JPH0469852B2 - - Google Patents

Info

Publication number
JPH0469852B2
JPH0469852B2 JP62223074A JP22307487A JPH0469852B2 JP H0469852 B2 JPH0469852 B2 JP H0469852B2 JP 62223074 A JP62223074 A JP 62223074A JP 22307487 A JP22307487 A JP 22307487A JP H0469852 B2 JPH0469852 B2 JP H0469852B2
Authority
JP
Japan
Prior art keywords
filling
molten material
pressure
resin
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62223074A
Other languages
Japanese (ja)
Other versions
JPS6467320A (en
Inventor
Susumu Harada
Shigeru Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP62223074A priority Critical patent/JPS6467320A/en
Priority to DE3830571A priority patent/DE3830571A1/en
Priority to KR1019880015438A priority patent/KR970000927B1/en
Publication of JPS6467320A publication Critical patent/JPS6467320A/en
Priority to US07/595,770 priority patent/US5097431A/en
Publication of JPH0469852B2 publication Critical patent/JPH0469852B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、樹脂等の溶融材料を金型成形する
に際し、高品質の成形品を得るための溶融材料の
最適成形条件を評価判定する方法に係り、特に所
要の溶融材料温度での適正な溶融材料圧力と充填
時間の範囲を判定する評価方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a method for evaluating and determining optimal molding conditions for a molten material to obtain a high-quality molded product when molding a molten material such as a resin. In particular, the present invention relates to an evaluation method for determining an appropriate range of molten material pressure and filling time at a required molten material temperature.

〔従来の技術〕[Conventional technology]

従来、樹脂材料による射出成形において金型内
の樹脂流動解析(シミユレーシヨン)を行う場
合、第3図に示すように、成形品の形状モデルを
微小要素に分割して、有限要素法、境界要素法、
差分法、FAN法等の数値解析法を用いて、流体
の運動方程式、連続の式およびエネルギーの式な
どを演算する方法が一般に利用されている。
Conventionally, when performing resin flow analysis (simulation) in a mold in injection molding using resin materials, the shape model of the molded product is divided into minute elements and the finite element method and boundary element method are used, as shown in Figure 3. ,
A commonly used method is to calculate the equation of motion, continuity equation, energy equation, etc. of a fluid using numerical analysis methods such as the finite difference method and the FAN method.

このような金型内での樹脂流動解析方法では、
使用する樹脂の選択と、成形機の運転条件として
樹脂温度、金型温度、充填速度を入力して演算す
ることにより、樹脂の充填の進行状況(時間)を
示すものとして、全充填時間を任意の数に分割
し、各時間毎に充填される樹脂の到達位置を線に
より結んで作成した等時間線図(第4図参照)、
同様に圧力について作成した等圧力線図(第5図
参照)、また同様に温度について作成した等温度
線図(第6図参照)等がそれぞれ所要の計算によ
つて求められる。
In this method of analyzing resin flow inside a mold,
By selecting the resin to be used and inputting and calculating the resin temperature, mold temperature, and filling speed as the operating conditions of the molding machine, the total filling time can be set as an indicator of the progress (time) of resin filling. An isochronous diagram (see Figure 4), which was created by dividing the time period into a number of times and connecting the arrival position of the resin filled at each time with a line.
Similarly, an isopressure diagram created for pressure (see FIG. 5), an isotemperature diagram similarly created for temperature (see FIG. 6), etc. are determined by the respective required calculations.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述した従来の樹脂流動解析方
法では、入力条件が適正であつたかどうか、さら
にもつと適正な入力条件はないのか、あるいは幾
つかの入力条件のうちどの条件が最良か等を判定
する手段が知られておらず、従つて演算結果の適
否の判定は解析結果と実際の成形との対比を繰返
すことにより得られた経験的ノウハウに頼らざる
を得なかつた。
However, in the conventional resin flow analysis method described above, there is no means for determining whether the input conditions are appropriate, whether there are any appropriate input conditions, or which one of several input conditions is the best. was not known, and therefore, the judgment of the suitability of the calculation results had to rely on empirical know-how obtained by repeatedly comparing the analysis results with actual molding.

このように、従来の金型内での樹脂流動解析方
法は、使用する樹脂に対して経験的に得られてい
る樹脂温度、金型温度、充填速度等を入力して、
成形品の形状(製品肉厚、ゲートの位置や個数、
ランナの寸法等)の適否を判定することを主な目
的として使用され、成形条件の適否の評価につい
ては試みられていない。
In this way, the conventional resin flow analysis method in a mold involves inputting the resin temperature, mold temperature, filling speed, etc. that have been empirically obtained for the resin used.
Shape of molded product (product thickness, gate position and number,
The main purpose of this method is to determine the suitability of molding conditions (such as runner dimensions), and no attempt has been made to evaluate the suitability of molding conditions.

しかるに、このような金型内での樹脂流動解析
方法は、樹脂成形品の設計が完成した段階で、金
型を制作する前にプログラム上での演算により成
形の可否、難易を判定し、その成形品を生産する
ために要求される条件を求めることを目的とする
ものであり、金型形状に関する適否(製品肉厚、
ゲートの位置や個数、ゲートやランナ寸法等)を
判定するだけでなく、適正成形条件範囲や最適成
形条件の算出を行い、最終的には成形機の運転条
件を全て決定することが望まれている。
However, in this method of analyzing resin flow within a mold, at the stage when the design of the resin molded product is completed, before the mold is manufactured, the feasibility and difficulty of molding is determined by calculations on a program, and the The purpose is to determine the conditions required to produce molded products, and the suitability of the mold shape (product wall thickness,
In addition to determining the position and number of gates, gate and runner dimensions, etc., it is also desirable to calculate the appropriate molding condition range and optimal molding conditions, and ultimately determine all operating conditions of the molding machine. There is.

従つて、本発明の目的は、所要の成形金型に対
する溶融材料の流動解析のため、所要の溶融材料
温度に対する適正な溶融材料圧力と充填時間の範
囲を判定する溶融材料の金型成形における流動解
析の評価方法を提供するにある。
Therefore, it is an object of the present invention to analyze the flow of molten material in mold forming to determine the appropriate range of molten material pressure and filling time for the required molten material temperature in order to analyze the flow of molten material in a required molding die. Provides an analysis evaluation method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る溶融材料の金型成形における流動
解析の評価方法は、 成形品形状モデルを微小要素に分割し、有限要
素法、境界要素法、差分法、FAN法等を含む数
値解析法使用して、前記成形品形状モデルの各要
素に対する溶融材料の充填進行状況を、充填到達
時間の計算により等時間線図として求め、さらに
充填中または充填完了後の各要素における温度、
圧力、剪断速度、剪断応力等を演算することによ
り溶融材料の金型成形における流動解析を評価す
る方法において、 1または2以上の溶融材料温度条件について、
それぞれ複数の充填時間を与えて解析を行い、 得られた充填完了時の溶融材料温度分布の演算
結果により、各要素の最大溶融材料圧力を示す要
素の当該溶融材料圧力につき、充填時間を変数と
した関数Pn=fn4(t)として求め、 これら関数をデイスプレイ装置にグラフイツク
表示して、所定の溶融材料温度での適正な溶融材
料圧力と充填時間の範囲を評価判定することを特
徴とする。
The evaluation method for flow analysis in mold forming of molten materials according to the present invention divides the molded product shape model into minute elements and uses numerical analysis methods including the finite element method, boundary element method, finite difference method, FAN method, etc. Then, the filling progress status of the molten material for each element of the molded product shape model is determined as an isochron diagram by calculating the filling arrival time, and the temperature at each element during filling or after filling is completed.
In a method for evaluating flow analysis in mold forming of molten material by calculating pressure, shear rate, shear stress, etc., for one or more molten material temperature conditions,
Analysis is performed by giving multiple filling times for each element, and based on the calculation results of the molten material temperature distribution at the time of completion of filling, the filling time is set as a variable for the molten material pressure of the element that indicates the maximum molten material pressure of each element. The present invention is characterized in that the function Pn=fn 4 (t) is calculated, and these functions are displayed graphically on a display device to evaluate and determine the appropriate range of melting material pressure and filling time at a predetermined melting material temperature.

前記の評価方法において、充填時間を変数とし
た最大溶融材料圧力の関数Pn=fn4(t)の微分
値dPn/dtの絶対値に限界値を与え、前記関数を
評価して適正な溶融材料圧力と充填時間の範囲を
判定することができる。
In the above evaluation method, a limit value is given to the absolute value of the differential value dPn/dt of the function Pn = fn 4 (t) of the maximum molten material pressure with the filling time as a variable, and the function is evaluated to determine the appropriate molten material. Pressure and filling time ranges can be determined.

〔作用〕[Effect]

本発明に係る溶融材料の金型成形における流動
解析の評価方法によれば、充填完了時の溶融材料
圧力分布の演算結果により、成形品形状モデルの
微小分割された各要素の最大溶融材料圧力につき
充填時間を変数とした関数として求め、これら関
数をデイスプレイ装置にグラフイツク表示して、
適正な溶融材料圧力と充填時間の範囲を評価判定
することができる。
According to the evaluation method of flow analysis in mold forming of molten material according to the present invention, the maximum molten material pressure of each micro-divided element of the molded product shape model is calculated based on the calculation result of the molten material pressure distribution at the time of completion of filling. Find the filling time as a function as a variable, display these functions graphically on a display device,
It is possible to evaluate and determine the range of appropriate melt material pressure and filling time.

この場合、充填完了時の最大溶融材料圧力の関
数の微分値に限界値を与えることにより、充填速
度変動時の溶融材料圧力の安定性を考慮した適正
な溶融材料圧力と充填時間の範囲の判定を行うこ
とができる。
In this case, by giving a limit value to the differential value of the function of the maximum molten material pressure at the time of filling completion, the appropriate range of molten material pressure and filling time can be determined in consideration of the stability of the molten material pressure when the filling speed fluctuates. It can be performed.

なお、一般的に溶融材料として例えば樹脂材料
の金型成形における流動解析の判定基準として、
次のような成形条件の設定が必要とされている。
In general, as a criterion for flow analysis in mold molding of molten materials such as resin materials,
It is necessary to set the following molding conditions.

(1) 充填時間は短い方がよい。(1) The shorter the filling time, the better.

(2) 充填圧力は低い方がよい。(2) Lower filling pressure is better.

(3) 樹脂温度は低い方がよい。(3) The lower the resin temperature, the better.

(4) 金型温度は低い方がよい。(4) The lower the mold temperature, the better.

すなわち、充填工程では、高温の溶融樹脂が低
温の金型へ充填されるので、充填中に樹脂が冷却
されて温度が低下し、粘度が増加して流動性が低
下していく。このため、充填速度が遅いと、圧力
伝達が不十分となり、金型キヤビテイ末端付近で
流動により生じた表面の凹凸が金型キヤビテイ表
面と密着できずにフローマークとして残つてしま
つたり、冷却過程での収縮を補足できずにヒケを
発生させたり、樹脂流が合流するウエルド部の再
融着が不十分となり、ウエルドラインが発生した
り、ウエルド部の強度不足が生じる等成形上の不
良が発生し易くなる。
That is, in the filling process, high-temperature molten resin is filled into a low-temperature mold, so the resin is cooled during filling, the temperature decreases, the viscosity increases, and the fluidity decreases. For this reason, if the filling speed is slow, pressure transmission will be insufficient, and the unevenness of the surface caused by the flow near the end of the mold cavity will not come into close contact with the mold cavity surface and will remain as flow marks, and the cooling process will be affected. This can lead to molding defects such as shrinkage due to failure to compensate for shrinkage, insufficient re-fusion at the weld area where the resin flows merge, formation of weld lines, and insufficient strength at the weld area. It is more likely to occur.

そこで、できるだけ短時間に充填を完了させる
ことが望ましいが、充填速度を速くし過ぎると流
動中の剪断発熱による樹脂の局部的な加熱による
劣化や、それに伴つて含有されている揮発分が帰
化して成形品表面に形成されるシルバーストリー
ク、金型キヤビテイ内の残存空気を樹脂流が封じ
込んで断熱圧縮することによるガスヤケ、断面積
が急激に拡大する部分で充分流路が満たされずに
帯状流が形成されてこれが折畳まれて生じるジエ
ツテイング等の不良現像が発生する。
Therefore, it is desirable to complete the filling in as short a time as possible, but if the filling speed is too high, the resin may deteriorate due to local heating due to shear heat generation during flow, and the volatile matter contained therein may naturalize. silver streaks that form on the surface of the molded product, gas burns caused by the residual air in the mold cavity being trapped by the resin flow and adiabatic compression, and zonal flow caused by the flow path not being sufficiently filled in areas where the cross-sectional area rapidly expands. is formed and folded, resulting in defective development such as jetting.

従つて、これらの成形不良を発生させずに、で
きるだけ短時間に充填を完了させる手段として、
金型キヤビテイ内の流路断面積の変化に応じて、
充填速度を多段にプログラムし、金型内流動速度
が速くなり過ぎるところが生じないよう設定する
制御が、一般的に適用される。
Therefore, as a means to complete filling in the shortest possible time without causing these molding defects,
Depending on the change in the cross-sectional area of the flow path in the mold cavity,
Control is generally applied in which the filling speed is programmed in multiple stages to prevent the flow speed in the mold from becoming too high.

また、充填圧力は、充填を行う際にある粘度の
溶融樹脂を、ある温度の金型にある充填速度で充
填した時の負荷抵抗として生ずるもので、充填を
行う射出シリンダの油圧で表示されたり、金型内
で実測する溶融樹脂圧力で表示されたりする。す
なわち、この充填圧力は、充填のし易さを表わす
パラメータであり、これが低いことは容易に充填
可能であることを示し、望ましい状態である。そ
して、連続成形においては、充填圧力の値が毎シ
ヨツト安定していることが、変動の少ない安定し
た品質の成形が行われていることを示す。
In addition, filling pressure is generated as a load resistance when molten resin of a certain viscosity is filled into a mold at a certain temperature at a certain filling speed, and is expressed by the oil pressure of the injection cylinder performing filling. , it may be displayed as the molten resin pressure actually measured inside the mold. That is, this filling pressure is a parameter representing ease of filling, and a low pressure indicates that filling is easy, which is a desirable state. In continuous molding, the fact that the filling pressure value is stable from shot to shot indicates that molding of stable quality with little variation is being performed.

さらに、樹脂温度と金型温度は、共に樹脂の流
動し易さを表わす見掛粘度に関係する成形条件で
あり、両者共高い方が見掛粘度が低くなり充填は
し易くなる。一方、充填完了後、成形品を冷却し
て金型より取出すという射出成形のサイクル動作
を考慮すると、これらの温度が高いことは成形サ
イクルを遅延させることになる。
Further, both the resin temperature and the mold temperature are molding conditions related to the apparent viscosity, which indicates the ease of resin flow, and the higher both are, the lower the apparent viscosity is, and the easier it is to fill. On the other hand, considering the cycle operation of injection molding in which the molded product is cooled and taken out from the mold after filling is completed, these high temperatures will delay the molding cycle.

従つて、溶融樹脂粘度があるレベルに押えら
れ、充填圧力の大きさもその安定性も満足できれ
ば、これら樹脂と金型の温度条件は、できるだけ
低い方がよいことになる。
Therefore, if the viscosity of the molten resin can be suppressed to a certain level and the filling pressure and its stability can be satisfied, the temperature conditions of the resin and the mold should be as low as possible.

〔実施例〕〔Example〕

次に、本発明に係る溶融材料の金型成形におけ
る流動解析の評価方法の実施例につき、添付図面
を参照しながら以下詳細に説明する。
Next, an example of the evaluation method for flow analysis in mold molding of molten material according to the present invention will be described in detail below with reference to the accompanying drawings.

本発明において、所定の成形品の形状モデルに
ついて金型内の樹脂流動解析を行う手順は、従来
のシミユレーシヨン法と同じである。すなわち、
第3図に示すように、金型内の樹脂流動解析を行
うため、成形品の形状モデルの要素分割を行い
(図示例では三角要素を用いているが、四角形要
素を用いる場合もある)、有限要素法を適用する。
この成形品の形状モデルに対し、ゲートGの位置
と個数を設定し、必要に応じてランナを設けるこ
とにより流動解析のための金型側形状の設定を完
了する。ここで、使用する樹脂を選定して樹脂物
性データを入力した後、樹脂温度、金型温度、充
填速度等の成形条件を入力して解析に移行する。
ここまでの手順は、従来の金型内の樹脂流動解析
と同様である。(第4図乃至第6図参照)。
In the present invention, the procedure for analyzing the resin flow within a mold for a shape model of a predetermined molded product is the same as that of the conventional simulation method. That is,
As shown in Fig. 3, in order to analyze the resin flow inside the mold, the shape model of the molded product is divided into elements (triangular elements are used in the illustrated example, but quadrilateral elements may also be used). Apply the finite element method.
The position and number of gates G are set for this shape model of the molded product, and runners are provided as necessary to complete the setting of the mold side shape for flow analysis. Here, after selecting the resin to be used and inputting resin physical property data, inputting molding conditions such as resin temperature, mold temperature, and filling speed, the process moves to analysis.
The procedure up to this point is similar to conventional resin flow analysis within a mold. (See Figures 4 to 6).

次に、本実施例においては、金型温度を固定
(60℃)し、樹脂温度を1種又は2種類以上、例
えば200℃,220℃,260℃の3種類選定し、それ
ぞれの樹脂温度毎に充填時間を0.2,0.5,1,
2,3秒の5種に変えた成形条件を設定し、順次
解析演算を行う。この結果得られた演算データの
内、充填完了時の樹脂圧力分布データを用いて、
前記形状モデルの各要素の最大樹脂圧力を取出
し、その充填時間におけるデータとする。この手
順を繰返して求めたデータをグラフ化すれば、一
定の金型温度条件における樹脂温度をパラメータ
とし、充填時間を横軸にしかつ最大樹脂圧力を縦
軸として、第1図に示すような特性曲線図が得ら
れる。
Next, in this example, the mold temperature is fixed (60°C), one or more resin temperatures are selected, for example, three types, 200°C, 220°C, and 260°C, and each resin temperature is filling time to 0.2, 0.5, 1,
Five different molding conditions of 2 to 3 seconds are set, and analytical calculations are performed sequentially. Among the calculated data obtained as a result, using the resin pressure distribution data at the time of completion of filling,
The maximum resin pressure of each element of the shape model is taken out and used as data at that filling time. If we graph the data obtained by repeating this procedure, we can obtain the characteristics shown in Figure 1, with the resin temperature under constant mold temperature conditions as the parameter, the horizontal axis as filling time, and the maximum resin pressure as the vertical axis. A curve diagram is obtained.

そこで、第1図に示す特性曲線を式化すれば、
次式が得られる。
Therefore, if we formulate the characteristic curve shown in Figure 1, we get
The following equation is obtained.

Pn=fn4(t)(n=1,2,3) ……(1) また、第1図において、Pmは使用する成形機
で取扱い得る上限樹脂圧力を示し、tmは使用す
る成形機で取扱い得る上限充填速度での充填時間
である。従つて、成形可能範囲はPn<Pmの樹脂
圧力と、t>tmの充填時間となる。
Pn=fn 4 (t) (n=1, 2, 3) ...(1) Also, in Figure 1, Pm indicates the upper limit resin pressure that can be handled by the molding machine used, and tm indicates the maximum resin pressure that can be handled by the molding machine used. This is the filling time at the maximum handling speed. Therefore, the moldable range is the resin pressure of Pn<Pm and the filling time of t>tm.

さらに、第1図における各特性曲線の勾配すな
わち充填時間を変数とした最大溶融樹脂圧力を表
わす関数の充填時間の微分値dPn/dtは、充填時
間が変動した場合の充填完了時の樹脂圧力変動の
安定性を示す。従つて、この値は一般に小さい方
が望ましい。
Furthermore, the slope of each characteristic curve in Fig. 1, that is, the differential value dPn/dt of the filling time of the function representing the maximum molten resin pressure with the filling time as a variable, is the resin pressure fluctuation at the completion of filling when the filling time fluctuates. shows the stability of Therefore, it is generally desirable that this value be smaller.

しかるに、このような充填時間の変動に対する
充填完了時の樹脂圧力の安定性dPn/dtは、使用
する樹脂の物性と、成形品の肉厚、形状によつて
その傾向が様々に変わるものであるため、絶対値
を幾つ以下に収めなければならないという絶対評
価ができるものではないが、樹脂圧力や充填時間
を変えた時どのような変化の傾向を示すかを把握
することがより適正な成形条件を求めるのに重要
である。
However, the stability of the resin pressure dPn/dt at the completion of filling with respect to such fluctuations in filling time varies depending on the physical properties of the resin used and the thickness and shape of the molded product. Therefore, it is not possible to make an absolute evaluation of the absolute value within which the absolute value must be kept, but it is better to understand the trends of changes when changing resin pressure and filling time to determine more appropriate molding conditions. It is important to find out.

従つて、第1図に示すグラフを液晶,CRT,
プラズマ,ELなどのデイスプレイ装置にグラフ
イツク表示することが、適正条件の判定に有効で
ある。また、第1図に示すグラフをデイスプレイ
装置にグラフイツク表示することにより、前述し
たdPn/dtの変化の傾向が把握できると共にこれ
ら関数を数式化して求めておけば、前記dPn/dt
に限界値を与えて、対話式操作によりデイスプレ
イ装置の表示上で充填時間の適正範囲を限定して
いくことができる。
Therefore, the graph shown in Figure 1 can be used for liquid crystal, CRT,
Graphical display on a display device such as plasma or EL is effective in determining appropriate conditions. In addition, by graphically displaying the graph shown in Figure 1 on a display device, it is possible to understand the tendency of the change in dPn/dt mentioned above, and if these functions are expressed mathematically, the dPn/dt
By giving a limit value to , it is possible to limit the appropriate range of filling time on the display device through interactive operation.

すなわち、第1図において1点鎖線で示した曲
線Faは、前述した微分値dPn/dtに所定の限界値
を与えた場合を示し、各最大樹脂圧力特性曲線毎
に許容充填時間の限界が明らかとなる。
In other words, the curve Fa shown by the dashed-dotted line in Fig. 1 shows the case where a predetermined limit value is given to the above-mentioned differential value dPn/dt, and the limit of the allowable filling time is clear for each maximum resin pressure characteristic curve. becomes.

また、第2図は、結晶性樹脂材料を使用して、
金型温度を固定(60℃)し、樹脂温度を200℃,
220℃,260℃の3種類選定し、それぞれの樹脂温
度毎に充填時間を0.5,1,1.5,2,3,4秒の
6種類に変えた成形条件を設定した場合におけ
る、第1図と同様の特性曲線図である。この場
合、使用する樹脂の種類が異なるため、第1図に
示す特性曲線とは相違し、第2図に示す特性曲線
は、いずれも下に凸の特性を有している。このた
め、充填時間が変動した場合の最大樹脂圧力の安
定性を示す最大樹脂圧力の関数Pn=fn4(t)の
微分値dPn/dtは、正負両方で限界を与えること
が必要となり、dPn/dtの限界値を絶対値として
与えることになる。従つて、この場合、第1図に
示す特性曲線と同様に、各最大樹脂圧力特性曲線
毎に許容充填時間の限界を示す微分値dPn/dtに
所定の限界値を与えた曲線Fb,Fcを求めること
ができる。
In addition, Fig. 2 shows that using a crystalline resin material,
Fix the mold temperature (60℃), set the resin temperature to 200℃,
Figure 1 shows the results when three types of molding conditions are selected, 220℃ and 260℃, and the filling time is changed to six types: 0.5, 1, 1.5, 2, 3, and 4 seconds for each resin temperature. It is a similar characteristic curve diagram. In this case, since the types of resins used are different, the characteristic curves shown in FIG. 2 are different from the characteristic curves shown in FIG. 1, and both have downward convex characteristics. Therefore, it is necessary to give both positive and negative limits to the differential value dPn/dt of the maximum resin pressure function Pn = fn 4 (t), which indicates the stability of the maximum resin pressure when the filling time fluctuates, and dPn The limit value of /dt is given as an absolute value. Therefore, in this case, similarly to the characteristic curves shown in Fig. 1, curves Fb and Fc are created by giving a predetermined limit value to the differential value dPn/dt, which indicates the limit of the allowable filling time, for each maximum resin pressure characteristic curve. You can ask for it.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明に
よれば、樹脂温度と金型温度につき溶融樹脂粘度
を所定レベルに保持し得ると共に、充填速度変動
時の溶融材料圧力の安定性を満足できる適正な条
件下に溶融材料圧力と充填時間の範囲を容易に判
定することができる。
As is clear from the embodiments described above, according to the present invention, the viscosity of the molten resin can be maintained at a predetermined level with respect to the resin temperature and the mold temperature, and the viscosity of the molten resin can be maintained at an appropriate level that satisfies the stability of the molten material pressure when the filling speed fluctuates. Under certain conditions, the range of melt material pressure and filling time can be easily determined.

従つて、本発明によれば、成形品形状モデルに
関する樹脂の流動解析に際し、高品質の成形品を
得るための成形条件を簡単なグラフイツク表示で
容易に判定することができると共に、この判定結
果に基づいて各種の適正な成形条件の選択を行う
ことができ、溶融樹脂の金型成形プログラムの作
成に資する効果は極めて大きい。
Therefore, according to the present invention, when performing resin flow analysis on a molded product shape model, molding conditions for obtaining a high-quality molded product can be easily determined using a simple graphical display, and the determination results can be used to Based on this, various appropriate molding conditions can be selected, which has an extremely large effect in contributing to the creation of a mold molding program for molten resin.

なお、前述した実施例においては、溶融樹脂の
金型成形における流動解析の評価方法について説
明したが、本発明はこの実施例に限定されること
なく、樹脂以外の溶融材料の金型成形、例えばダ
イカストマシンへの応用も可能であり、その他本
発明の精神を逸脱しない範囲内において種々の設
計変更をなし得ることは勿論である。
In addition, in the above-mentioned example, the evaluation method of flow analysis in mold molding of molten resin was explained, but the present invention is not limited to this example, and can be applied to mold molding of molten materials other than resin, e.g. It goes without saying that the present invention can also be applied to a die-casting machine, and that various other design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る溶融材料の金型成形にお
ける流動解析の評価方法の実施例を示すもので、
樹脂材料温度をパラメータとする充填時間に対す
る最大樹脂圧力特性の一例を示すグラフイツク表
示図、第2図は結晶性樹脂材料を使用した場合の
第1図と同様の充填時間に対する最大樹脂圧力特
性の他の例を示すグラフイツク表示図、第3図は
成形品形状モデルを3次元の微小要素に分割した
状態を示す表示図、第4図は第3図に示す形状モ
デルにおける充填パターンの等時間線図、第5図
は第3図に示す形状モデルにおける充填パターン
の等圧力線図、第6図は第3図に示す形状モデル
における充填パターンの等温度線図である。
FIG. 1 shows an example of the evaluation method of flow analysis in mold molding of molten material according to the present invention.
A graphical display showing an example of the maximum resin pressure characteristics with respect to the filling time using the resin material temperature as a parameter. Figure 2 shows the maximum resin pressure characteristics with respect to the filling time similar to that in Figure 1 when using a crystalline resin material. 3 is a graphic display showing an example of the molded product shape model divided into three-dimensional minute elements, and FIG. 4 is an isochron diagram of the filling pattern in the shape model shown in FIG. 3. , FIG. 5 is an isopressure diagram of the filling pattern in the shape model shown in FIG. 3, and FIG. 6 is an isotemperature diagram of the filling pattern in the shape model shown in FIG. 3.

Claims (1)

【特許請求の範囲】 1 成形品形状モデルを微小要素に分割し、有限
要素法、境界要素法、差分法、FAN法等を含む
数値解析法を使用して、前記成形品形状モデルの
各要素に対する溶融材料の充填進行状況を、充填
到達時間の計算により等時間線図として求め、さ
らに充填中または充填完了後の各要素における温
度、圧力、剪断速度、剪断応力等を演算すること
により溶融材料の金型成形における流動解析を評
価する方法において、 1または2以上の溶融材料温度条件について、
それぞれ複数の充填時間を与えて解析を行い、 得られた充填完了時の溶融材料温度分布の演算
結果により、各要素の最大溶融材料圧力を示す要
素の当該溶融材料圧力につき、充填時間を変数と
した関数Pn=fn4(t)として求め、 これら関数をデイスプレイ装置にグラフイツク
表示して、所定の溶融材料温度での適正な溶融材
料圧力と充填時間の範囲を評価判定することを特
徴とする溶融材料の金型成形における流動解析の
評価方法。 2 特許請求の範囲第1項記載の溶融材料の金型
成形における流動解析の評価方法において、 充填時間を変数とした最大溶融材料圧力の関数
Pn=fn4(t)の微分値dPn/dtの絶対値に限界値
を与え、前記関数を評価して適正な溶融材料圧力
と充填時間の範囲を判定してなる溶融材料の金型
成形における流動解析の評価方法。
[Scope of Claims] 1 A molded product shape model is divided into minute elements, and each element of the molded product shape model is divided using a numerical analysis method including a finite element method, a boundary element method, a finite difference method, a FAN method, etc. The filling progress of the molten material is calculated as an isochron diagram by calculating the filling arrival time, and the temperature, pressure, shear rate, shear stress, etc. at each element during filling or after filling is calculated. In a method for evaluating flow analysis in mold forming, for one or more molten material temperature conditions,
Analysis is performed by giving multiple filling times for each element, and based on the calculation results of the molten material temperature distribution at the time of completion of filling, the filling time is set as a variable for the molten material pressure of the element that indicates the maximum molten material pressure of each element. The melting method is characterized by determining the appropriate melting material pressure and filling time range at a predetermined melting material temperature by graphically displaying these functions on a display device. Evaluation method for flow analysis in mold forming of materials. 2. In the evaluation method for flow analysis in mold forming of molten material as set forth in claim 1, the function of maximum molten material pressure with filling time as a variable.
In mold forming of molten material, a limit value is given to the absolute value of the differential value dPn/dt of Pn=fn 4 (t), and the above function is evaluated to determine the appropriate range of molten material pressure and filling time. Evaluation method for flow analysis.
JP62223074A 1987-09-08 1987-09-08 Evaluation method for fluid analysis in molding of molten material Granted JPS6467320A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62223074A JPS6467320A (en) 1987-09-08 1987-09-08 Evaluation method for fluid analysis in molding of molten material
DE3830571A DE3830571A1 (en) 1987-09-08 1988-09-08 Method of calculation for flow analysis in injection moulding
KR1019880015438A KR970000927B1 (en) 1987-09-08 1988-11-23 Evaluation method of flow analysis on molding of a molten material
US07/595,770 US5097431A (en) 1987-09-08 1990-10-10 Evaluation method of flow analysis on molding of a molten material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62223074A JPS6467320A (en) 1987-09-08 1987-09-08 Evaluation method for fluid analysis in molding of molten material

Publications (2)

Publication Number Publication Date
JPS6467320A JPS6467320A (en) 1989-03-14
JPH0469852B2 true JPH0469852B2 (en) 1992-11-09

Family

ID=16792426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62223074A Granted JPS6467320A (en) 1987-09-08 1987-09-08 Evaluation method for fluid analysis in molding of molten material

Country Status (1)

Country Link
JP (1) JPS6467320A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2972518B2 (en) * 1994-06-06 1999-11-08 日本電気株式会社 Semiconductor package design stress analysis system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234282A (en) * 1985-08-08 1987-02-14 Hitachi Ltd Molding process simulation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234282A (en) * 1985-08-08 1987-02-14 Hitachi Ltd Molding process simulation system

Also Published As

Publication number Publication date
JPS6467320A (en) 1989-03-14

Similar Documents

Publication Publication Date Title
KR970000927B1 (en) Evaluation method of flow analysis on molding of a molten material
US5097432A (en) Evaluation method of flow analysis on molding of a molten material
US7431870B2 (en) Automated molding technology for thermoplastic injection molding
EP0844057B1 (en) Mold designing method and apparatus
KR20110129387A (en) Simulation of ejection after mold filling
JP6665849B2 (en) Casting mechanical property prediction method, mechanical property prediction system, mechanical property prediction program, and computer-readable recording medium recording the mechanical property prediction program
JPH0469852B2 (en)
JPH0622840B2 (en) Molding process simulation system
JPH0469851B2 (en)
JPH0469849B2 (en)
JPH0469850B2 (en)
CN116252447A (en) Gear injection molding regulation and control method
JPH0469853B2 (en)
KR970000926B1 (en) Molten injection-molding method
JPH10272663A (en) Optimizing method of molding condition of injection molding machine
JP2017113981A (en) Method and apparatus for supporting design of molding, computer software and storage medium
JP7300888B2 (en) Casting condition determination method
JPH08230007A (en) Method and device for simulation of injection molding process
JP3236069B2 (en) Flow analysis evaluation system for injection molds
JPH0469856B2 (en)
JP3230865B2 (en) Method and apparatus for preventing molding defects of injection molding machine
JP3582930B2 (en) Manufacturing method for injection molded products
JP4265268B2 (en) Solidification analysis method for castings
JPH0976320A (en) Automatic setting method for injection molding speed condition of injection mold machine
Kubelková et al. Determination of the simulation parameters of the waxes used in investment casting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees