み取ることによりランナー分岐部の内側
と外側の節点番号を認識する。
The runner diameter evaluation method of the present invention uses, as input data, shape data, resin physical property data, and molding condition data created by a mesh generator (which is generally provided conventionally). Here, the resin physical property data refers to viscosity, density, and thermal characteristics (thermal conductivity, specific heat, solidification temperature, heat of crystallization, etc.), and the molding condition data includes filling time, injection rate, and holding pressure. , Pressure holding time, mold temperature distribution, injection resin temperature and the like. After this,
By reading the shape data, the node numbers inside and outside the runner branch portion are recognized.

【0016】そして、充填段階を運動方程式、連続の
式、エネルギー方程式でモデル化した偏微分方程式を有
限要素法等で解くことにより、各時刻における圧力、温
度等の状態量を求める樹脂流動解析を実行する。この計
算過程の中で求められた温度結果により、ランナー分岐
部の内側及び外側の節点の温度差を算出し、これを指標
として、一連の計算を終了する。
Then, by solving a partial differential equation in which the filling stage is modeled by a motion equation, a continuous equation, and an energy equation by a finite element method or the like, a resin flow analysis for obtaining state quantities such as pressure and temperature at each time is performed. Execute. The temperature difference between the inside and outside nodes of the runner branch is calculated based on the temperature results obtained in this calculation process, and a series of calculations is terminated using this as an index.

【0017】図1は、本発明のランナー径評価方法を適
用した射出成形用金型(多数個取り金型)のランナー構
造の一例を示している。ただし、図示のランナー構造は
8個取り金型のものであって、図ではその1/4モデル
のみを示している。
FIG. 1 shows an example of a runner structure of an injection mold (multi-cavity mold) to which the method for evaluating runner diameter according to the present invention is applied. However, the illustrated runner structure is an eight-cavity die, and the figure shows only a quarter model thereof.

【0018】この金型のランナー構造は、スプル部6か
ら連続する第1ランナー部1の先端部がT字状に分岐さ
れて第2ランナー部2に形成され、この第2ランナー部
2の一方の先端部(他方の先端部は図示を省略してい
る)がさらにT字状に分岐されて第3ランナー部3に形
成され、この第3ランナー部3の両先端部に成形品A,
Bを成形するためのキャビティ4,5が形成された構造
となっている。
In this mold runner structure, the tip of the first runner portion 1 that is continuous from the sprue portion 6 is branched into a T-shape to form the second runner portion 2, and one end of the second runner portion 2 is formed. (The other end is not shown) is further branched into a T-shape to form a third runner portion 3. Both ends of the third runner portion 3 have molded products A,
It has a structure in which cavities 4 and 5 for forming B are formed.

【0019】このようなランナー構造の金型において、
第1ランナー部1の部分を見てみると、この第1ランナ
ー部1を溶融樹脂が流れるとき、壁面11の近傍では必
ず剪断応力による剪断熱が発生し、温度が高くなる。一
方、中心部12は壁面11からの冷却が壁面11近傍に
比べて小さいが、温度が上昇するような外的要因及び内
的要因は存在しない。そのため、第1ランナー部1の径
が非常に小さい場合には、剪断熱による温度上昇の方が
大きく、第1ランナー部1と第2ランナー部2との接続
部(ランナー分岐部)では、壁面11の近傍を流れる樹
脂温度の方が、中心部12を流れる樹脂温度より高くな
っている。
In such a mold having a runner structure,
Looking at the first runner section 1, when the molten resin flows through the first runner section 1, shear heat is always generated near the wall surface 11 due to shear stress, and the temperature rises. On the other hand, the cooling from the wall surface 11 of the central portion 12 is smaller than that of the vicinity of the wall surface 11, but there is no external factor or internal factor that causes the temperature to rise. Therefore, when the diameter of the first runner section 1 is very small, the temperature rise due to shear heat insulation is larger, and the connection (runner branch section) between the first runner section 1 and the second runner section 2 has a wall surface. The temperature of the resin flowing in the vicinity of 11 is higher than the temperature of the resin flowing in the central portion 12.

【0020】その結果、第2ランナー部2内に流れ込ん
だ溶融樹脂は、壁面温度を継承した内側(すなわち、図
では第1ランナー部1が接続された側の側壁)21の方
が、中心部の温度を継承した外側(すなわち、図では接
続された第1ランナー部1とは反対の側の側壁)22よ
りも温度が高くなる。
As a result, the molten resin that has flowed into the second runner portion 2 has its central portion closer to the inside (that is, the side wall to which the first runner portion 1 is connected) 21 that inherits the wall surface temperature. (That is, the side wall on the side opposite to the connected first runner portion 1 in the figure) 22 that inherits the above temperature.

【0021】すなわち、第2ランナー部2内を幅方向に
見た場合、内側21の樹脂温度が高く、外側22の樹脂
温度が低いパターンの温度分布が存在し、内側21近傍
を流れる溶融樹脂の流速が、外側22近傍を流れる溶融
樹脂の流速より速くなる。そのため、内側にあるキャビ
ティ4の方が、外側にあるキャビティ5より流量が多く
なって先に充填されることになる。
That is, when the inside of the second runner portion 2 is viewed in the width direction, there is a temperature distribution of a pattern in which the resin temperature on the inside 21 is high and the resin temperature on the outside 22 is low. The flow velocity is higher than the flow velocity of the molten resin flowing near the outside 22. Therefore, the flow rate of the inner cavity 4 is larger than that of the outer cavity 5, so that the cavity 4 is filled first.

【0022】本実施例では、上記構成の金型によって成
形される製品を採血管とし、樹脂はPTF、射出成形機
は東芝製のIS−350E、成形条件として、充填時間
3sec 、保圧時間2sec 、冷却時間10sec 、サイクル
20sec 、樹脂温度300℃、金型温度20℃に設定し
ている。
In this embodiment, a product molded by the mold having the above structure is used as a blood collection tube, the resin is PTF, the injection molding machine is IS-350E manufactured by Toshiba, and the molding conditions are a filling time of 3 sec and a dwelling time of 2 sec. The cooling time is 10 seconds, the cycle is 20 seconds, the resin temperature is 300 ° C., and the mold temperature is 20 ° C.

【0023】この条件において、まず樹脂流動解析時に
与えられる形状データから、第1ランナー部1の壁面1
1と第2ランナー部2の壁面21との接続点(節点)
a、及びこの接続点aと径方向において対向する第2ラ
ンナー部2の壁面22の対向点(節点)bとを求める。
この後、樹脂流動解析により得られた各時刻における温
度データより、接続点a及び対向点bにおける温度差を
算出するとともに、そのときの各キャビティ4,5への
充填時間差を算出する。このような計算を、第1ランナ
ー部1における径(幅)hを変化させて随時行うことに
より、接続点a及び対向点bにおける温度差(内外温度
差)と充填時間差との関係を求める。
Under these conditions, first, from the shape data given at the time of resin flow analysis, the wall surface 1 of the first runner 1
Connection point (node) between 1 and wall 21 of second runner section 2
a, and an opposing point (node) b of the wall surface 22 of the second runner portion 2 that radially opposes the connection point a.
Thereafter, based on the temperature data at each time obtained by the resin flow analysis, the temperature difference between the connection point a and the opposing point b is calculated, and the difference between the filling times of the cavities 4 and 5 at that time is calculated. By performing such calculations as needed while changing the diameter (width) h of the first runner portion 1, the relationship between the temperature difference (inside / outside temperature difference) at the connection point a and the opposing point b and the charging time difference is obtained.

【0024】図2は、このようにして求めた内外温度差
と充填時間差との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the inside / outside temperature difference and the filling time difference thus obtained.

【0025】同図より、内外温度差が大きくなればなる
程、充填時間差が大きくなり、ランナー分岐部の温度差
が、充填のアンバランスに大きく関与していることが分
かる。
From the figure, it can be seen that the larger the difference between the inside and outside temperatures, the larger the difference in filling time, and the difference in temperature at the runner branch greatly affects the imbalance in filling.

【0026】ここで、充填アンバランスが発生すること
による実際の弊害としてメラの発生が考えられるが、こ
のメラの発生しない充填時間差は、実験により0.5se
c と求められるので、図2より、内外温度差が20℃以
内になるように設計すればよいことになる。
Here, it is conceivable that an actual adverse effect caused by the occurrence of the filling imbalance is the occurrence of melamine.
From FIG. 2, it can be designed so that the temperature difference between the inside and outside is within 20 ° C.

【0027】また、第1ランナー部1の径hと内外温度
差との関係は、図3に示すようになっている。したがっ
て、図3に示すグラフより、内外温度差を20℃以内と
するためには、第1ランナー部1の径hを10mm以上取
る必要があることが分かる。
FIG. 3 shows the relationship between the diameter h of the first runner portion 1 and the difference between the inside and outside temperatures. Accordingly, it can be seen from the graph shown in FIG. 3 that the diameter h of the first runner section 1 needs to be 10 mm or more in order to keep the inside / outside temperature difference within 20 ° C.

【0028】なお、上記実施例では、第1ランナー部1
の径hをパラメータとして計算を行っているが、この他
にも第1ランナー部1の長さ、接続点a及び対向点bで
の金型温度差、射出温度差、最終ランナー部23,24
の径等をもパラメータとして加味し、上記と同様に計算
を実行して、最適条件を決定するようにしてもよい。
In the above embodiment, the first runner section 1
Is calculated using the diameter h as a parameter. In addition, the length of the first runner part 1, the mold temperature difference at the connection point a and the opposing point b, the injection temperature difference, and the final runner parts 23, 24
The optimum condition may be determined by executing the calculation in the same manner as described above, taking into account the diameter and the like as parameters.

【0029】[0029]

【発明の効果】本発明に係わる射出成形用金型のランナ
ー径評価方法は、スプル部から連続する第1ランナー部
の先端部が少なくともT字状に分岐されて第2ランナー
部に形成された多数個取り金型を用いて樹脂流動解析を
行うシステムであって、樹脂流動解析時に与えられる形
状データから、第1ランナー部の壁面と第2ランナー部
の壁面との接続点、及びこの接続点と径方向において対
向する第2ランナー部の壁面の対向点とを求め、樹脂流
動解析により得られた各時刻における温度データより、
接続点及び対向点における温度差を算出し、この算出し
た温度差と各キャビティへの充填時間差及び第1ランナ
ー部の径との関係を求め、これらの関係から最適なラン
ナー径の評価を行うように構成したので、ランナー分岐
部の接続点と対向点との温度差を金型設計段階で事前に
予測することができることから、ランナーアンバランス
の発生しないランナー設計が可能となるといった効果を
奏する。
According to the method for evaluating the diameter of a runner of an injection molding die according to the present invention, the tip of a first runner portion continuous from a sprue portion is formed at least in a T-shape to form a second runner portion. A system for performing resin flow analysis using a multi-cavity mold, wherein a connection point between a wall surface of a first runner portion and a wall surface of a second runner portion and a connection point based on shape data given at the time of resin flow analysis. And the opposing point of the wall surface of the second runner portion opposing in the radial direction, and from the temperature data at each time obtained by the resin flow analysis,
A temperature difference between the connection point and the opposing point is calculated, a relationship between the calculated temperature difference, a difference in filling time into each cavity, and a diameter of the first runner portion is determined, and an optimal runner diameter is evaluated from these relationships. Since the temperature difference between the connection point of the runner branch portion and the opposing point can be predicted in advance at the mold designing stage, a runner design with no runner unbalance can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のランナー径評価方法を適用した射出成
形用金型(多数個取り金型)のランナー構造の一例を示
す概略図である。
FIG. 1 is a schematic view showing an example of a runner structure of an injection molding die (multi-cavity die) to which a runner diameter evaluation method of the present invention is applied.

【図2】内外温度差と充填時間差との関係を示すグラフ
である。
FIG. 2 is a graph showing a relationship between an inside / outside temperature difference and a filling time difference.

【図3】第1ランナー部の径と内外温度差との関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between a diameter of a first runner portion and a difference between inside and outside temperatures.

【符号の説明】[Explanation of symbols]

1 第1ランナー部 2 第2ランナー部 3 第3ランナー部 a 接続点(節点) b 対向点(節点) DESCRIPTION OF SYMBOLS 1 1st runner part 2 2nd runner part 3 3rd runner part a Connection point (node) b Opposite point (node)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スプル部から連続する第1ランナー部の
先端部が少なくともT字状に分岐されて第2ランナー部
に形成された多数個取り金型を用いて樹脂流動解析を行
うシステムであって、 樹脂流動解析時に与えられる形状データから、前記第1
ランナー部の壁面と前記第2ランナー部の壁面との接続
点、及びこの接続点と径方向において対向する前記第2
ランナー部の壁面の対向点とを求め、樹脂流動解析によ
り得られた各時刻における温度データより、前記接続点
及び前記対向点における温度差を算出し、この算出した
温度差と各キャビティへの充填時間差及び前記第1ラン
ナー部の径との関係を求め、これらの関係から最適なラ
ンナー径の評価を行うことを特徴とする射出成形用金型
のランナー径評価方法。
1. A system for performing resin flow analysis using a multi-cavity mold formed at a second runner portion by branching at least a tip end of a first runner portion continuous from a sprue portion into a T-shape. From the shape data given at the time of resin flow analysis,
A connection point between the wall surface of the runner part and the wall surface of the second runner part, and the second point facing the connection point in the radial direction.
The opposing point of the wall surface of the runner portion is obtained, and the temperature difference at the connection point and the opposing point is calculated from the temperature data at each time obtained by the resin flow analysis, and the calculated temperature difference and the filling of each cavity are calculated. A method for evaluating a runner diameter of an injection molding die, wherein a relation between a time difference and a diameter of the first runner portion is obtained, and an optimum runner diameter is evaluated from these relations.
JP24764892A 1992-09-17 1992-09-17 Method for evaluating runner diameter of injection mold Expired - Fee Related JP3164660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24764892A JP3164660B2 (en) 1992-09-17 1992-09-17 Method for evaluating runner diameter of injection mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24764892A JP3164660B2 (en) 1992-09-17 1992-09-17 Method for evaluating runner diameter of injection mold

Publications (2)

Publication Number Publication Date
JPH0691703A JPH0691703A (en) 1994-04-05
JP3164660B2 true JP3164660B2 (en) 2001-05-08

Family

ID=17166618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24764892A Expired - Fee Related JP3164660B2 (en) 1992-09-17 1992-09-17 Method for evaluating runner diameter of injection mold

Country Status (1)

Country Link
JP (1) JP3164660B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715492B2 (en) * 2011-05-24 2015-05-07 Necトーキン株式会社 Injection mold

Also Published As

Publication number Publication date
JPH0691703A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
KR970000927B1 (en) Evaluation method of flow analysis on molding of a molten material
US4381275A (en) Stabilized core injection molding of plastic
EP0844057A1 (en) Mold designing method and apparatus
US6298898B1 (en) Optimizing cycle time and/or casting quality in the making of cast metal products
JP3164660B2 (en) Method for evaluating runner diameter of injection mold
US5125821A (en) Resin flow and curing measuring device
Turng et al. On the simulation of microelectronic encapsulation with epoxy molding compound
JP4737883B2 (en) RTM resin flow control method and apparatus
JPH02120643A (en) Method for estimating pressure loss in die and method for planning die flow passage using such method
Saifullah et al. Optimum cooling channels design and Thermal analysis of an Injection moulded plastic part mould
Chen et al. Simulation of a mold‐cooling process for gas‐assisted injection molded parts designed with a top rib on the gas channel
JP2540232B2 (en) Integrated mold analysis system
JPH07285156A (en) Manufacture of mold
JP3236069B2 (en) Flow analysis evaluation system for injection molds
JP3582930B2 (en) Manufacturing method for injection molded products
JP7300888B2 (en) Casting condition determination method
JP3201847B2 (en) Evaluation method for appearance defects of injection molded products
Xu et al. A stiffness criterion for cooling time estimation
Michaeli Materials processing—a key factor
KR970000926B1 (en) Molten injection-molding method
JPH09323139A (en) Method for simulating casting
JPH0276711A (en) Method for molding impeller of centrifugal hydraulic machinery and mold used therefor
JPH06143325A (en) Multi-pot sealed mold
JPH0119991B2 (en)
JPH0469852B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees