JPH02120643A - Method for estimating pressure loss in die and method for planning die flow passage using such method - Google Patents

Method for estimating pressure loss in die and method for planning die flow passage using such method

Info

Publication number
JPH02120643A
JPH02120643A JP63272966A JP27296688A JPH02120643A JP H02120643 A JPH02120643 A JP H02120643A JP 63272966 A JP63272966 A JP 63272966A JP 27296688 A JP27296688 A JP 27296688A JP H02120643 A JPH02120643 A JP H02120643A
Authority
JP
Japan
Prior art keywords
resin
flow path
section
flow
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63272966A
Other languages
Japanese (ja)
Other versions
JP2771196B2 (en
Inventor
Junichi Saeki
準一 佐伯
Isamu Yoshida
勇 吉田
Aizo Kaneda
金田 愛三
Kazuhiro Sugino
杉野 和宏
Kunihiko Nishi
邦彦 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63272966A priority Critical patent/JP2771196B2/en
Priority to KR1019890015521A priority patent/KR920004583B1/en
Priority to DE68925343T priority patent/DE68925343T2/en
Priority to US07/429,471 priority patent/US5125821A/en
Priority to EP89120184A priority patent/EP0367218B1/en
Publication of JPH02120643A publication Critical patent/JPH02120643A/en
Application granted granted Critical
Publication of JP2771196B2 publication Critical patent/JP2771196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To accurately estimate the pressure loss in a die by calculating the shape resistance of each of a plurality of divided sections and replacing the shape of each section with a round pipe shape to perform flow simulation and calculating the temp., viscosity, flow velocity and average apparent viscosity of a resin at each part. CONSTITUTION:When lead frames 1 loaded with chips are placed on the cavities 5 of a lower die 4 and a flow passage performing the filling of a resin 7 from a pot 8 is planned, the flow passage is divided into a plurality of sections to calculate the inherent shape passage in each section while, under an initial boundary condition given in a round pipe wherein each section is replaced along a flow direction, a fundamental equation describing the viscosity change transport phenomenon of the resin is solved to calculated the temp., viscosity, flow velocity and average apparent viscosity of the resin at each part. Subsequently, the pressure loss generated in each section is calculated and cumulated to calculate the synthetic pressure loss. By this method, the flow state of the resin in a die is simulated, and the optimum die data and a molding condition can be set.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱硬化性樹脂の成形用金型に係り、特に製品の
欠陥低減に好適な金型流路設計法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mold for molding a thermosetting resin, and particularly to a method for designing a mold flow path suitable for reducing defects in products.

(従来の技術〕 従来の熱硬化性樹脂用キャビティ多数ケ取り金型流路の
設31法は、特公昭55−17697号に記載のように
金型のランナ底を樹脂の流れの方向に漸次減少させると
ともにゲートの絞り角をポットからランナに沿って遠ざ
かる各キャビティに対応させて漸次増加するように流路
を形成し、ランナとデー1へにおける圧力損失の合計が
各々のキャビティに対して一定になるようにしていた。
(Prior art) A conventional method for constructing a flow path for a mold with multiple cavities for thermosetting resin is to gradually move the runner bottom of the mold in the direction of resin flow, as described in Japanese Patent Publication No. 17697/1983. The flow path is formed so that the constriction angle of the gate increases gradually with each cavity moving away from the pot along the runner, so that the total pressure loss between the runner and Day 1 is constant for each cavity. I was trying to make it happen.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、複雑な流路形状の中を温度、粘度が変
化しながら流動する樹脂の流動挙動の予測法については
考慮されておらず、樹脂を実際に各キャビティへ同速度
で充填させることは困難゛乙製品品質の向]二には限界
があった。
The above-mentioned conventional technology does not consider a method for predicting the flow behavior of resin that flows through a complicated flow path shape while changing temperature and viscosity, and does not consider how to actually fill each cavity with resin at the same speed. It is difficult to improve the quality of the product.

本発明の目的は、金型内の樹脂の流動状態を迅速、かつ
5品積度にシミュレートして最適金型諸元、成形条件を
設定し、製品開発期間の大幅な短縮と製品品質の向上を
図ることにある。
The purpose of the present invention is to quickly simulate the flow state of resin in a mold in a five-product stack, set optimal mold specifications and molding conditions, and significantly shorten product development time and improve product quality. The aim is to improve.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、金型流路を複数の区間に分割し、各区間に
おいて流路固有の形状抵抗βと流ff1Qを算出すると
ともに、各区間を円管形状に置き換え、この形状で流動
シミコレ−ジョンを行い、各部の樹脂の温度、粘度、流
速、H1均見掛は粘度η(lを17出し、圧t]損失Δ
Y)を△l) =βICLQで求めて流4iJ+予測を
行うことにより達I戊される。この解析ン人テムの構成
を第1図に示す。第1図において、まず人力部では、シ
ミュレーションに必要な樹脂物f4値、成形条件、金型
流路1摺元か人力される、次に入力された金型流路諸元
データは流路体積演算部と区間分割部に入り、それぞれ
流路全体の体IRと分割すべき区間とが求められる。区
間分割部で処理さ扛たデータは区間体積演算部と区間形
状抵抗演算部に入り、それぞれ各区間の流路体積と形状
抵抗が求められる。一方、区間体積演算部で処理された
データは円管流路置換部に入り、各区間は円管流路の組
み合わせに置換される。さらに、流路体積演算部と区間
体積演算部で処理されたデー タ、ならびに入力部に入
力された成形条件の中の移送時間のデータは区間流量、
区間通過時間演9:部に入り、ここで、各区間を通過す
る樹脂の流量と区間を通過する時間が求められる。そし
て、この演算部で処理されたデータと円管流路置換部で
処理されたデータならびに入力部に入力された成形条件
データとを用いて、円管内の流動シミュレーションを行
い、流路各部の樹脂の温度、粘度、流速、平均見掛は粘
度などを算出する。この流動シミュレーション部での演
算結果は粘度比較部に入り、結果に問題があった場合は
シミュレーションをやめ7人力条件変更部で入力データ
の一部を変え、再び最初に戻る。一方、粘度比較部で問
題のない場合は、流動シミュレーションで求まった各区
間の平均見掛は粘度、ならびに各区間の流量と形状抵抗
とを用いて圧力損失演算部において、各区間の圧力損失
とこれを累積した総合圧力損失を求める。この結果は圧
力損失比較部に入り、計算された圧力損失が所定の圧力
損失よりも大きい場合には入力条件変更部に入り、人力
データの一部を変え再び最初に戻る。圧力損失比較部で
問題がないと判定された場合は、出力部において、最終
金型流路諸元、成形条件、その他の必要な情報が出力さ
れる。
The above purpose is to divide the mold flow path into multiple sections, calculate the flow path-specific shape resistance β and flow ff1Q in each section, replace each section with a circular tube shape, and use this shape to prevent flow stains. The temperature, viscosity, flow rate, and H1 uniform appearance of the resin at each part are determined by the viscosity η (l is 17, pressure t) loss Δ
It is achieved by calculating Y) by Δl) = βICLQ and performing flow 4iJ+ prediction. The configuration of this analyzer system is shown in Figure 1. In Figure 1, first, the human power department inputs the resin material f4 value, molding conditions, mold flow path 1 material required for simulation, and then enters the mold flow path specification data, which is the flow path volume. The calculation section and section division section calculate the body IR of the entire flow path and the section to be divided, respectively. The data processed by the section division section is input to a section volume calculation section and a section shape resistance calculation section, where the channel volume and shape resistance of each section are determined, respectively. On the other hand, the data processed by the section volume calculation section enters the circular tube channel replacement section, and each section is replaced with a combination of circular tube channels. Furthermore, the data processed by the channel volume calculation unit and the section volume calculation unit, as well as the transfer time data in the molding conditions input to the input unit, are the section flow rate,
Section passage time calculation 9: Enter section 9, where the flow rate of resin passing through each section and the time for passing through the section are determined. Then, using the data processed by this calculation unit, the data processed by the circular tube flow path replacement unit, and the molding condition data input to the input unit, a flow simulation inside the circular tube is performed, and the resin in each part of the flow path is Calculate the temperature, viscosity, flow rate, average apparent viscosity, etc. The calculation results from the flow simulation section are sent to the viscosity comparison section, and if there is a problem with the results, the simulation is stopped and a part of the input data is changed at the manual condition change section, and the process returns to the beginning. On the other hand, if there is no problem in the viscosity comparison section, the average apparent appearance of each section determined by the flow simulation is calculated as the pressure loss of each section using the viscosity, flow rate and shape resistance of each section. Find the total pressure loss by accumulating this. This result is entered into the pressure loss comparison section, and if the calculated pressure loss is larger than the predetermined pressure loss, it is entered into the input condition change section, where part of the manual data is changed and the process returns to the beginning. If the pressure loss comparison section determines that there is no problem, the output section outputs final mold channel specifications, molding conditions, and other necessary information.

〔作用〕[Effect]

上記方法によれば、最適金型流路設M目こり・要な圧力
損失の計算で、流路固有の形状抵抗と流量番よ厳密に求
まる。一方、流動解析が繁雑で莫大なi士算時間を要す
る複雑な実機金型流路形状4よ円管流路の組み合せに置
き換え、この中で平均見掛番す粘度の計算を行うため、
極めて計算時間力へ短くてすみ、しかも実用上十分な圧
力損失の予測精度力〜確保できる。
According to the above method, by calculating the optimum mold flow path setting M and the necessary pressure loss, it is precisely determined based on the shape resistance specific to the flow path and the flow rate number. On the other hand, in order to calculate the average apparent viscosity by replacing the complex actual mold flow path shape 4 with a combination of circular pipe flow paths, which requires complicated flow analysis and a huge amount of calculation time,
The calculation time is extremely short, and the prediction accuracy of pressure loss that is sufficient for practical use can be ensured.

〔実施例〕〔Example〕

以下、本発明の一実施例を第2〜13図、表1゜2によ
り説明する。まず、円管内の流動シミュレーション手法
について述へる。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 13 and Tables 1 and 2. First, we will discuss the flow simulation method inside a circular pipe.

熱硬化性樹脂用の等温粘度式を次のモデルで表化時間、
C:粘度上昇係数、T:絶対温度、t:時間である。ま
た、 η。(T) =ctex p (b/T) ”・・(2
)to (T)=dez p  (e/T)  ””’
(3)c  (T)=f/T−g      ・・・・
・・・・・(4)とする。(Lr br d+ et 
f+ gは成形条件に左右されない樹脂固有のパラメー
タである。(1)式は次の境界条件を満足する。
Express the isothermal viscosity equation for thermosetting resin using the following model.Time,
C: viscosity increase coefficient, T: absolute temperature, t: time. Also, η. (T) = ctex p (b/T) ”...(2
)to (T)=dez p (e/T) ””'
(3)c (T)=f/T-g...
...(4). (Lr br d+ et
f+g is a resin-specific parameter that is not affected by molding conditions. Equation (1) satisfies the following boundary conditions.

1=0のときη=η。(T)・・・・・(5)t=t0
(T)のときη=ψ・・・・・・(6)任意温度Tにお
ける(1)式の特性を第2図に示す。
When 1=0, η=η. (T)・・・(5)t=t0
When (T), η=ψ (6) The characteristics of equation (1) at an arbitrary temperature T are shown in FIG.

金型内では樹脂は管壁から熱を受けながら流動するため
非等温状態になっている場合が殆どである。次にこの場
合の粘度の予測法について説明する。まず、(1)式を
無次元整理すると次式が得られる。
Inside the mold, the resin flows while receiving heat from the tube wall, so it is in a non-isothermal state in most cases. Next, a method for predicting viscosity in this case will be explained. First, by rearranging equation (1) in a dimensionless manner, the following equation is obtained.

1+τ μ=1−0・・・・・・・・・・(7)17C[T) ここで・μ=(η/η。(T))    ・・・・・(
8)τ=t/10(T)     ・・・・・・・・(
9)である。この曲線はで=0でμ=1.τ=1でμ=
ωとなる特性を持つ。この曲線を第3図に示す。
1+τ μ=1-0・・・・・・・・・(7) 17C[T] Here・μ=(η/η.(T)) ・・・・・・・・・(
8) τ=t/10(T) ・・・・・・・・・(
9). This curve is = 0 and μ = 1. τ=1 and μ=
It has the characteristic that ω. This curve is shown in FIG.

いま、第3図において、τ=τ1でμ=μmとなってお
り、このときの時間がtll温度がT2とする。
Now, in FIG. 3, it is assumed that τ=τ1 and μ=μm, and the time at this time is tll and the temperature is T2.

そして、時間が△を経過したときに温度もΔT増加し、
時間、温度がそれぞれt21 ’r2 になったときの
新しい粘度を求めることにする。(9)式よりτはLと
Tの関数になっており、新しい状態τ2までのτの増分
△τは次式で求められる。
Then, when time passes △, the temperature also increases by ΔT,
Let us find the new viscosity when the time and temperature each reach t21'r2. According to equation (9), τ is a function of L and T, and the increment Δτ of τ up to the new state τ2 can be found by the following equation.

△、=旦二八tへ’二△T・・・・・・(10)aし 
   δT また、(9)、(3)式より、次式が得られる。
△,=tan 28 t to '2 △T... (10) a
δT Also, from equations (9) and (3), the following equation is obtained.

(10)式のΔt、△Tは第3図のようにあらかじめ分
かっており、(11)式にT=T工を(12)式にT=
T工、τ=τ、を代入することにより、Δτが求まる。
Δt and ΔT in equation (10) are known in advance as shown in Figure 3, and T=T in equation (11) and T=T in equation (12).
By substituting T, τ=τ, Δτ can be found.

したがって、 τ2=τ1+Δτ−・Φ・・−(13)となり、(7)
式でて=で2としてμ2が求まる。
Therefore, τ2=τ1+Δτ−・Φ・・−(13), and (7)
μ2 can be found by using the formula = 2.

そして、(8)式から次式が得られる。Then, the following equation is obtained from equation (8).

η=η。(T)μ00T)  ・・・・(15)この(
15)式にT=T2.μ=μ2の値を代入して、η2=
η。(T2)μ2C(Tll・・・・・・・(16)よ
り、新しい状態の粘度η2が求まる。
η=η. (T) μ00T) ... (15) This (
15) In the equation, T=T2. Substituting the value of μ=μ2, η2=
η. (T2)μ2C(Tll... From (16), the viscosity η2 in the new state is determined.

この手法をτ=0から1までくり返すことにより、非等
温状態での初期からゲル化するまでの粘度変化を算出す
ることができる。
By repeating this method from τ=0 to 1, it is possible to calculate the viscosity change from the initial state in a non-isothermal state to gelation.

樹脂が金型内を流動中の状態を解析するためには、上記
の粘度予測法と各種保存則の基礎式を組み合わせて解く
ことが必要であり、円管流路の場合の各式を次に示す。
In order to analyze the state in which resin is flowing inside a mold, it is necessary to solve the above viscosity prediction method in combination with the basic equations of various conservation laws.Each equation for a circular pipe flow path is as follows. Shown below.

Q=2πj” uzYd Z””・(17)量、エネル
ギーの保存式である。(17)〜(19)式で、Q:流
量、R:円管半径、υ2 :管軸方向流速、γ:管径方
向距離、Z:管軸方向距離、P:圧力、η:粘度、P:
密度、T:温度、t:時間、λ:熱伝導率である。(1
7)〜(19)式を(1)〜(4)の等温粘度式、(7
)〜(16)の非等温粘度予測法と組み合わせて、与え
られた初期条件、境界条件の■に差分法、有限要素法な
どの数値解析法で解けば、円管流路内での流動シミュレ
ーションができる。本実施例で用いたシミュレーシ9ン
プログラ11の概要を第4[司に示す。出力では、ニュ
ートン流体が定常等温層流しているものとみなしたとき
の平均見掛は粘度の値も求められる。
Q=2πj" uzYd Z""・(17) This is a conservation equation for quantity and energy. In equations (17) to (19), Q: flow rate, R: circular pipe radius, υ2: flow velocity in the pipe axial direction, γ: Pipe radial distance, Z: Pipe axial distance, P: Pressure, η: Viscosity, P:
density, T: temperature, t: time, λ: thermal conductivity. (1
7) to (19) to the isothermal viscosity equations (1) to (4), (7
) to (16), and solve the given initial conditions and boundary conditions using numerical analysis methods such as the finite difference method and finite element method, it is possible to simulate flow in a circular pipe channel. Can be done. An overview of the simulation program 11 used in this example is shown in the fourth section. In the output, the average apparent viscosity value is also determined when the Newtonian fluid is assumed to be flowing in a steady isothermal layer.

表1に本実施例で用いた半導体封止用エポキシ樹脂の物
性値を示す。
Table 1 shows the physical properties of the epoxy resin for semiconductor encapsulation used in this example.

表   1 ここで、P I G 、λは市販の熱物性I11定装置
を用いて得た値である。また、a、b、d、e、f。
Table 1 Here, P I G and λ are values obtained using a commercially available thermophysical property I11 constant device. Also, a, b, d, e, f.

gは(2)、(3)、(4)式中のパラメータであり、
これらの値は径の異なる数種類の円管流路と数種類の金
型温度条件を組み合わせて、各条件での樹脂の平均見掛
は粘度を実測し、これらの特性値を元にして、外挿法や
カーブフィッティング法などにより決定した。表1の物
性値を第3図のシミュレーションプログラムに入力して
、円管流路内での平均見掛は粘度ηaを算出したときの
計算値と実測値の比較を第5図に示す。各金型温度にお
いて両者は非常によく一致しており、本シミュレーショ
ン手法の妥当性が検証された。
g is a parameter in formulas (2), (3), and (4),
These values are calculated by combining several types of circular pipe channels with different diameters and several types of mold temperature conditions, actually measuring the average apparent viscosity of the resin under each condition, and extrapolating based on these characteristic values. It was determined by the method and curve fitting method. FIG. 5 shows a comparison between the calculated value and the measured value when the average apparent viscosity ηa in the circular pipe flow path was calculated by inputting the physical property values in Table 1 into the simulation program shown in FIG. 3. The two values matched very well at each mold temperature, verifying the validity of this simulation method.

第6−a〜6−d図に樹脂封止半導体の製造プロセスの
概要を示す。第6−a図はリードフレーム1上にチップ
2を搭載し、これらを金線3で結線した状態の拡大図お
よび、このデバイスを複数ヶ搭載した多連リードフレー
ム1を示す。第6−1)図は−に記デバイスを樹脂封止
するプロセスを示したものである。ます、リードフレー
ム1は下型4のキャビティ5の一トに置かれ、上型6が
閉じて金型1内に固定される。一方、タブレット状に予
備成形された熱硬化性樹脂7は高周波F熱橋(図示せ1
“)で予備加熱した後にポット8内に投入され、成形機
(図示せず)に取り付けられたプランジャー9を];降
させる。このとき、ヒーター10により加熱された金型
から熱を受けた樹脂7は溶融し、ランナ11.ゲート1
2を通ってキャビティ5に流入する。キャビティ5内に
樹脂7が充填完了後。
Figures 6-a to 6-d outline the manufacturing process for resin-sealed semiconductors. FIG. 6-a is an enlarged view of a state in which chips 2 are mounted on a lead frame 1 and connected with gold wires 3, and shows a multiple lead frame 1 on which a plurality of these devices are mounted. Figure 6-1) shows the process of resin-sealing the device described in -. First, the lead frame 1 is placed in one of the cavities 5 of the lower mold 4, and the upper mold 6 is closed and fixed within the mold 1. On the other hand, the thermosetting resin 7 preformed into a tablet shape is exposed to a high frequency F thermal bridge (see 1).
The plunger 9 attached to the molding machine (not shown) is lowered. At this time, it receives heat from the mold heated by the heater 10. The resin 7 is melted and the runner 11.gate 1
2 into the cavity 5. After filling of the resin 7 into the cavity 5 is completed.

所定時間経過すると樹脂7は硬化し、第6− c図の状
態で金型から取り出される。そして、リードフレーム1
の切断、折り曲げ工程をへて、第6−d図の最終形状が
出来上がる。第6−b図において、各キャビティ5内へ
の樹脂7の充填時刻がずれると、樹脂の粘度、流速、硬
化状態が異なり。
After a predetermined period of time has elapsed, the resin 7 hardens and is removed from the mold in the state shown in FIG. 6-c. And lead frame 1
After passing through the cutting and bending steps, the final shape shown in FIG. 6-d is completed. In FIG. 6-b, if the filling time of the resin 7 into each cavity 5 is different, the viscosity, flow rate, and curing state of the resin will be different.

これらの要因に騙ずく、ボイドの残存、金線3の変形な
どが生じる問題がある。したがって、次に樹脂7の充填
状況を均一にするための流路設計法について述べる。
Due to these factors, there are problems such as residual voids and deformation of the gold wire 3. Therefore, next, a flow path design method for making the filling condition of the resin 7 uniform will be described.

樹脂の各キャビティへの充填状況を揃えるためには各キ
ャビティへ同流量を分配するときの各キャビティに到る
までのランナとゲート部での圧力損失の和を等しくでき
る金型流路譜元を求めればよい。したがって、流路内の
圧力損失を見積るための計算が必要となるが、第6−b
図のランナ1〕、ゲート12の断面形状は半円底あるい
は逆台形になっており、しかも流動方向に沿って断面積
が変化する場合が殆どである。このように′f!i、雑
な境界条件のままで先の流動シミュレーションを行う計
算時間が膨大になり、実用的な設計システムにならない
。したがって、本発明では以下の手法を用いるようにし
た。すなわち、流路を複数の区間に分割し、各区間にお
いて流路固有の形状抵抗βと流量Qを算出するとともに
、各区間を円管形状に置き換え、この形状で流動シミュ
レーションを行い、各部の樹脂の温度、粘度、流速、平
均見掛は粘度7aを算出し、圧力損失△Pを次式で求め
るようにした。
In order to equalize the filling situation of resin into each cavity, it is necessary to create a mold flow path that can equalize the sum of the pressure loss at the runner and gate part to reach each cavity when distributing the same flow rate to each cavity. All you have to do is ask. Therefore, calculations are required to estimate the pressure loss in the flow path, but in Section 6-b
The cross-sectional shape of the runner 1] and the gate 12 in the figure is a semicircular bottom or an inverted trapezoid, and moreover, in most cases, the cross-sectional area changes along the flow direction. Like this 'f! i. The calculation time required to perform the flow simulation using the rough boundary conditions is enormous, making it impossible to create a practical design system. Therefore, in the present invention, the following method is used. In other words, the flow path is divided into multiple sections, the flow path-specific shape resistance β and flow rate Q are calculated in each section, each section is replaced with a circular tube shape, a flow simulation is performed with this shape, and the resin of each part is calculated. The temperature, viscosity, flow rate, and average apparent viscosity 7a were calculated, and the pressure loss ΔP was determined using the following formula.

ΔP=β了aQ・・・・・・・(20)第7−a図に流
動方向に沿って断面積が変化する流路の1区間の例を示
す。Xは基準点から流動方向に沿う距離であり、X工、
X2はそれぞれ区間の始点、終点である。また、Wは流
路幅、hは流路深さであり、いずれもXの関数となる。
ΔP=β了aQ (20) Fig. 7-a shows an example of one section of a flow path in which the cross-sectional area changes along the flow direction. X is the distance along the flow direction from the reference point,
X2 is the start point and end point of the section, respectively. Furthermore, W is the channel width and h is the channel depth, both of which are functions of X.

いま、この区間において、W≧hとするとβは次式で求
められる。
Now, in this interval, if W≧h, β can be found by the following equation.

ここで、Fは流路断面形状およびWとhの比により決ま
る形状係数である。(21)式において、W、h、Fを
Xの関数形にして与え、解析的、あるいはシンプソンの
公式などによる近似積分を行えばβが求まる。なお、W
<hの条件ではを用いる。さらに、区間内にW≧hとな
る箇所とw<hとなる箇所が共存する場合は、それぞれ
の位置で(21)、(22)式を使い、足し合わせれば
よい。第7−b図に置き換えた円管流路を示す。区間x
1〜X2において、管径が−様な円管とする。この径は
第7−a図の区間体積と第7−b図の区間体積とが同じ
になるように計算して決める。また、第7−b図の破線
は流動方向に沿って先細りの流路での区間X1〜X2の
前後の区間での円管への置き換え後の形状を示したもの
である。
Here, F is a shape factor determined by the cross-sectional shape of the channel and the ratio of W and h. In equation (21), W, h, and F are given as functions of X, and β can be found by performing approximate integration analytically or using Simpson's formula. In addition, W
<h is used. Furthermore, if a location where W≧h and a location where w<h coexist within the section, equations (21) and (22) may be used at each location and added together. Fig. 7-b shows a circular pipe flow path replaced with Fig. 7-b. section x
1 to X2 are circular pipes with -like pipe diameters. This diameter is calculated and determined so that the section volume in Fig. 7-a and the section volume in Fig. 7-b are the same. Moreover, the broken line in FIG. 7-b shows the shape of the section before and after the section X1 to X2 in the flow path tapering along the flow direction after replacement with a circular pipe.

このように置き換えをしたので、先に述べた円管内の流
動シミュレーション手法がそのまま使え、各区間での平
均見掛は粘度r)aを見積ることができる。また区間通
過流量Qは、金型流路体積■。
With this substitution, the flow simulation method in the circular pipe described above can be used as is, and the average apparent viscosity r)a in each section can be estimated. Also, the section passing flow rate Q is the mold flow channel volume ■.

とプランジャの樹脂注入時間tpから、まず、ポットか
ら排出される流量QpをQp = V t / t P
で計算し、さらに、流路の分岐数に応じてQpを分配す
ることによりあらかじめ求まる。以上により、各区間の
圧力損失が求まり、これを累積して総合圧力損失ΔPT
が求まる。
From the resin injection time tp of the plunger, first, calculate the flow rate Qp discharged from the pot as Qp = V t / t P
It is calculated in advance by calculating and further distributing Qp according to the number of branches of the flow path. Through the above steps, the pressure loss in each section is determined, and this is accumulated to give the total pressure loss ΔPT.
is found.

第8図に第6−6図に示した構造のキャビティ多数ケ取
り金型で各キャビティでの樹脂の充填状況を揃えるため
のランナ、ゲート設計用フローチャートを示す。まず、
樹脂物性値、成形条件、金型諸元を入力する。このうち
、樹脂物性値は表1の記号に示した各樹脂毎の物理量で
ある。成形条設定プランジャ最大圧力PM 、樹脂の予
熱温度。
FIG. 8 shows a flowchart for designing a runner and a gate for equalizing the resin filling situation in each cavity in a multi-cavity mold having the structure shown in FIGS. 6-6. first,
Enter resin physical property values, molding conditions, and mold specifications. Among these, the resin physical property values are the physical quantities for each resin shown in the symbols in Table 1. Molding strip setting plunger maximum pressure PM, resin preheating temperature.

金型温度である。金型諸元は、第1回目の計算用として
、キャビティ間のピッチ、流路レイアウトなどの固定因
子以外の諸元は仮の値を入力しておく。次に、流路全体
の体積Vfを計算するとともに、流路を区間分割する。
is the mold temperature. For the mold specifications, provisional values are input for specifications other than fixed factors such as the pitch between cavities and flow path layout for the first calculation. Next, the volume Vf of the entire flow path is calculated, and the flow path is divided into sections.

このとき、区間の接合面の数は少なくとも流路の分岐数
と同じにし、区間内では樹脂の流れの分岐はないように
する。そして、区間体積Vnと区間形状抵抗βnを算出
する。以上から、まず、ポットから排出される流量Qp
 をQp = V t / t pで計算し、さらに流
路の分岐数に応じてQpを分配し、各区間の流量Qnを
求める。このとき、各キャビティへ同流量を分配してい
る状態を前提としておく。そして、Vn/Qnにより各
区間の樹脂通過時間tnを求める。
At this time, the number of joint surfaces in the section is at least the same as the number of branches in the flow path, so that there is no branching of the resin flow within the section. Then, the section volume Vn and section shape resistance βn are calculated. From the above, first, the flow rate Qp discharged from the pot
is calculated as Qp = V t / t p, and Qp is further distributed according to the number of branches of the flow path to determine the flow rate Qn in each section. At this time, it is assumed that the same flow rate is distributed to each cavity. Then, the resin passing time tn for each section is determined by Vn/Qn.

また、Vnから体積が等しい円管流路の径を各区間毎に
求める。このようにして置き換えた円管流路内での流動
シミュレーションを与えられた初期、境界条件の元に上
流側から逐次行い、各区間での樹脂の温度、粘度η、流
速分布、平均見掛は粘度ηaを算出する。ここで、各区
間の半径方向の所定位置において、下流側と上流側のη
を比較し、下流側が上流側よりもηが上昇しないことを
チエツクする。そして、もし下流側でηの上昇が起きた
場合には、成形条件や金型諸元を変更して再計算を行う
。これは、ηの上昇が流動途中で起きる条件は、キャビ
ティ内へ硬化反応の進んだ高粘度の樹脂が流入するため
、成形不良を起こす可能性が極めて高く、これを予め防
止することが目的である。ηの上昇のない条件が得られ
ると、まず、ランナ各区間の圧力損失ΔPRnを△pR
1=βn・1anQnで計算し、これを累積してランナ
内の圧力損失△PRTを求める。次に、比較用に予め設
定したランナ内圧力損失ΔPJIS≦ΔPRTを比較し
、へPR8≦ΔP、アとなったときには、金型流路、諸
元、プランジャの樹脂注入時間、樹脂の予熱温度、金型
温度のうち、少なくとも一条件の値を変えて再入力して
そのときの八PjlTを求め、逐次条件変更を行いΔP
us>ΔPRTを満足するところで、ランナ諸元と成形
条件を決定する。これは、圧力損失が成形機の設定プラ
ンジャ最大圧力PMに近づくと、プランジャが一定速度
で下降できなくなり、流動途中での樹脂の滞留により、
成形不良を多発する現象があり、これをまずランナ部で
防止することが目的である。なお、八PR5はPMより
もかなり低い値にしておく。続いて、各キャビティに到
るまでのランナ部圧力損失とゲート部圧力損失の和が一
定になるように各ゲート部での圧力損失を設定する。こ
のとき、予め設定した圧力損失へPsと計算で求めた総
合圧力損失ΔPTを比較し、ΔPS≦ΔPTのときには
、成形条件、金〒1流路諸元の値の一部を再度変えて再
計算を行う。
Also, from Vn, the diameter of the circular pipe flow path having the same volume is determined for each section. A flow simulation in the circular pipe flow path replaced in this way was performed sequentially from the upstream side under the given initial and boundary conditions, and the temperature, viscosity η, flow velocity distribution, and average appearance of the resin in each section were calculated. Calculate the viscosity ηa. Here, at a predetermined position in the radial direction of each section, the downstream and upstream η
, and check that η does not rise more on the downstream side than on the upstream side. If η increases on the downstream side, the molding conditions and mold specifications are changed and recalculation is performed. This is because under conditions where η increases during flow, a highly viscous resin that has undergone a hardening reaction will flow into the cavity, which is extremely likely to cause molding defects, and the purpose is to prevent this in advance. be. Once a condition in which η does not increase is obtained, first, the pressure loss ΔPRn in each section of the runner is expressed as ΔpR.
1=βn·1anQn, and the pressure loss ΔPRT in the runner is calculated by accumulating this. Next, the pressure loss ΔPJIS≦ΔPRT in the runner, which was set in advance for comparison, is compared, and when PR8≦ΔP, A, the mold flow path, specifications, resin injection time of the plunger, resin preheating temperature, Change the value of at least one condition of the mold temperature and re-enter it to find the 8PjlT at that time, change the conditions one by one and calculate ΔP.
When us>ΔPRT is satisfied, runner specifications and molding conditions are determined. This is because when the pressure loss approaches the maximum plunger pressure PM set in the molding machine, the plunger cannot descend at a constant speed, and the resin stagnates during flow.
There is a phenomenon in which molding defects occur frequently, and the objective is to first prevent this in the runner section. Note that 8PR5 is set to a value much lower than PM. Subsequently, the pressure loss at each gate section is set so that the sum of the runner section pressure loss and the gate section pressure loss up to each cavity is constant. At this time, compare the preset pressure loss Ps with the calculated total pressure loss ΔPT, and if ΔPS≦ΔPT, change the molding conditions and some of the values of the flow path specifications again and recalculate. I do.

そして、△Ps>八PTとなったところで、ゲート部に
持たせるべき圧力損失△P+Inを決定する。
Then, when ΔPs>8PT, the pressure loss ΔP+In that the gate portion should have is determined.

なお、△Psは△PR5とPMの中間の値とする。Note that ΔPs is an intermediate value between ΔPR5 and PM.

そして、△Panと流動シミュレーションにより求めた
ゲート部平均見掛は粘度’QLLa:ならびにゲート部
流、f&QQnから各ゲートで持たせるべき形状抵抗β
31口をβ3.n=ΔP an / ”i a a−Q
 anにより計算する。そして、(21)、(22)式
に示した関係式を利用して、ゲート部の諸元を逆算する
Then, △Pan and the average apparent appearance of the gate section obtained by flow simulation are the viscosity 'QLLa: and the shape resistance β that each gate should have from the gate section flow, f & QQn.
31 mouths β3. n=ΔPan/”i a a-Q
Calculate by an. Then, using the relational expressions shown in equations (21) and (22), the specifications of the gate section are calculated backward.

さらに、得られた諸元がゲート部での制約条件、例えば
流動方向に沿う先細り部の角度の上、下限値、深さの上
、下限値などを満足しない場合は、金型諸元、成形条件
の一部を変更して、制約条件を満足するところでゲート
諸元を決定する。
Furthermore, if the obtained specifications do not satisfy the constraints at the gate, such as the upper and lower limits of the angle of the tapered part along the flow direction, and the upper and lower limits of the depth, Part of the conditions are changed and the gate specifications are determined when the constraint conditions are satisfied.

第9− a、 −9−a図に5本手法を用いて設計した
金型のランナ11.ゲート12の構造を示す。
Runner 11 of the mold designed using the five methods shown in Figures 9-a and 9-a. The structure of gate 12 is shown.

第9−a、図は、第6−b図を上方から見たときのラン
ナ11.ゲー1〜12の構造である。ここでは、第15
−b図においてボッl−8およびポットに接続して折れ
曲がる部分までのランナ11.キャビティ5は省略しで
ある。第9−b図は第9−a、図の側面図であり、ラン
ナ11は各キャビティまでの樹脂の到達時刻のずれを少
なくするために深さを流動方向に沿って漸次減少させた
構造とした。
Figures 9-a and 9-a show the runner 11 when viewed from above in Figure 6-b. This is the structure of games 1 to 12. Here, the 15th
In Figure-B, the runner 11. Cavity 5 is omitted. Figure 9-b is a side view of Figure 9-a, and the runner 11 has a structure in which the depth is gradually decreased along the flow direction in order to reduce the time difference in the arrival time of the resin to each cavity. did.

第9−a図は第9− a 〜b図のA−A断面、B−B
断面を示した図であり、ゲートの絞り角θを下流側はど
広げ、各キャビティに到るまでのランナ部とゲート部の
圧力損失の和を等しくする構造とした。なお、ゲート絞
り角に制約条件がある場合は、ゲート出口13の幅、深
さも変化させ、各ゲ−hでの必要な圧力損失の値を確保
してもよい。
Figure 9-a is the A-A cross section and B-B in Figures 9-a and 9-b.
This is a diagram showing a cross section, and the structure is such that the aperture angle θ of the gate is widened on the downstream side, and the sum of pressure losses in the runner part and the gate part up to each cavity is equalized. In addition, when there is a constraint condition on the gate aperture angle, the width and depth of the gate outlet 13 may also be changed to ensure the necessary pressure loss value at each gate h.

次しこ、本発明の詳細な説明する。第10−a。Next, the present invention will be explained in detail. Section 10-a.

b図は、流1hシミュレーション手法を用いずに、樹脂
の粘度を一定と仮定したうえで第9−a、e。
Figure b shows the results of 9-a and e without using the flow 1h simulation method and assuming that the viscosity of the resin is constant.

Cの構造の金型を設計した従来手法でのキャビティ内の
樹脂の充填状況を示したものである。第10−a図の縦
軸は各キャビティでの樹脂の無次元充填率、横軸はキャ
ビティへ樹脂か入り始めてからの無次元充填時間であり
、図中の点線が各キャビティ内を樹脂が同時、同速度で
充填を行う理想充填を示す、従来手法では、各キャビテ
ィへの樹脂の充填が理想充填から大きくずれている。第
10−1)図は第9−a図の無次元充填時間0.5にお
ける樹脂7の充填状況を示したものであり、上流側のキ
ャビティ5から樹脂が早く充填している。
This figure shows the state of resin filling in the cavity using the conventional method of designing a mold having the structure shown in C. In Figure 10-a, the vertical axis is the non-dimensional filling rate of resin in each cavity, the horizontal axis is the non-dimensional filling time after the resin starts entering the cavity, and the dotted line in the figure is the non-dimensional filling rate of resin in each cavity. In the conventional method, which shows ideal filling in which filling is performed at the same speed, the filling of resin into each cavity deviates significantly from the ideal filling. Fig. 10-1) shows the filling state of the resin 7 at the non-dimensional filling time of 0.5 in Fig. 9-a, in which the resin fills quickly from the cavity 5 on the upstream side.

第1.1− a図は流動シミュレーション手法を用いた
本発明により設計した金型でのキャビティ内の樹脂の充
填状況を示したものである。どのキャビティでも理想充
填に非常に近い充填状況が得られた。第11−b図は第
11−a図の無次元充填時間0.5における樹脂7の充
填状況を示したものであり、どのキャビティでも同じよ
うに樹脂7が充填している。
Figure 1.1-a shows the resin filling situation in the cavity of a mold designed according to the present invention using a flow simulation method. Filling conditions very close to ideal filling were obtained in all cavities. Fig. 11-b shows the filling state of the resin 7 at the dimensionless filling time of 0.5 in Fig. 11-a, and all cavities are filled with the resin 7 in the same way.

第12図にキャビティ内樹脂最大流速と、樹脂滞留時間
の比較を示す。ここでtpは樹脂注入時間を示す。従来
手法で設計した金型では下流側のキャビティはど流速が
大きくなる。これは、第10−a、b図に示した充填状
況のため、上流側から樹脂が充填完了するたびに流量が
下流にシフトしていく、結果を示している。一方、本発
明で設計した金型では第1.1−a、b図に示したよう
に均一に樹脂が充填するため流量集中は起こらず、流速
は各キャビティとほぼ同じ値を示す。一方、従来手法で
設計した金型では樹脂の滞留時間が上流側のキャビティ
はど大きくなる。ここで、滞留時間とはそのキャビティ
で樹脂が充填を完了してから、プランジャ停止までの時
間である。本発明で設計した金型ではどのキャビティで
もほとんど滞留時間はない。
FIG. 12 shows a comparison of the maximum resin flow rate in the cavity and the resin residence time. Here, tp indicates resin injection time. In molds designed using conventional methods, the flow velocity in the downstream cavity is high. This shows that due to the filling situation shown in Figures 10-a and 10-b, the flow rate shifts downstream every time the resin is completely filled from the upstream side. On the other hand, in the mold designed according to the present invention, as shown in Figures 1.1-a and 1.1-b, the resin is filled uniformly, so no flow concentration occurs, and the flow velocity exhibits approximately the same value in each cavity. On the other hand, in molds designed using conventional methods, the resin residence time increases in the upstream cavity. Here, the residence time is the time from when the resin completes filling in the cavity until the plunger stops. The mold designed according to the present invention has almost no residence time in any cavity.

第13図に金線変形不良発生率の比較を示す。FIG. 13 shows a comparison of the incidence of gold wire deformation defects.

ここでは、径の太い金線Aと径の細い金線Bの2種類を
用いたときの結果を示す。金線Aの場合は従来手法で設
計した金型でも本発明手法で設計した金型でも金線変形
不良はない。一方、金線Bでは、従来手法で設計した金
型では下流側のキャビティはど不良発生率は高くなる。
Here, results are shown when two types of gold wires, gold wire A with a large diameter and gold wire B with a small diameter, were used. In the case of gold wire A, there is no defective wire deformation in either the mold designed by the conventional method or the mold designed by the method of the present invention. On the other hand, in the case of gold wire B, molds designed using the conventional method have a high incidence of cavities on the downstream side.

これは、第12図の流速の増加と対応しており、流速の
増加に伴い、径が小さく剛性の小さい金線では変形しや
すくなることを示している。一方、本発明手法で設計し
た金型では流速増加がないため金線Bでも不良の発生は
ない。
This corresponds to the increase in flow velocity in FIG. 12, and shows that as the flow velocity increases, the gold wire with a small diameter and low rigidity becomes more easily deformed. On the other hand, in the mold designed by the method of the present invention, there is no increase in flow velocity, so no defects occur even in the gold wire B.

表2に成形品の外観不良の発生率の比較を示す。Table 2 shows a comparison of the incidence of appearance defects of molded products.

表   2 tpが18sの条件ではどちらの手法でも不良の発生は
ないが、tpが30sになると従来手法で計算した金型
では不良発生率100%となった。
Table 2 When tp is 18s, no defects occur with either method, but when tp becomes 30s, the defect rate becomes 100% for the mold calculated using the conventional method.

これは、この条件になると第11図に示したゲートの滞
留時間が非常に長くなり、キャビティ内に十分に圧力が
加わらないまま樹脂が硬化してしまうためである。一方
、ゲート滞留の殆どない本発明による金型ではこの条件
でも不良の発生はない。
This is because under these conditions, the residence time of the gate shown in FIG. 11 becomes extremely long, and the resin hardens without sufficient pressure being applied inside the cavity. On the other hand, in the mold according to the present invention, which has almost no gate retention, no defects occur even under these conditions.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、量産金型の最適流路諸元の設計や最適
成形条件の選定を机上で迅速、かつ、高精度に行えるの
で、試作工程の廃止による新製品開発期間の短縮、成形
欠陥低減、金線の細径化の実施などによる原価低減など
の効果が非常に大きい。
According to the present invention, it is possible to quickly and accurately design optimal flow path specifications for mass-produced molds and select optimal molding conditions on a desk, thereby shortening the new product development period by abolishing the prototyping process and reducing molding defects. The effect of reducing costs by reducing the diameter of the gold wire and reducing the diameter of the gold wire is very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の解析システムの構成図、第2図は本発
明の一実施例に用いる等温粘度式モデルの特性図、第3
図は非等温状態での粘度変化を算出するための説明図、
第4図は流動シミュレーションの概略フローチャート、
第5図は平均見掛は粘度ηaの測定値と計算値の比較図
、第6−u〜6−d図は半導体の樹脂封止プロセスの説
明図。 第7−oL〜7−b図は、流路内の圧力損失を算出する
ための説明図、第8図はキャビティ多数ケ取り金型のラ
ンナ、ゲート設計用フローチャート、第9−α〜9−c
図は金型のランナ、ゲート構造を示す図、第10−〇、
10−b図は従来手法でのキャビティ内の樹脂充填状況
を示す図、第11−a、11−b図は本発明による手法
でのキャビティ内の樹脂充填状況を示す図、第12図は
キャビティ内レシン最大流速と樹脂滞留滞留時間の比較
図、第13図は金線変形不良発生率の比較図。 4・・・下型、5・・・キャビティ、6・・・上型、7
・・・熱硬化性樹脂、8・・・ポット、11・・・ラン
ナ、12・・・ゲート。 第1 爾
Figure 1 is a configuration diagram of the analysis system of the present invention, Figure 2 is a characteristic diagram of the isothermal viscosity model used in an embodiment of the present invention, and Figure 3
The figure is an explanatory diagram for calculating viscosity change in a non-isothermal state,
Figure 4 is a schematic flowchart of flow simulation.
FIG. 5 is a comparison diagram of the measured value and calculated value of the average apparent viscosity ηa, and FIGS. 6-u to 6-d are explanatory diagrams of the semiconductor resin encapsulation process. Figures 7-oL to 7-b are explanatory diagrams for calculating the pressure loss in the flow path, Figure 8 is a flowchart for designing the runner and gate of a multi-cavity mold, and Figures 9-α to 9- c.
The figure shows the mold runner and gate structure, No. 10-0,
Figure 10-b is a diagram showing the resin filling situation in the cavity using the conventional method, Figures 11-a and 11-b are diagrams showing the resin filling situation in the cavity using the method according to the present invention, and Figure 12 is a diagram showing the resin filling situation in the cavity using the method according to the present invention. Fig. 13 is a comparison diagram of the inner resin maximum flow rate and resin retention residence time, and Fig. 13 is a comparison diagram of the incidence of gold wire deformation defects. 4...Lower mold, 5...Cavity, 6...Upper mold, 7
...Thermosetting resin, 8...Pot, 11...Runner, 12...Gate. 1st er

Claims (1)

【特許請求の範囲】 1、ポットとこれに接続した流路を設けた金型の設計に
おいて、予め設定した流路諸元から流路体積V_fを算
出し、該ポット内に投入した熱硬化性樹脂を該流路内に
注入するためのプランジャの樹脂注入時間t_pを設定
し、ポットから該流路へ注入される樹脂流量Q_pをQ
_p=V_f/t_pで計算しておき、該流路の分岐数
に応じてQ_pを分配し、該流路の任意箇所の流量Q_
nを算出しておくとともに、該流路を樹脂の流動方向に
垂直な任意断面で複数の区間に分割し、各区間において
、流路幅、深さ、断面形状と長さから決まる流路の形状
抵抗値β_nを算出するとともに、該各区間を流動方向
に沿って円管形状に置き換え、該円管内において、与え
られた初期、境界条件の元に樹脂の粘度変化輸送現象を
記述する基礎方程式を解き、該円管各部の樹脂の温度T
、粘度η、流速υなどの値、ならびに平均見掛け粘度η
_α_nを算出し、各区間で生じる圧力損失ΔP_nを
ΔP_n=βn@η@_α_nQ_nで計算し、ΔP_
nを累積して総合圧力損失ΔP_Tを求めることを特徴
とする金型内の圧力損失予測方法。 2、請求項1記載において、比較用に予め設定した圧力
損失ΔP_Sと計算で求めた該総合圧力損失ΔP_Tを
比較し、ΔP_S≦ΔP_Tとなったときに、該流路諸
元、該プランジャの注入時間、該金型の温度、該樹脂の
予熱温度のうち、少なくとも一条件の値を変えて再入力
してそのときのΔP_Tを求め、逐次条件変更を行いΔ
P_S>ΔP_Tを満足する範囲内で流路諸元と成形条
件を決定する金型流路設計方法。 3、請求項1若しくは2記載において、ΔP_S>ΔP
_Tを満足し、かつ、該各区間で置き換えた該円管内の
半径方向の所定位置において、下流側の樹脂粘度が上流
側よりも上昇しないことを満足する範囲内で流路諸元と
成形条件を決定する金型流路設計方法。 4、請求項1記載において、金型は該ポットに接続した
ランナにゲートを介して分岐接続されたキャビティを複
数上記ランナに沿って配設した構造で、該各区間の接合
面の数は少なくとも流路の分岐数と同じにし、該各キャ
ビティに同流量を分配することを前提にして、該ランナ
および該ゲートにおける圧力損失の合計が各々のキャビ
ティに対して一定になるように各キャビティ毎にゲート
諸元を変えることを特徴とする金型流路設計方法。
[Claims] 1. In designing a mold with a pot and a flow path connected to the pot, the flow path volume V_f is calculated from the flow path specifications set in advance, and the thermosetting resin poured into the pot is calculated from the flow path specifications set in advance. Set the resin injection time t_p of the plunger for injecting the resin into the flow path, and set the resin flow rate Q_p injected from the pot into the flow path as Q.
_p=V_f/t_p is calculated, Q_p is distributed according to the number of branches of the flow path, and the flow rate Q_ of any part of the flow path is calculated.
In addition to calculating n, the flow path is divided into multiple sections with an arbitrary cross section perpendicular to the resin flow direction, and in each section, the flow path width, depth, cross-sectional shape, and length are determined. Basic equations that calculate the shape resistance value β_n, replace each section with a circular tube shape along the flow direction, and describe the viscosity change transport phenomenon of the resin under the given initial and boundary conditions within the circular tube. Solve and calculate the temperature T of the resin in each part of the circular tube.
, viscosity η, flow velocity υ, etc., as well as the average apparent viscosity η
_α_n is calculated, and the pressure loss ΔP_n occurring in each section is calculated as ΔP_n=βn@η@_α_nQ_n, and ΔP_
A method for predicting pressure loss in a mold, characterized in that a total pressure loss ΔP_T is obtained by accumulating n. 2. In claim 1, the pressure loss ΔP_S preset for comparison is compared with the calculated total pressure loss ΔP_T, and when ΔP_S≦ΔP_T, the flow path specifications and the injection of the plunger are determined. Change the value of at least one condition among the time, the temperature of the mold, and the preheating temperature of the resin and re-enter it to find the ΔP_T at that time, change the conditions one by one, and ΔP_T.
A mold flow path design method that determines flow path specifications and molding conditions within a range that satisfies P_S>ΔP_T. 3. In claim 1 or 2, ΔP_S>ΔP
The channel specifications and molding conditions are within the range that satisfies _T and that the resin viscosity on the downstream side does not increase more than the upstream side at a predetermined position in the radial direction within the circular pipe replaced in each section. Mold flow path design method to determine. 4. In claim 1, the mold has a structure in which a plurality of cavities branch-connected to the runner connected to the pot via gates are arranged along the runner, and the number of joint surfaces in each section is at least Assuming that the number of branches is the same as that of the flow path and that the same flow rate is distributed to each cavity, for each cavity so that the total pressure loss in the runner and the gate is constant for each cavity. A mold flow path design method characterized by changing gate specifications.
JP63272966A 1988-10-31 1988-10-31 Prediction method of pressure loss in mold and mold flow path design method using the same Expired - Fee Related JP2771196B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63272966A JP2771196B2 (en) 1988-10-31 1988-10-31 Prediction method of pressure loss in mold and mold flow path design method using the same
KR1019890015521A KR920004583B1 (en) 1988-10-31 1989-10-27 Method and apparatus for measuring flow and curing characteristices of resin
DE68925343T DE68925343T2 (en) 1988-10-31 1989-10-31 Device for measuring the flow and crosslinking properties of a resin.
US07/429,471 US5125821A (en) 1988-10-31 1989-10-31 Resin flow and curing measuring device
EP89120184A EP0367218B1 (en) 1988-10-31 1989-10-31 A resin flow and curing measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272966A JP2771196B2 (en) 1988-10-31 1988-10-31 Prediction method of pressure loss in mold and mold flow path design method using the same

Publications (2)

Publication Number Publication Date
JPH02120643A true JPH02120643A (en) 1990-05-08
JP2771196B2 JP2771196B2 (en) 1998-07-02

Family

ID=17521273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272966A Expired - Fee Related JP2771196B2 (en) 1988-10-31 1988-10-31 Prediction method of pressure loss in mold and mold flow path design method using the same

Country Status (1)

Country Link
JP (1) JP2771196B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047870A (en) * 2005-08-05 2007-02-22 Fuji Heavy Ind Ltd Component model generating device and component model generating method
JP2008230089A (en) * 2007-03-22 2008-10-02 Hitachi Ltd Design supporting device for resin molding, supporting method and supporting program
JP2013105259A (en) * 2011-11-11 2013-05-30 Toyo Tire & Rubber Co Ltd Device for designing cross-sectional shape of channel, and method and program therefor
JP2015066873A (en) * 2013-09-30 2015-04-13 本田技研工業株式会社 Computer-aided metallic mold design device
CN105243229A (en) * 2015-10-30 2016-01-13 鹿晓阳 Establishment method for internal pressure distribution model of 90-degree curved pipe for ethylene gas transmission
CN105243228A (en) * 2015-10-30 2016-01-13 鹿晓阳 Establishment method for internal pressure distribution model of 90-degree curved pipe for crude oil transmission
CN113076703A (en) * 2021-03-02 2021-07-06 浙江博汇汽车部件有限公司 Hot stamping die water channel flow velocity analysis method based on database

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047870A (en) * 2005-08-05 2007-02-22 Fuji Heavy Ind Ltd Component model generating device and component model generating method
JP2008230089A (en) * 2007-03-22 2008-10-02 Hitachi Ltd Design supporting device for resin molding, supporting method and supporting program
JP2013105259A (en) * 2011-11-11 2013-05-30 Toyo Tire & Rubber Co Ltd Device for designing cross-sectional shape of channel, and method and program therefor
JP2015066873A (en) * 2013-09-30 2015-04-13 本田技研工業株式会社 Computer-aided metallic mold design device
CN105243229A (en) * 2015-10-30 2016-01-13 鹿晓阳 Establishment method for internal pressure distribution model of 90-degree curved pipe for ethylene gas transmission
CN105243228A (en) * 2015-10-30 2016-01-13 鹿晓阳 Establishment method for internal pressure distribution model of 90-degree curved pipe for crude oil transmission
CN113076703A (en) * 2021-03-02 2021-07-06 浙江博汇汽车部件有限公司 Hot stamping die water channel flow velocity analysis method based on database

Also Published As

Publication number Publication date
JP2771196B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
Wang et al. Molding simulation: Theory and practice
Lord et al. Mold‐filling studies for the injection molding of thermoplastic materials. Part II: The transient flow of plastic materials in the cavities of injection‐molding dies
JP4820318B2 (en) Resin molded product design support apparatus, support method, and support program
JPH02120643A (en) Method for estimating pressure loss in die and method for planning die flow passage using such method
Hong et al. Correlation between thermal contact resistance and filling behavior of a polymer melt into multiscale cavities in injection molding
US5125821A (en) Resin flow and curing measuring device
Nguyen Reactive flow simulation in transfer molding of IC packages
Chen et al. Simulations of primary and secondary gas penetration for a gas‐assisted injection‐molded thin part with gas channel
Wang et al. The effect of polymer melt rheology on predicted die swell and fiber orientation in fused filament fabrication nozzle flow
CN109624150B (en) Design and optimization method of rubber injection cold runner
CN105269763A (en) Ceramic injection mould optimal design method and ceramic injection mould
US10960592B2 (en) Computer-implemented simulation method for injection-molding process
JP3618452B2 (en) Setting method of injection speed profile in injection molding machine
Saifullah et al. Optimum cooling channels design and Thermal analysis of an Injection moulded plastic part mould
JPH02120642A (en) Method and apparatus for measuring flow and curing characteristics of resin
JP2998596B2 (en) Fluid flow process analysis device, analysis method, injection molding process analysis device, analysis method, injection molded product, and method for manufacturing injection molded product
EP3867037A1 (en) Method for predicting a polymer&#39;s pressure, flow rate, and temperature relationship while flowing within an injection mold
JP2001246655A (en) Method and apparatus for estimating behavior during injection molding and mold design method
Mitani et al. A flow simulation for the epoxy casting process using a 3D finite‐element method
Kim et al. Filling behavior of polymer melt in micro injection molding for v-grooves pattern
JP3582930B2 (en) Manufacturing method for injection molded products
Cook et al. Prediction of flow imbalance in geometrically balanced feed systems
JPH08230007A (en) Method and device for simulation of injection molding process
Moammer Thermal management of moulds and dies: a contribution to improved design and manufacture of tooling for injection moulding
JPH03238837A (en) Method of predicting resin fluidity within cavity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees