JPH0469850B2 - - Google Patents

Info

Publication number
JPH0469850B2
JPH0469850B2 JP62223072A JP22307287A JPH0469850B2 JP H0469850 B2 JPH0469850 B2 JP H0469850B2 JP 62223072 A JP62223072 A JP 62223072A JP 22307287 A JP22307287 A JP 22307287A JP H0469850 B2 JPH0469850 B2 JP H0469850B2
Authority
JP
Japan
Prior art keywords
temperature
filling
molten material
mold
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62223072A
Other languages
Japanese (ja)
Other versions
JPS6467323A (en
Inventor
Susumu Harada
Shigeru Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP62223072A priority Critical patent/JPS6467323A/en
Priority to DE3830570A priority patent/DE3830570A1/en
Publication of JPS6467323A publication Critical patent/JPS6467323A/en
Priority to US07/595,769 priority patent/US5097432A/en
Publication of JPH0469850B2 publication Critical patent/JPH0469850B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、樹脂等の溶融材料を金型成形する
に際し、高品質の成形品を得るための溶融材料の
最適成形条件を評価判定する方法に係り、特に所
要の金型温度での溶融材料成形不可領域温度と充
填時間の範囲を判定して最適な溶融材料温度と充
填時間の範囲を選定し得る評価方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a method for evaluating and determining optimal molding conditions for a molten material to obtain a high-quality molded product when molding a molten material such as a resin. In particular, the present invention relates to an evaluation method capable of determining the range of the molten material non-formable region temperature and the filling time at a required mold temperature and selecting the optimal range of the molten material temperature and the filling time.

〔従来の技術〕[Conventional technology]

従来、樹脂材料による射出成形において金型内
の樹脂流動解析(シミユレーシヨン)を行う場
合、第2図に示すように、成形品の形状モデルを
微小要素に分割して、有限要素法、境界要素法、
差分法、FAN法等の数値解析法を用いて、流体
の運動方程式、連続の式およびエネルギーの式な
どを演算する方法が一般に利用されている。
Conventionally, when performing a resin flow analysis (simulation) in a mold during injection molding using resin materials, the shape model of the molded product is divided into minute elements, and the finite element method and boundary element method are used, as shown in Figure 2. ,
A commonly used method is to calculate the equation of motion, continuity equation, energy equation, etc. of a fluid using numerical analysis methods such as the finite difference method and the FAN method.

このような金型内での樹脂流動解析方法では、
使用する樹脂の選択と、成形機の運転条件として
樹脂温度、金型温度、充填速度を入力して演算す
ることにより、樹脂の充填の進行状況(時間)を
示すものとして、全充填時間を任意の数に分割
し、各時間毎に充填される樹脂の到達位置を線に
より結んで作成した等時間線図(第3図参照)、
同様に圧力について作成した等圧力線図(第4図
参照)、また同様に温度について作成した等温度
線図(第5図参照)等がそれぞれ所要の計算によ
つて求められる。
In this method of analyzing resin flow inside a mold,
By selecting the resin to be used and inputting and calculating the resin temperature, mold temperature, and filling speed as the operating conditions of the molding machine, the total filling time can be set as an indicator of the progress (time) of resin filling. An isochronous diagram (see Figure 3), which was created by dividing the time period into the number of times and connecting the arrival position of the resin filled at each time with a line.
Similarly, an isopressure diagram created for pressure (see FIG. 4), an isotemperature diagram similarly created for temperature (see FIG. 5), etc. are determined by the respective required calculations.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述した従来の樹脂流動解析方
法では、入力条件が適正であつたかどうか、さら
にもつと適正な入力条件はないのか、あるいは幾
つかの入力条件のうちどの条件が最良か等を判定
する手段が知られておらず、従つて演算結果の適
否の判定は解析結果と実際の成形との対比を繰返
すことにより得られた経験的ノウハウに頼らざる
を得なかつた。
However, in the conventional resin flow analysis method described above, there is no means for determining whether the input conditions are appropriate, whether there are any appropriate input conditions, or which one of several input conditions is the best. was not known, and therefore, the judgment of the suitability of the calculation results had to rely on empirical know-how obtained by repeatedly comparing the analysis results with actual molding.

このように、従来の金型内での樹脂流動解析方
法は、使用する樹脂に対して経験的に得られてい
る樹脂温度、金型温度、充填速度等を入力して、
成形品の形状(製品肉厚、ゲートの位置や個数、
ランナの寸法等)の適否を判定することを主な目
的として使用され、成形条件の適否の評価につい
ては試みられていない。
In this way, the conventional resin flow analysis method in a mold involves inputting the resin temperature, mold temperature, filling speed, etc. that have been empirically obtained for the resin used.
Shape of molded product (product thickness, gate position and number,
The main purpose of this method is to determine the suitability of molding conditions (such as runner dimensions), and no attempt has been made to evaluate the suitability of molding conditions.

しかるに、このような金型内での樹脂流動解析
方法は、樹脂成形品の設計が完成した段階で、金
型を製作する前にプログラム上での演算により成
形の可否、難易を判定し、その成形品を生産する
ために要求される条件を求めることを目的とする
ものであり、金型形状に関する適否(製品肉厚、
ゲートの位置や個数、ゲートやランナ寸法等)を
判定するだけでなく、適正成形条件範囲や最適成
形条件の算出を行い、最終的には成形機の運転条
件を全て決定することが望まれている。
However, in this method of analyzing resin flow within a mold, at the stage when the design of the resin molded product is completed and before manufacturing the mold, calculations are performed on a program to determine whether molding is possible or difficult. The purpose is to determine the conditions required to produce molded products, and the suitability of the mold shape (product wall thickness,
In addition to determining the position and number of gates, gate and runner dimensions, etc., it is also desirable to calculate the appropriate molding condition range and optimal molding conditions, and ultimately determine all operating conditions of the molding machine. There is.

従つて、本発明の目的は、所要の成形金型に対
する溶融材料の流動解析のため、所要の金型温度
に対する溶融材料成形不可領域温度と充填時間の
範囲を判定することにより、適正な充填時間並び
に最適溶融材料温度を選定し得る溶融材料の金型
成形における流動解析の評価方法を提供するにあ
る。
Therefore, an object of the present invention is to analyze the flow of molten material in a required molding die by determining the temperature of the area where molten material cannot be formed and the range of filling time for the required mold temperature, thereby determining the appropriate filling time. Another object of the present invention is to provide an evaluation method for flow analysis in mold forming of molten material, which allows selection of the optimum molten material temperature.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る溶融材料の金型成形における流動
解析の評価方法は、 成形品形状モデルを微小要素に分割し、有限要
素法、境界要素法、差分法、FAN法等を含む数
値解析法使用して、前記成形品形状モデルの各要
素に対する溶融材料の充填進行状況を、充填到達
時間の計算により等時間線図として求め、さらに
充填中または充填完了後の各要素における温度、
圧力、剪断速度、剪断応力等を演算することによ
り溶融材料の金型成形における流動解析を評価す
る方法において、 1または2以上の溶融材料温度条件について、
それぞれ複数の充填時間を与えて解析を行い、 得られた充填完了時の溶融材料温度分布の演算
結果により、各要素の平均温度または中間層温度
の全要素中の最低溶融材料温度を示す要素の当該
溶融材料温度につき、充填時間を変数とした関数
Tn=fn2(t)として求め、 これら関数をデイスプレイ装置にグラフイツク
表示して、所定の金型温度での適正な溶融材料温
度と充填時間の範囲を評価判定することを特徴と
する。
The evaluation method for flow analysis in mold forming of molten materials according to the present invention divides the molded product shape model into minute elements and uses numerical analysis methods including the finite element method, boundary element method, finite difference method, FAN method, etc. Then, the filling progress status of the molten material for each element of the molded product shape model is determined as an isochron diagram by calculating the filling arrival time, and the temperature at each element during filling or after filling is completed.
In a method for evaluating flow analysis in mold forming of molten material by calculating pressure, shear rate, shear stress, etc., for one or more molten material temperature conditions,
Analysis is performed by giving multiple filling times for each element, and the calculation results of the molten material temperature distribution at the time of completion of filling are used to calculate the average temperature of each element or the lowest molten material temperature among all elements of the intermediate layer temperature. A function with the filling time as a variable for the temperature of the molten material
The method is characterized in that it is determined as Tn=fn 2 (t), and these functions are graphically displayed on a display device to evaluate and determine the appropriate range of molten material temperature and filling time at a predetermined mold temperature.

前記の評価方法において、充填時間を変数とし
た金型充填完了時の最低溶融材料温度の関数Tn
=fn2(t)に対し、使用する溶融材料の固化温度
Tsに基づく限界値を与え、前記関数を評価して
適正な溶融材料温度と充填時間の範囲を判定する
ことができる。
In the above evaluation method, the function Tn of the minimum melting material temperature at the completion of mold filling with the filling time as a variable
=fn 2 (t), solidification temperature of the molten material used
Given a limit value based on Ts, the function can be evaluated to determine the appropriate melt material temperature and fill time range.

〔作用〕[Effect]

本発明に係る溶融材料の金型成形における流動
解析の評価方法によれば、充填完了時の溶融材料
温度分布の演算結果により、成形品形状モデルの
微小分割された各要素の最低溶融材料温度につき
充填時間を変数とした関数として求め、これら関
数をデイスプレイ装置にグラフイツク表示して、
溶融材料成形不可領域温度と充填時間の範囲を評
価判定することができる。
According to the evaluation method of flow analysis in mold forming of molten material according to the present invention, the minimum molten material temperature of each micro-divided element of the molded product shape model is calculated based on the calculation result of the molten material temperature distribution at the time of completion of filling. Find the filling time as a function as a variable, display these functions graphically on a display device,
It is possible to evaluate and determine the range of temperature and filling time in which molten material cannot be formed.

この場合、充填完了時の最低溶融材料温度の関
数に対し、使用する溶融材料の固化温度に基づい
て定める基準温度に限界値を与えることにより、
適正な溶融材料温度と充填時間の範囲の判定を行
うことができる。
In this case, by giving a limit value to the reference temperature determined based on the solidification temperature of the molten material used for the function of the minimum molten material temperature at the completion of filling,
Appropriate melt material temperature and filling time ranges can be determined.

なお、一般的に溶融材料として例えば樹脂材料
の金型成形における流動解析の判定基準として、
次のような成形条件の設定が必要とされている。
In general, as a criterion for flow analysis in mold molding of molten materials such as resin materials,
It is necessary to set the following molding conditions.

(1) 充填時間は短い方がよい。(1) The shorter the filling time, the better.

(2) 充填圧力は低い方がよい。(2) The lower the filling pressure, the better.

(3) 樹脂温度は低い方がよい。(3) The lower the resin temperature, the better.

(4) 金型温度は低い方がよい。(4) The lower the mold temperature, the better.

すなわち、充填工程では、高温の溶融樹脂が低
温の金型へ充填されるので、充填中に樹脂が冷却
されて温度が低下し、粘度が増加して流動性が低
下していく。このため、充填速度が遅いと、圧力
伝達が不十分となり、金型キヤビテイ末端付近で
流動により生じた表面の凹凸が金型キヤビテイ表
面と密着できずにフローマークとして残つてしま
つたり、冷却過程での収縮を補足できずにヒケを
発生させたり、樹脂流が合流するウエルド部の再
融着が不十分となり、ウエルドラインが発生した
り、ウエルド部の強度不足が生じる等成形上の不
良が発生し易くなる。
That is, in the filling process, high-temperature molten resin is filled into a low-temperature mold, so the resin is cooled during filling, the temperature decreases, the viscosity increases, and the fluidity decreases. For this reason, if the filling speed is slow, pressure transmission will be insufficient, and the unevenness of the surface caused by the flow near the end of the mold cavity will not come into close contact with the mold cavity surface and will remain as flow marks, and the cooling process will be affected. This can lead to molding defects such as shrinkage due to failure to compensate for shrinkage, insufficient re-fusion at the weld area where the resin flows merge, formation of weld lines, and insufficient strength at the weld area. It is more likely to occur.

そこで、できるだけ短時間に充填を完了させる
ことが望ましいが、充填速度を速くし過ぎると流
動中の剪断発熱による樹脂の局部的な加熱による
劣化や、それに伴つて含有されている揮発分が気
化して成形品表面に形成されるシルバーストリー
ク、金型キヤビテイ内の残存空気を樹脂流が封じ
込んで断熱圧縮することによるガスヤケ、断面積
が急激に拡大する部分で充分流路が満たされずに
帯状流が形成されてこれが折畳まれて生じるジエ
ツテイング等の不良現象が発生する。
Therefore, it is desirable to complete the filling in as short a time as possible, but if the filling speed is too high, the resin may deteriorate due to local heating due to shear heat generation during flow, and the volatile content may vaporize as a result. silver streaks that form on the surface of the molded product, gas burns caused by the residual air in the mold cavity being trapped by the resin flow and adiabatic compression, and zonal flow caused by the flow path not being sufficiently filled in areas where the cross-sectional area rapidly expands. A defective phenomenon such as jetting occurs due to the formation and folding of this.

従つて、これらの成形不良を発生させずに、で
きるだけ短時間に充填を完了させる手段として、
金型キヤビテイ内の流路断面積の変化に応じて、
充填速度を多段にプログラムし、金型内流動速度
が速くなり過ぎるところが生じないよう設定する
制御が、一般的に適用される。
Therefore, as a means to complete filling in the shortest possible time without causing these molding defects,
Depending on the change in the cross-sectional area of the flow path in the mold cavity,
Control is generally applied in which the filling speed is programmed in multiple stages to prevent the flow speed in the mold from becoming too high.

また、充填圧力は、充填を行う際にある粘度の
溶融樹脂を、ある温度の金型にある充填速度で充
填した時の負荷抵抗として生ずるもので、充填を
行う射出シリンダの油圧で表示されたり、金型内
で実測する溶融樹脂圧力で表示されたりする。す
なわち、この充填圧力は、充填のし易さを表わす
パラメータであり、これが低いことは容易に充填
可能であることを示し、望ましい状態である。そ
して、連続成形においては、充填圧力の値が毎シ
ヨツト安定していることが、変動の少ない安定し
た品質の成形が行われていることを示す。
In addition, filling pressure is generated as a load resistance when molten resin of a certain viscosity is filled into a mold at a certain temperature at a certain filling speed, and is expressed by the oil pressure of the injection cylinder performing filling. , it may be displayed as the molten resin pressure actually measured inside the mold. That is, this filling pressure is a parameter representing ease of filling, and a low pressure indicates that filling is easy, which is a desirable state. In continuous molding, the fact that the filling pressure value is stable from shot to shot indicates that molding of stable quality with little variation is being performed.

さらに、樹脂温度と金型温度は、共に樹脂の流
動し易さを表わす見掛粘度に関係する成形条件で
あり、両者共高い方が見掛粘度が低くなり充填は
し易くなる。一方、充填完了後、成形品を冷却し
て金型より取出すという射出成形のサイクル動作
を考慮すると、これらの温度が高いことは成形サ
イクルを遅延させることになる。
Further, both the resin temperature and the mold temperature are molding conditions related to the apparent viscosity, which indicates the ease of resin flow, and the higher both are, the lower the apparent viscosity is, and the easier it is to fill. On the other hand, considering the cycle operation of injection molding in which the molded product is cooled and taken out from the mold after filling is completed, these high temperatures will delay the molding cycle.

従つて、溶融樹脂粘度があるレベルに押えら
れ、充填圧力の大きさもその安定性も満足できれ
ば、これら樹脂と金型の温度条件は、できるだけ
低い方がよいことになる。
Therefore, if the viscosity of the molten resin can be suppressed to a certain level and the filling pressure and its stability can be satisfied, the temperature conditions of the resin and the mold should be as low as possible.

〔実施例〕〔Example〕

次に、本発明に係る溶融材料の金型成形におけ
る流動解析の評価方法の実施例につき、添付図面
を参照しながら以下詳細に説明する。
Next, an example of the evaluation method for flow analysis in mold molding of molten material according to the present invention will be described in detail below with reference to the accompanying drawings.

本発明において、所定の成形品の形状モデルに
ついて金型内の樹脂流動解析を行う手順は、従来
のシミユレーシヨン法と同じである。すなわち、
第2図に示すように、金型内の樹脂流動解析を行
うため、成形品の形状モデルの要素分割を行い
(図示例では三角形要素を用いているが、四角形
要素を用いる場合もある)、有限要素法を適用す
る。この成形品の形状モデルに対し、ゲートGの
位置と個数を設定し、必要に応じてランナを設け
ることにより流動解析のための金型側形状の設定
を完了する。ここで、使用する樹脂を選定して樹
脂物性データを入力した後、樹脂温度、金型温
度、充填速度等の成形条件を入力して解析に移行
する。ここまでの手順は、従来の金型内の樹脂流
動解析と同様である(第3図乃至第5図参照)。
In the present invention, the procedure for analyzing the resin flow within a mold for a shape model of a predetermined molded product is the same as that of the conventional simulation method. That is,
As shown in Fig. 2, in order to analyze the resin flow inside the mold, the shape model of the molded product is divided into elements (triangular elements are used in the illustrated example, but quadrilateral elements may also be used). Apply the finite element method. The position and number of gates G are set for this shape model of the molded product, and runners are provided as necessary to complete the setting of the mold side shape for flow analysis. Here, after selecting the resin to be used and inputting resin physical property data, inputting molding conditions such as resin temperature, mold temperature, and filling speed, the process moves to analysis. The procedure up to this point is similar to the conventional resin flow analysis in a mold (see FIGS. 3 to 5).

次に、本実施例においては、金型温度を固定
(60℃)し、樹脂温度を1種又は2種類以上、例
えば金型への流入樹脂温度を200℃、220℃、260
℃の3種類選定し、それぞれの樹脂温度毎に充填
時間を0.2,0.5,1,2,3,4秒の6種に変え
た成形条件を設定し、順次解析演算を行う。この
結果得られた演算データの内、充填完了時の樹脂
温度分布データを用いて前記形状モデルの各要素
の最低樹脂温度を取出し、その充填時間における
データとする。この手順を繰返して求めたデータ
をグラフ化すれば、一定の金型温度における樹脂
温度をパラメータとし、充填時間を横軸にしかつ
最低樹脂温度を縦軸として第1図に示すような特
性曲線図が得られる。
Next, in this example, the mold temperature is fixed (60°C), and one or more resin temperatures are set, for example, the temperature of the resin flowing into the mold is set to 200°C, 220°C, 260°C.
Three types of temperatures were selected, and molding conditions were set for each resin temperature with six types of filling time: 0.2, 0.5, 1, 2, 3, and 4 seconds, and analytical calculations were performed sequentially. Among the calculated data obtained as a result, the lowest resin temperature of each element of the shape model is extracted using the resin temperature distribution data at the time of completion of filling, and is used as data at that filling time. If you graph the data obtained by repeating this procedure, you will get a characteristic curve diagram as shown in Figure 1, with the resin temperature at a constant mold temperature as a parameter, the filling time on the horizontal axis, and the minimum resin temperature on the vertical axis. is obtained.

そこで、第1図に示す特性曲線を式化すれば、
次式が得られる。
Therefore, if we formulate the characteristic curve shown in Figure 1, we get
The following equation is obtained.

Tn=fn2(t)(n=1,2,3) …(1) また、第1図において、Tsは、樹脂の固化温
度レベルを示している。従つて、この固化温度
Tsのレベル以下は樹脂成形不可領域となる。
Tn=fn 2 (t) (n=1, 2, 3) (1) In FIG. 1, Ts indicates the solidification temperature level of the resin. Therefore, this solidification temperature
Below the level of Ts, resin molding is not possible.

ところで、一般に、射出成形品においては、そ
の肉厚の値とゲートから流動末端までの距離によ
り、樹脂温度が固化温度Tsまで低下しなくても
流動が不完全となるので、前記関数Tnが前記固
化温度Tsに基づく基準値(Ts+α)を下まわら
ない温度が流動可能限界の評価基準として使用す
ることができる。しかしながら,射出成形におけ
る溶融樹脂の流動の難易は、使用する樹脂の物性
と、成形品の肉厚、形状によつてその傾向が様々
に変わるものであるため、前記基準値(Ts+α)
を定めるα値を幾つに収めなければならないとい
う絶対評価をすることは困難であるが、樹脂温度
や充填時間を変えた時どのような変化の傾向を示
すかを把握することがより適正な成形条件を求め
るのに重要である。
By the way, in general, in injection molded products, the flow becomes incomplete even if the resin temperature does not drop to the solidification temperature Ts, depending on the wall thickness and the distance from the gate to the flow end, so the function Tn is A temperature not lower than a reference value (Ts+α) based on the solidification temperature Ts can be used as a criterion for evaluating the flowability limit. However, the tendency of the flow of molten resin in injection molding varies depending on the physical properties of the resin used and the thickness and shape of the molded product, so the standard value (Ts + α)
Although it is difficult to make an absolute evaluation of the α value that should be kept within, it is better to understand the trends of changes when changing the resin temperature and filling time. This is important for determining conditions.

従つて、第1図に示すグラフを液晶、CRT、
プラズマ、ELなどのデイスプレイ装置にグラフ
イツク表示することが、適正条件の判定に有効で
ある。また、第1図に示すグラフをデイスプレイ
装置にグラフイツク表示することにより、基準値
(Ts+α)との関係における成形不可領域の判定
ができ、これら関数を数式化して求めておけば、
前記基準値(Ts+α)を定めるα値に限界値を
与えて、対話式操作によりデイスプレイ装置の表
示上で適正な充填時間の範囲と共に最適樹脂温度
の選定を行うことができる。
Therefore, the graph shown in Figure 1 can be used for LCD, CRT,
Graphical display on a display device such as plasma or EL is effective in determining appropriate conditions. Furthermore, by graphically displaying the graph shown in Fig. 1 on a display device, it is possible to determine the non-formable area in relation to the reference value (Ts + α), and if these functions are expressed mathematically,
By giving a limit value to the α value that determines the reference value (Ts+α), an appropriate filling time range and optimum resin temperature can be selected on the display device through interactive operation.

〔発明の効果〕 前述した実施例から明らかなように、本発明に
よれば、樹脂温度と金型温度につき溶融樹脂粘度
を所定レベルに保持し得ると共に、充填圧力の大
きさおよび安定性が満足できる適正な条件下に最
低樹脂温度と充填時間の範囲を容易に判定するこ
とができる。
[Effects of the Invention] As is clear from the examples described above, according to the present invention, the viscosity of the molten resin can be maintained at a predetermined level with respect to the resin temperature and the mold temperature, and the magnitude and stability of the filling pressure can be satisfied. The minimum resin temperature and filling time range can be easily determined under the appropriate conditions.

従つて、本発明によれば、成形品形状モデルに
関する樹脂の流動解析に際し、高品質の成形品を
得るための成形条件を簡単なグラフイツク表示で
容易に判定することができると共に、この判定結
果に基づいて各種の適正な成形条件の選択を行う
ことができ、溶融樹脂の金型成形プログラムの作
成に資する効果は極めて大きい。
Therefore, according to the present invention, when performing resin flow analysis on a molded product shape model, molding conditions for obtaining a high-quality molded product can be easily determined using a simple graphical display, and the determination results can be used to Based on this, various appropriate molding conditions can be selected, which has an extremely large effect in contributing to the creation of a mold molding program for molten resin.

なお、前述した実施例においては、溶融樹脂の
金型成形における流動解析の評価方法について説
明したが、本発明はこの実施例に限定されること
なく、樹脂以外の溶融材料の金型成形、例えばダ
イカストマシンへの応用も可能であり、その他本
発明の精神を逸脱しない範囲内において種々の設
計変更をなし得ることは勿論である。
In addition, in the above-mentioned example, the evaluation method of flow analysis in mold molding of molten resin was explained, but the present invention is not limited to this example, and can be applied to mold molding of molten materials other than resin, e.g. It goes without saying that the present invention can also be applied to a die-casting machine, and that various other design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る溶融材料の金型成形にお
ける流動解析の評価方法の実施例を示すもので、
樹脂材料温度をパラメータとする充填時間に対す
る最低樹脂温度特性を示すグラフイツク表示図、
第2図は成形品形状モデルを3次元の微小要素に
分割した状態を示す表示図、第3図は第2図に示
す形状モデルにおける充填パターンの等時間線
図、第4図は第2図に示す形状モデルにおける充
填パターンの等圧力線図、第5図は第2図に示す
形状モデルにおける充填パターンの等温度線図で
ある。
FIG. 1 shows an example of the evaluation method of flow analysis in mold molding of molten material according to the present invention.
A graphic display showing the minimum resin temperature characteristics with respect to filling time with resin material temperature as a parameter,
Figure 2 is a display diagram showing the state in which the molded product shape model is divided into three-dimensional minute elements, Figure 3 is an isochronous diagram of the filling pattern in the shape model shown in Figure 2, and Figure 4 is the diagram shown in Figure 2. FIG. 5 is an isopressure diagram of the filling pattern in the shape model shown in FIG. 2, and FIG. 5 is an isotemperature diagram of the filling pattern in the shape model shown in FIG.

Claims (1)

【特許請求の範囲】 1 成形品形状モデルを微小要素に分割し、有限
要素法、境界要素法、差分法、FAN法等を含む
数値解析法を使用して、前記成形品形状モデルの
各要素に対する溶融材料の充填進行状況を、充填
到達時間の計算により等時間線図として求め、さ
らに充填中または充填完了後の各要素における温
度、圧力、剪断速度、剪断応力等を演算すること
により溶融材料の金型成形における流動解析を評
価する方法において、 1または2以上の溶融材料温度条件について、
それぞれ複数の充填時間を与えて解析を行い、 得られた充填完了時の溶融材料温度分布の演算
結果により、各要素の平均温度または中間層温度
の全要素中の最低溶融材料温度を示す要素の当該
溶融材料温度につき、充填時間を変数とした関数
Tn=fn2(t)として求め、 これら関数をデイスプレイ装置にグラフイツク
表示して、所定の金型温度での適正な溶融材料温
度と充填時間の範囲を評価判定することを特徴と
する溶融材料の金型成形における流動解析の評価
方法。 2 特許請求の範囲第1項記載の溶融材料の金型
成形における流動解析の評価方法において、 充填時間を変数とした金型充填完了時の最低溶
融材料温度の関数Tn=fn2(t)に対し、使用す
る溶融材料の固化温度Tsに基づく限界値を与え、
前記関数を評価して適正な溶融材料温度と充填時
間の範囲を判定してなる溶融材料の金型成形にお
ける流動解析の評価方法。
[Scope of Claims] 1 A molded product shape model is divided into minute elements, and each element of the molded product shape model is divided using a numerical analysis method including a finite element method, a boundary element method, a finite difference method, a FAN method, etc. The filling progress of the molten material is calculated as an isochron diagram by calculating the filling arrival time, and the temperature, pressure, shear rate, shear stress, etc. at each element during filling or after filling is calculated. In a method for evaluating flow analysis in mold forming, for one or more molten material temperature conditions,
Analysis is performed by giving multiple filling times for each element, and the calculation results of the molten material temperature distribution at the time of completion of filling are used to calculate the average temperature of each element or the lowest molten material temperature among all elements of the intermediate layer temperature. A function with the filling time as a variable for the temperature of the molten material
The function of molten material is calculated as Tn=fn 2 (t), and these functions are displayed graphically on a display device to evaluate and determine the appropriate range of molten material temperature and filling time at a predetermined mold temperature. Evaluation method for flow analysis in mold forming. 2. In the evaluation method for flow analysis in mold forming of molten material as described in claim 1, the function Tn = fn 2 (t) of the lowest molten material temperature at the time of completion of mold filling with filling time as a variable. On the other hand, give a limit value based on the solidification temperature Ts of the molten material used,
An evaluation method for flow analysis in mold forming of molten material, comprising evaluating the function to determine an appropriate range of molten material temperature and filling time.
JP62223072A 1987-09-08 1987-09-08 Evaluation method for fluid analysis in molding of molten material Granted JPS6467323A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62223072A JPS6467323A (en) 1987-09-08 1987-09-08 Evaluation method for fluid analysis in molding of molten material
DE3830570A DE3830570A1 (en) 1987-09-08 1988-09-08 Method of calculation for flow analysis in injection moulding
US07/595,769 US5097432A (en) 1987-09-08 1990-10-10 Evaluation method of flow analysis on molding of a molten material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62223072A JPS6467323A (en) 1987-09-08 1987-09-08 Evaluation method for fluid analysis in molding of molten material

Publications (2)

Publication Number Publication Date
JPS6467323A JPS6467323A (en) 1989-03-14
JPH0469850B2 true JPH0469850B2 (en) 1992-11-09

Family

ID=16792392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62223072A Granted JPS6467323A (en) 1987-09-08 1987-09-08 Evaluation method for fluid analysis in molding of molten material

Country Status (1)

Country Link
JP (1) JPS6467323A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234282A (en) * 1985-08-08 1987-02-14 Hitachi Ltd Molding process simulation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234282A (en) * 1985-08-08 1987-02-14 Hitachi Ltd Molding process simulation system

Also Published As

Publication number Publication date
JPS6467323A (en) 1989-03-14

Similar Documents

Publication Publication Date Title
KR970000927B1 (en) Evaluation method of flow analysis on molding of a molten material
US5097432A (en) Evaluation method of flow analysis on molding of a molten material
US7431870B2 (en) Automated molding technology for thermoplastic injection molding
JP6665849B2 (en) Casting mechanical property prediction method, mechanical property prediction system, mechanical property prediction program, and computer-readable recording medium recording the mechanical property prediction program
JP4716484B2 (en) Injection molding simulation apparatus and injection molding simulation method
JPH0469850B2 (en)
JPH0469849B2 (en)
JPH0469852B2 (en)
JPH0469851B2 (en)
JPH0469853B2 (en)
KR970000926B1 (en) Molten injection-molding method
JPH10272663A (en) Optimizing method of molding condition of injection molding machine
JPH04305424A (en) Method for evaluating optimum injection molding condition utilizing flow analysis and injection molding apparatus
JP2019000861A (en) Method for determining run of molten metal in pressure casting and its device
JP2017113981A (en) Method and apparatus for supporting design of molding, computer software and storage medium
JPH0469856B2 (en)
JP7300888B2 (en) Casting condition determination method
JP3230865B2 (en) Method and apparatus for preventing molding defects of injection molding machine
JP4265268B2 (en) Solidification analysis method for castings
JP3236069B2 (en) Flow analysis evaluation system for injection molds
JPH0469857B2 (en)
Gebelin et al. Simulation of die filling for the wax injection process: Part II. Numerical simulation
Kubelková et al. Determination of the simulation parameters of the waxes used in investment casting
JP3582930B2 (en) Manufacturing method for injection molded products
JPH04201429A (en) Controlling apparatus for injection molding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees