JPS60138434A - Manufacture of semiconductor electrostatic capacity type pressure sensor - Google Patents

Manufacture of semiconductor electrostatic capacity type pressure sensor

Info

Publication number
JPS60138434A
JPS60138434A JP24478383A JP24478383A JPS60138434A JP S60138434 A JPS60138434 A JP S60138434A JP 24478383 A JP24478383 A JP 24478383A JP 24478383 A JP24478383 A JP 24478383A JP S60138434 A JPS60138434 A JP S60138434A
Authority
JP
Japan
Prior art keywords
layer
low resistance
forming
insulating layer
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24478383A
Other languages
Japanese (ja)
Other versions
JPH0380254B2 (en
Inventor
Kimihiro Nakamura
公弘 中村
Mitsuru Tamai
満 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24478383A priority Critical patent/JPS60138434A/en
Priority to DE19843445774 priority patent/DE3445774A1/en
Publication of JPS60138434A publication Critical patent/JPS60138434A/en
Publication of JPH0380254B2 publication Critical patent/JPH0380254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To improve a temperature characteristic by a difference of a coefficient of thermal expansion, and also to prevent the breakdown of an electrode part at the time of forming a cavity by forming the electrode part for forming a capacitance together with a diaphragm part, by a P<+> low resistance Si layer. CONSTITUTION:A P<+> layer 7 is formed to a thickness of a diaphragm on an Si single crystal substrate 8, and thereafter, an epitaxial layer 5 is grown to a thickness corresponding to an air-gap of a capacitance. Subsequently, a low resistance buried layer 6 is formed, and insulating layers 2, 9 are formed. Also, an opening is formed in the insulating layer 2 in order to make an Si electrode lead 15, and thereafter, a P<+> low resistance Si layer 13 is formed, and an opening 3 is made so as to pass through this layer 13 and the insulating layer 2. Thereafter, metallic layers 1, 14 are formed, and a surface stabilizing layer 10 is formed on a diaphragm part 11.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、測定すべき圧力変化を静電容量的に検出す
る半導体センサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a semiconductor sensor that capacitively detects a pressure change to be measured.

〔従来技術とその問題点〕[Prior art and its problems]

第1図はかかるセンサの従来例を示す断面図、第2図は
ダイアフラム部の形成方法を説明するための説明図であ
る。第1図において、1は金属層、2.9は絶縁層、3
は開口、4は金属電極リード、5はSiエピタキシャル
層、6は低抵抗埋込み層、7はP 層、8はSi単結晶
基板、10社表面安定化層、11はダイアプラム部、1
2は空洞である。
FIG. 1 is a sectional view showing a conventional example of such a sensor, and FIG. 2 is an explanatory view for explaining a method of forming a diaphragm portion. In FIG. 1, 1 is a metal layer, 2.9 is an insulating layer, and 3
4 is an opening, 4 is a metal electrode lead, 5 is a Si epitaxial layer, 6 is a low resistance buried layer, 7 is a P layer, 8 is a Si single crystal substrate, 10 is a surface stabilization layer, 11 is a diaphragm part, 1
2 is hollow.

S1単結晶基板8は主表面が(100)面であり、これ
にP 拡散層(10ml当たりの濃度が10M′程度)
7が形成され曵いて、ダイアフラム部11および空洞1
2を形成する際のストップ層となる。基板8の一方の面
には窒化シリコン(SiaN4)等の絶線層9が形、成
され、この絶縁層9と基板8の薄肉部との表面には、ガ
ラス等の表面安定化層10が形成される。基板8の他面
にはエピタキシャル層5が形成され、その一部はくりぬ
かれて空洞になっており、さらに他の部分には、Pl−
拡散層7と金属電極部4との接触を図るための低抵抗埋
込み層6が形成されている。また、Siエピタキシャル
層5の上には、絶縁層9と同様にSi3N4等よりなる
絶縁層2が形成され、さらにその上には金属層1が形成
される。こ5して、金属層1とダイアフラム部11との
間にキャパシタンスが形成すれ、測定圧力にてダイアプ
ラム部11が変位すると、これに応じ又キャパシタンス
が変化するので、圧力を容量の変化として測定すること
ができる。
The main surface of the S1 single crystal substrate 8 is a (100) plane, and a P diffusion layer (concentration of about 10M' per 10ml) is formed on this.
7 is formed and drawn, the diaphragm part 11 and the cavity 1
It becomes a stop layer when forming 2. An insulating layer 9 made of silicon nitride (SiaN4) or the like is formed on one surface of the substrate 8, and a surface stabilizing layer 10 made of glass or the like is formed on the surface between this insulating layer 9 and the thin part of the substrate 8. It is formed. An epitaxial layer 5 is formed on the other surface of the substrate 8, a part of which is hollowed out, and a Pl-
A low resistance buried layer 6 is formed to establish contact between the diffusion layer 7 and the metal electrode portion 4. Further, on the Si epitaxial layer 5, an insulating layer 2 made of Si3N4 or the like is formed similarly to the insulating layer 9, and a metal layer 1 is further formed thereon. As a result, capacitance is formed between the metal layer 1 and the diaphragm part 11, and when the diaphragm part 11 is displaced by the measurement pressure, the capacitance changes accordingly, so the pressure is measured as a change in capacitance. be able to.

こ〜で、金属層1と絶縁層2とを貫通する開口6は、ア
ルカリ系の異方性エツチングによって空洞12を形成す
るときに、エツチング液を供給するためのものとして形
成される。つまり、開口6を通してSiエピタキシャル
層5の異方性エツチング(KOII系やエチレンジアミ
ン・ピロカテコール系等が使用ぎれる。)を行なうと、
先ず開口6付近からエツチングが始まり、徐々にエツチ
ングが進む。そして、第2図に示されるよプに、幾何学
的形状によって決まる(111)面が表われると、そこ
でエツチングは殆んど進行しなくなる。
Here, the opening 6 penetrating the metal layer 1 and the insulating layer 2 is formed to supply an etching solution when the cavity 12 is formed by alkaline anisotropic etching. In other words, if anisotropic etching (KOII-based, ethylenediamine-pyrocatechol-based, etc.) is performed on the Si epitaxial layer 5 through the opening 6,
First, etching begins near the opening 6 and gradually progresses. When a (111) plane determined by the geometric shape appears as shown in FIG. 2, etching hardly progresses there.

これは、異方性エツチング液が(111)面を侵し難い
からであり、したがって、エピタキシャル層5に現われ
る、エツチングされた面は(111)面と等価な面とな
る。このように、第2図にオdける横方向のエツチング
は(111)面によって抑制されるのに対し、縦方向は
横方向のエツチングが抑制された後も進行するが、最後
的にはP+層7によって抑制される。Si単結晶基板8
のエツチングもこれと同様にして行なわれ、その結果、
Si単結晶基板8に表われる面は(111)面と等価で
あり、これによってエツチングの進行が制限される。な
お、ダイアフラム部11の形状は、開口5と絶縁層9の
開口との形状によって決まる。
This is because the anisotropic etching solution hardly attacks the (111) plane, and therefore the etched plane appearing in the epitaxial layer 5 is a plane equivalent to the (111) plane. In this way, while the horizontal etching shown in FIG. 2 is suppressed by the (111) plane, the vertical etching continues even after the horizontal etching has been suppressed, but eventually P+ suppressed by layer 7. Si single crystal substrate 8
Etching is done in the same way, and as a result,
The plane appearing on the Si single crystal substrate 8 is equivalent to the (111) plane, which limits the progress of etching. Note that the shape of the diaphragm portion 11 is determined by the shapes of the opening 5 and the opening of the insulating layer 9.

しかしながら、かかる構造のセンナには、次のような欠
点がある。すなわち、上述の如く、異方性化学エツチン
グ液を用いて空洞12を形成する際、発泡を伴う反応が
生じて金属層1および絶縁層2の一方または双方が破壊
されたり、製造過程の取り扱い中に破壊されるため、歩
留まりが悪くなるという点である。その原因は、金属層
1および絶縁層2の厚さが1〜2μm程度に非常に薄い
ためである。このよ5な欠点を除去すべく絶縁層2を厚
くすると、測定容量に対する直列誤差分が増加するため
、測定誤差が犠牲となる一方、金属層1を厚(すれば、
金属層1.絶縁層2およびSiエピタキシャル層5間の
熱膨張係数の差のために、温度変化によって絶縁層2に
割れが生じたり、各層間の熱応力によってダイアフラム
部の圧力−変位特性が大きく変化するという問題が生じ
る。
However, the senna having such a structure has the following drawbacks. That is, as described above, when forming the cavity 12 using an anisotropic chemical etching solution, a reaction accompanied by foaming may occur and one or both of the metal layer 1 and the insulating layer 2 may be destroyed, or during handling during the manufacturing process. The problem is that the yield rate deteriorates because the parts are destroyed. The reason for this is that the metal layer 1 and the insulating layer 2 have very thin thicknesses of about 1 to 2 μm. If the insulating layer 2 is made thicker in order to eliminate these five defects, the series error with respect to the measurement capacitance will increase, so the measurement error will be sacrificed.
Metal layer 1. Due to the difference in thermal expansion coefficient between the insulating layer 2 and the Si epitaxial layer 5, cracks may occur in the insulating layer 2 due to temperature changes, and the pressure-displacement characteristics of the diaphragm portion may change significantly due to thermal stress between each layer. occurs.

〔発明の目的〕[Purpose of the invention]

この発明はこのような事情のもとになされたもので、歩
留まりが良好で、かつ温度特性の優れた半導体形静電容
量式圧力センサの製造方法を提供することを目的とする
The present invention was made under these circumstances, and an object of the present invention is to provide a method for manufacturing a semiconductor capacitive pressure sensor that has a good yield and excellent temperature characteristics.

〔発明の要点〕[Key points of the invention]

その要点は、ダイアフラム部とともにキャパシタンスを
形成する電極部をP 低抵抗Si層により形成すること
により、熱膨張係数の差による温度特性を改善するとと
もに、空洞形成時のアルカリ系異方性化学エツチングに
伴う発泡作用や製造過程の取り扱いによる電極部の破壊
を防いで歩留まりの向上を図るようにしたものである。
The key point is that by forming the electrode part that forms capacitance together with the diaphragm part from a P low-resistance Si layer, the temperature characteristics due to the difference in thermal expansion coefficients are improved, and the alkaline anisotropic chemical etching during cavity formation is improved. This is intended to improve yield by preventing destruction of the electrode portion due to accompanying foaming action and handling during the manufacturing process.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の詳細な説明するためのセンサ断面図
である。同図において、13はP 低抵抗Si電極層、
14は電極層、15はSi電極リードであり、その他は
第1図と同様である。
FIG. 3 is a sectional view of a sensor for explaining the present invention in detail. In the same figure, 13 is a P low resistance Si electrode layer;
14 is an electrode layer, 15 is a Si electrode lead, and the other parts are the same as in FIG.

以下、同図を参照してこの発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the same figure.

表面の結晶学的方向が(100)面であるNまたは1厘
の81単結晶基板8に、良く知られ又いるイオン打ち込
み法や熱拡散法等によってP 層(102°Cm−”程
度)7をダイアフラムの厚さにした後、CVD(Che
mical Vapor DeposH4on ;化学
反応を利用した薄膜の形成方法)法等によってエピタキ
シャル層5をキャパシタンスの空隙に相肖スる厚さまで
成長させる。なお、この層は、低抵抗とはせずにアルカ
リ系異方性化学エツチングを受け易くしてお(ものとす
る。次に、P+層7と導通を図るべく、低抵抗埋込み層
6を作る。こうして作られた集積体を挾むように、S 
hN4. Si 02(酸化シリコン)等の絶縁層2,
9を0.5〜1μm程度形成する。Si電極リード15
を作るために絶縁層に所定の開口を形成した後、P+低
抵抗Si層(10”cm−38度)13を数十μm形成
し、低抵抗Si電極層16と絶縁層2を貫通するよ5に
開口6をあける。この場合、P+低抵抗M16を数十μ
mの厚さにし得るのは、熱膨張係数が互いに殆んど同じ
だからである。なお、低抵抗Si電極層13の開口には
、HF−H,NOa系のエツチング液が用いられる。ま
た、このとき、ダイアフラム部を形成するために、絶縁
N9を残すように、エツチングが行なわれる。しかる後
、これをK OH系ヤエチレンジアミンとピ四カテコー
ル系の異方性エツチング液に浸すと、抵抗の高いSi層
(ここでは、エピタキシャル層5と単結晶基板8)のみ
がエツチング除去される。つまり、この異方性エツチン
グ液は、P 層を殆んどエツチングしない性質があるた
め、充分な時間が経過すれば、第3図の如く、を層を残
してダイアフラムが形成される。その後、金線やアルミ
ニウム線をボンディングするための金属層1および14
をスパッタリング等によって形成する一方、ダイアプラ
ム部11には表面安定化層10を形成して、一連の工程
を終了する。
A P layer (approximately 102°Cm-'') 7 is formed on a N or 100cm 81 single crystal substrate 8 whose surface crystallographic direction is the (100) plane by well-known ion implantation, thermal diffusion, etc. After making the thickness of the diaphragm, CVD (Che
The epitaxial layer 5 is grown to a thickness compatible with the capacitance gap by a method such as a method of forming a thin film using a chemical reaction. Note that this layer is not made to have low resistance, but is made to be easily susceptible to alkaline anisotropic chemical etching.Next, a low resistance buried layer 6 is formed in order to establish electrical conduction with the P+ layer 7. .S sandwiching the aggregate made in this way.
hN4. Insulating layer 2 such as Si02 (silicon oxide),
9 with a thickness of about 0.5 to 1 μm. Si electrode lead 15
After forming a predetermined opening in the insulating layer in order to make a Open an opening 6 in 5. In this case, connect P + low resistance M16 to several tens of microns.
The reason why the thickness can be set to m is because the coefficients of thermal expansion are almost the same. Note that an HF-H, NOa-based etching solution is used for the opening of the low-resistance Si electrode layer 13. Further, at this time, etching is performed so as to leave the insulation N9 in order to form a diaphragm portion. Thereafter, when this is immersed in an anisotropic etching solution of KOH-based yaethylenediamine and pi-tetracatechol-based etching solution, only the high-resistance Si layer (in this case, epitaxial layer 5 and single crystal substrate 8) is etched away. In other words, since this anisotropic etching liquid has the property of hardly etching the P layer, if a sufficient amount of time passes, a diaphragm is formed leaving the P layer as shown in FIG. After that, metal layers 1 and 14 for bonding gold wires and aluminum wires.
is formed by sputtering or the like, and a surface stabilizing layer 10 is formed on the diaphragm portion 11 to complete the series of steps.

第4図はこの発明の他の実施例を説明するためのセンサ
断面図である。これは、第6図における金属層1と14
のストレイ容量の特性改善を図るべく、上述の如き低抵
抗埋込み層を省略し、電極部4をP 層7に直接形成す
るようにしたもので、その他は第6図と同様である。
FIG. 4 is a sectional view of a sensor for explaining another embodiment of the invention. This corresponds to metal layers 1 and 14 in FIG.
In order to improve the characteristics of stray capacitance, the low-resistance buried layer as described above is omitted, and the electrode portion 4 is formed directly on the P layer 7, but the other features are the same as in FIG.

第5図はこの発明のさらに別の実施例を説明するための
センサ断面図である。
FIG. 5 is a sectional view of a sensor for explaining still another embodiment of the present invention.

すなわち、以上の実施例では、P+層をイオン打ち込み
や熱拡散等の方法により形成するよ5にしたが、この実
施例は該P 層7をSi単結晶基板8の全面にわたりC
VD法等によりエピタキシャル成長させた場合であり、
こうすることにより、ダイアフラムの厚さケ従来よりも
一層正確に制御することができるようにしたものである
。なお、その他の点は、第6,4図と同様である。
That is, in the above embodiment, the P+ layer 7 was formed by a method such as ion implantation or thermal diffusion 5, but in this embodiment, the P+ layer 7 was formed by C over the entire surface of the Si single crystal substrate 8.
This is a case of epitaxial growth using VD method etc.
By doing this, the thickness of the diaphragm can be controlled more accurately than in the past. Note that other points are the same as in FIGS. 6 and 4.

以上の実施例では、電極間ギャップ(空洞12)の形成
とダイアフラム部11の形成とをアルカリ系異方性化学
エツチングにて同時に行なうよ5にしているが、Si単
結晶基板8にP 層7を拡散またはエピタキシャル法に
よって形成し、他の異方性または等方性化学エツチング
にて所望形状のダイアフラム部を形成し、その後に、S
iエピタキシャル層5、絶縁層2の成長等を上述の如く
進めるよ5にし又も良いものである。なお、この場合、
Si単結晶基板8上の絶縁層9と安定化膜10は無くて
も差しつかえない。
In the above embodiment, the formation of the interelectrode gap (cavity 12) and the formation of the diaphragm portion 11 are performed simultaneously by alkaline anisotropic chemical etching. is formed by a diffusion or epitaxial method, a diaphragm portion having a desired shape is formed by other anisotropic or isotropic chemical etching, and then S
It is also preferable to proceed with the growth of the epitaxial layer 5, the insulating layer 2, etc. as described above. In this case,
The insulating layer 9 and stabilizing film 10 on the Si single crystal substrate 8 may be omitted.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、金属電極層のかわりにSlのP+低
抵抗層を所定厚さく数十μm)に形成するようにした瓦
め、従来のものに比べて電極部の強度が上がり、その結
果、前述の如き発泡現象に伴う破壊が防止され、歩留ま
りが向上するばかりでなく、その取り扱いが容易に1よ
るという効果がもたらされるものである。また、電極部
にSiの低抵抗層を用いているので、金属電極と比べて
熱膨張差によって生じる温度特性の劣化が防止される利
点を有するものである。
According to this invention, a tile structure in which a P+ low resistance layer of Sl is formed to a predetermined thickness (several tens of μm) instead of a metal electrode layer, the strength of the electrode part is increased compared to the conventional one, and as a result, This not only prevents the destruction caused by the foaming phenomenon described above and improves the yield, but also makes it easier to handle. Furthermore, since a low resistance layer of Si is used for the electrode portion, it has the advantage that deterioration of temperature characteristics caused by differences in thermal expansion is prevented compared to metal electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体形静電容量式圧力センザの従来例を示す
構成図、第2図はダイアフラム部の形成方法を説明する
ための説明図、第6図はこの発明の詳細な説明するため
のセンサ断面図、第4図はこの発明の他の実施例を説明
するためのセンサ断面図、第5図はこの発明のさらに他
の実施例を説明するためのセンサ断面図である。 符号説明 1.14・・・・・・金属層、2,9・・・・・・絶縁
層、6・・・・・・開口、4・・・・・・金属電極リー
ド、5・・・・・・Siエピタキシャル層、6・・・・
・・低抵抗埋込層、7・・・・・・P+層、8・・・・
・・Si単結晶基板、10・・・・・・表面安定化膜、
11・・・・・・タ゛イアフラム部、12・・・・・・
空洞、13・・・・・・Si低抵抗電極層、15・・・
・・・Si電極リード代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎 溝 築1図 第 2 図
FIG. 1 is a configuration diagram showing a conventional example of a semiconductor capacitive pressure sensor, FIG. 2 is an explanatory diagram for explaining a method of forming a diaphragm part, and FIG. 6 is a diagram for explaining a detailed explanation of the present invention. FIG. 4 is a sectional view of the sensor for explaining another embodiment of the present invention, and FIG. 5 is a sectional view of the sensor for explaining still another embodiment of the present invention. Description of symbols 1.14...Metal layer, 2,9...Insulating layer, 6...Opening, 4...Metal electrode lead, 5... ...Si epitaxial layer, 6...
...Low resistance buried layer, 7...P+ layer, 8...
...Si single crystal substrate, 10...surface stabilization film,
11...Tire diaphragm section, 12...
Cavity, 13... Si low resistance electrode layer, 15...
...Si electrode lead representative Patent attorney Akio Namiki Patent attorney Mitsuzuki Matsuzaki Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)St単結晶基板上にP+拡散層を形成した上に所定
厚さの81工ピタキシヤル層を形成し、該エピタキシャ
ル層の一部に前記P+拡散層とつながる低抵抗埋込み層
を形成する一方、該エピタキシャル層上およびこれと反
対側のSi基板面上にそれぞれ絶縁層を形成するととも
に、該エピタキシャル層上に形成された絶縁層上にはP
+低抵抗Si層および金属層を順次形成した後、該金属
/it、P+低抵抗Si層および絶縁層を貫通する開口
とこれと対応するSi基板の反対側に形成された絶縁層
の開口とを形成し、しかる後これらの開口を通してエツ
チングを行な5ことによりダイアプラム部を形成し、該
ダイアプラム部と前記P+低抵抗Si層との間に測定用
キャパシタンスを形成する半導体形静電容量式圧センサ
の製造方法。 2、特許請求の範囲第1項に記載の方法におい又、前記
P+拡散層をP+エピタキシャル層とする半導体形静電
容量式圧力センサの製造方法。
[Claims] 1) A P+ diffusion layer is formed on a St single crystal substrate, an 81-layer epitaxial layer is formed with a predetermined thickness, and a low resistance embedding is provided in a part of the epitaxial layer to connect to the P+ diffusion layer. While forming a layer, an insulating layer is formed on the epitaxial layer and on the opposite side of the Si substrate, and a P layer is formed on the insulating layer formed on the epitaxial layer.
+ After sequentially forming the low resistance Si layer and the metal layer, an opening penetrating the metal/it, P + the low resistance Si layer and the insulating layer, and a corresponding opening in the insulating layer formed on the opposite side of the Si substrate. and then etching through these openings 5 to form a diaphragm section, and form a semiconductor capacitive capacitance for forming a measurement capacitance between the diaphragm section and the P+ low resistance Si layer. How to manufacture the sensor. 2. A method for manufacturing a semiconductor capacitive pressure sensor according to claim 1, wherein the P+ diffusion layer is a P+ epitaxial layer.
JP24478383A 1983-12-27 1983-12-27 Manufacture of semiconductor electrostatic capacity type pressure sensor Granted JPS60138434A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24478383A JPS60138434A (en) 1983-12-27 1983-12-27 Manufacture of semiconductor electrostatic capacity type pressure sensor
DE19843445774 DE3445774A1 (en) 1983-12-27 1984-12-12 Method for fabricating a capacitive semiconductor pressure pick-up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24478383A JPS60138434A (en) 1983-12-27 1983-12-27 Manufacture of semiconductor electrostatic capacity type pressure sensor

Publications (2)

Publication Number Publication Date
JPS60138434A true JPS60138434A (en) 1985-07-23
JPH0380254B2 JPH0380254B2 (en) 1991-12-24

Family

ID=17123853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24478383A Granted JPS60138434A (en) 1983-12-27 1983-12-27 Manufacture of semiconductor electrostatic capacity type pressure sensor

Country Status (2)

Country Link
JP (1) JPS60138434A (en)
DE (1) DE3445774A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263828A (en) * 1985-09-06 1987-03-20 Yokogawa Electric Corp Vibration type transducer and its manufacture
JPS6430423U (en) * 1987-08-17 1989-02-23
US6941812B2 (en) 2002-08-20 2005-09-13 Nagano Keiki Co., Ltd. Converter and method of manufacturing the same
WO2009001488A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Diaphragm structure and acoustic sensor
US8166827B2 (en) 2008-09-10 2012-05-01 Panasonic Corporation MEMS device and method for manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872945A (en) * 1986-06-25 1989-10-10 Motorola Inc. Post seal etching of transducer diaphragm
JPH0750789B2 (en) * 1986-07-18 1995-05-31 日産自動車株式会社 Method for manufacturing semiconductor pressure converter
DE4106933B4 (en) * 1991-03-05 2004-12-16 Robert Bosch Gmbh patterning methods
DE59508560D1 (en) * 1994-11-24 2000-08-17 Siemens Ag Capacitive pressure sensor
DE4441903C1 (en) * 1994-11-24 1996-03-21 Siemens Ag Micromechanical capacitive pressure sensor
EP0758080B1 (en) * 1995-08-09 1998-09-30 Siemens Aktiengesellschaft Micromechanical device with stress-free perforated diaphragm
US5888845A (en) * 1996-05-02 1999-03-30 National Semiconductor Corporation Method of making high sensitivity micro-machined pressure sensors and acoustic transducers
EP0979992B1 (en) * 1998-08-11 2003-10-08 Infineon Technologies AG Method of Manufacturing a Micromechanical Sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516228A (en) * 1978-07-21 1980-02-04 Hitachi Ltd Capacity type sensor
JPS5764978A (en) * 1980-10-03 1982-04-20 Ibm Capacitive pressure transducer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2856708A1 (en) * 1978-12-29 1980-07-10 Siemens Ag Pressure measurement transducer - has membrane carrying strain gauges used as parallel resistive paths with curved connecting end sections
US4261086A (en) * 1979-09-04 1981-04-14 Ford Motor Company Method for manufacturing variable capacitance pressure transducers
DE2940955A1 (en) * 1979-10-09 1981-04-23 Gosudarstvennyj nau&ccaron;no-issledovatel'skij institut teploenergeti&ccaron;eskogo priborostroenija, Moskva Semiconductor strain gauge with epitaxial p-silicon resistor - on sapphire monocrystal gives signal independent of ambient temp.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516228A (en) * 1978-07-21 1980-02-04 Hitachi Ltd Capacity type sensor
JPS5764978A (en) * 1980-10-03 1982-04-20 Ibm Capacitive pressure transducer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263828A (en) * 1985-09-06 1987-03-20 Yokogawa Electric Corp Vibration type transducer and its manufacture
JPH0518050B2 (en) * 1985-09-06 1993-03-10 Yokogawa Electric Corp
JPS6430423U (en) * 1987-08-17 1989-02-23
US6941812B2 (en) 2002-08-20 2005-09-13 Nagano Keiki Co., Ltd. Converter and method of manufacturing the same
WO2009001488A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Diaphragm structure and acoustic sensor
JP2009033698A (en) * 2007-06-22 2009-02-12 Panasonic Corp Diaphragm structure and acoustic sensor
US8146437B2 (en) 2007-06-22 2012-04-03 Panasonic Corporation Diaphragm structure and MEMS device
US8166827B2 (en) 2008-09-10 2012-05-01 Panasonic Corporation MEMS device and method for manufacturing the same

Also Published As

Publication number Publication date
DE3445774A1 (en) 1985-07-04
JPH0380254B2 (en) 1991-12-24

Similar Documents

Publication Publication Date Title
US7193256B2 (en) Manufacturing method for a semiconductor substrate comprising at least a buried cavity and devices formed with this method
JP3033412B2 (en) Method for manufacturing semiconductor device
JP3506932B2 (en) Semiconductor pressure sensor and method of manufacturing the same
US20090140355A1 (en) Semiconductor pressure sensor and its fabrication method
JPS60138434A (en) Manufacture of semiconductor electrostatic capacity type pressure sensor
JP2000022172A (en) Converter and manufacture thereof
JP2000058866A (en) Manufacture of small device
JP4250868B2 (en) Manufacturing method of semiconductor pressure sensor
JP4258100B2 (en) Manufacturing method of semiconductor pressure sensor
JPH09148467A (en) Structure for vacuum-sealing working element and its manufacture
JPH0481868B2 (en)
JP2000133817A (en) Semiconductor pressure sensor and its manufacture
JPS59232437A (en) Manufacture of semiconductor device
JPS59182538A (en) Semiconductor device and manufacture thereof
JPH06302834A (en) Manufacture of thin-film structure
JP2000138381A (en) Sealed container and its manufacture
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JPS6267880A (en) Manufacture of semiconductor device
JPH0645617A (en) Manufacture of single-crystal thin-film member
JPS60121737A (en) Element isolating method for semiconductor device
JPS58159348A (en) Separation of semiconductor device
CN117800282A (en) Semiconductor device and method for manufacturing the same
JPS60182738A (en) Manufacture of semiconductor device
JPH10148592A (en) Production of pressure detector
KR100264517B1 (en) Method for fabricating pressure sensor