JPS60138020A - Production of raw material to be sintered - Google Patents

Production of raw material to be sintered

Info

Publication number
JPS60138020A
JPS60138020A JP24721583A JP24721583A JPS60138020A JP S60138020 A JPS60138020 A JP S60138020A JP 24721583 A JP24721583 A JP 24721583A JP 24721583 A JP24721583 A JP 24721583A JP S60138020 A JPS60138020 A JP S60138020A
Authority
JP
Japan
Prior art keywords
ore
powder
particles
fed
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24721583A
Other languages
Japanese (ja)
Inventor
Tetsuzo Haga
芳我 徹三
Hajime Fukuda
福田 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24721583A priority Critical patent/JPS60138020A/en
Publication of JPS60138020A publication Critical patent/JPS60138020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce sintered ore having high quality with a reduced cost by using pulverous powder after screening and granulating in the stage of using high alumina contg. powder iron ore having hard sinterability as a raw material for the sintered ore. CONSTITUTION:Powder of the iron ore which contains much Al2O3 and is hardly sinterable is stored into a bunker 2 by a belt conveyor 1a. Such iron ore is screened by a screening machine 3 having 2-4mm.phi mesh. The oversized ore is fed directly to a mixer 4 and the undersized pulverous powder is fed to a kneader 5 where water is added thereto and the powder is kneaded and thereafter the kneaded powder is fed to a granulator 6 such as a pan pelletizer or the like. Water is further added to the granules if necessary and the ore is granulated to 2-5mm. pseudo particles which are then fed to the mixer 4. Raw materials such as crude granular iron ore, returns, quartz stone, serpentine, coke, etc. are charged from bunkers 20 into the mixer 4, by which the materials are thoroughly mixed and thereafter the mixed materials are fed to the bunker of a sintering machine. The sintered ore having high quality is produced by using the pulverous iron ore of high alumina type having hard sinterability.

Description

【発明の詳細な説明】 く技術分野〉 本発明は焼結原料の製造方法に関するものである。[Detailed description of the invention] Technical fields> The present invention relates to a method for producing a sintered raw material.

〈技術的背景と従来技術〉 周知の如く焼結鉱の製造は、粉状の鉄鉱石(以下、粉鉱
石と云う)に石灰石、蛇紋岩、砂鉄等の副原料およびコ
ークス粉を泳方n1混合し造粒する事前処理を施した原
料を、焼結機の火格子上に装入し該火格子上に形成され
た原料表層部のコークスに着火し、焼成することによっ
て行われている。近年前記粉鉱石として例えばアルミナ
(A/、 os )分の高いものが多くなる傾向にある
。係かる高A/2o3の粉鉱石は価格は安いけれども前
述した一般的な事前処理全行った程度では焼結性が悪く
一1生産性を低下させたり焼結鉱の品質を悪化させる等
種々の問題がありその使用には多くの制約があった。而
して本発明者等は、前述した高A403含有の粉鉱石(
以下難焼結性原料と云う)をも有効に、かつ工業的レベ
ルで焼結原料として用いるために種々の実験研究を繰返
した。その結果、前記粉鉱石のうち、微粒の粉鉱石のみ
を予め造粒し、擬似粒子としたのち他の原料と共にミキ
シングすることが極めて効果的であると云う知見を得た
。ところで前記微粒粉鉱石金子め造粒する技術は、例え
ば特公昭39−1801号および特開昭53−1423
01号等によって既に提案されている。ところが該特公
昭39−1801および特開昭53−142301で提
案された技術はそのまへの粒度では焼結困難、あるいは
焼結性に好ましからざる影響金与える0、 25 W以
下。
<Technical Background and Prior Art> As is well known, sintered ore is produced by mixing powdered iron ore (hereinafter referred to as powdered ore) with auxiliary materials such as limestone, serpentine, and iron sand, and coke powder. The raw material that has been pre-treated for granulation is charged onto the grate of a sintering machine, and the coke formed on the surface of the raw material on the grate is ignited and fired. In recent years, there has been a tendency for the above-mentioned fine ore to have a high alumina (A/, os) content, for example. Although the price of such high A/2o3 fine ore is low, it has poor sintering properties even if it is subjected to all the general pre-treatments mentioned above, and it causes various problems such as lowering productivity and deteriorating the quality of sintered ore. There were problems and many restrictions on its use. Therefore, the present inventors have developed the above-mentioned high A403-containing fine ore (
In order to effectively use sintering materials (hereinafter referred to as difficult-to-sinter materials) as sintering materials on an industrial level, we have repeatedly conducted various experimental studies. As a result, it was found that it is extremely effective to pre-granulate only the fine ore powder to form pseudo particles among the powder ore particles, and then mix it with other raw materials. By the way, the technique of granulating the fine powder ore is disclosed in, for example, Japanese Patent Publication No. 39-1801 and Japanese Patent Application Laid-Open No. 1423-1983.
This method has already been proposed by No. 01 and others. However, in the techniques proposed in Japanese Patent Publication No. 39-1801 and Japanese Patent Application Laid-Open No. 53-142301, it is difficult to sinter the particle size as it is, or it has an unfavorable influence on sinterability.

又は0.7 wx J21.下の超微粉鉱石を予め造粒
し所定の大きさ以上の塊状体とすることvc工り前記超
微粉鉱石をも焼結原料として利用すること?可能ならし
めたに過ぎないものであった。
or 0.7 wx J21. Is it possible to pre-granulate the ultrafine ore below and make it into a lump of a predetermined size or more? It was just something that made it seem possible.

〈目的〉 本発明は前記擬似粒子の製造法を更に改良し。<the purpose> The present invention further improves the method for producing the pseudo-particles.

前記難焼結性原料の利用性を高めると共に高品質の焼結
鉱をエネルギー消費量を少なくシ、かつ低コストで製造
可能ならしめる焼結原料製造方法の提供全土たる目的と
するものである。
The object of the present invention is to provide a method for producing a sintered raw material that increases the usability of the difficult-to-sinter raw material and allows production of high-quality sintered ore with less energy consumption and at a lower cost.

く構成および作用〉 本発明の要旨は、粉鉄鉱石2〜4Mφを基準として篩分
を行い、ili ’Fの微粒を粒径2〜5uφの擬似粒
子としたのち、前記篩上の粗粒および他の原料と共にミ
キシングして焼結原料用擬似粒塊t−S造することにあ
る。
Structure and operation> The gist of the present invention is to perform sieving using powdered iron ore of 2 to 4 Mφ as a reference, and to transform the fine particles of ili'F into pseudo particles with a particle size of 2 to 5 uφ, and then to remove the coarse particles and the coarse particles on the sieve. The purpose is to mix it with other raw materials to produce pseudo-granule t-S for sintering raw materials.

ところで前述のようにその使用に多くの制約があること
から難焼結性原料として整理されていた原料について、
まず調査研究上型ねた結果、高AI!z03含有粉鉱石
でも、特に焼成過程の融液生成に直接関与するとされる
微粉中におけるAI!、 OSが高くなった場合に多く
の悪影響會与えることが判った。即ち前記微粉中AI!
203含有率の高い粉鉱石の使用量を多くすると、高熱
レベル下ではRDI(還元粉化指a)が悪下し、逆に低
熱レベル下では、生産性やSI(落下強度)が低下する
By the way, as mentioned above, there are many restrictions on the use of raw materials, which have been categorized as difficult-to-sinter materials.
First of all, as a result of research, high AI! Even in z03-containing fine ores, there is AI in the fine powder, which is said to be directly involved in the production of melt during the sintering process! It has been found that higher operating systems have many negative effects. That is, AI in the fine powder!
When the amount of fine ore with a high 203 content is increased, the RDI (reduction index a) deteriorates under high heat levels, and conversely, productivity and SI (fall strength) decrease under low heat levels.

一方焼結原料(前述した粉鉱石、副原料、コークス等を
ミキシングし造粒する事前処理を施した後の原料を以下
焼結原料と云い、事前処理を施す前の原料を単に原料と
云う)の擬似粒化状況を下記(1)式に示す擬似粒化指
数(以下GIと云う)で表わすと該GIが向上すると通
気性および焼結速度が向上することは周知である。
On the other hand, sintering raw material (the raw material after pre-treatment of mixing and granulating the aforementioned powdered ore, auxiliary raw materials, coke, etc. is hereinafter referred to as sintering raw material, and the raw material before pre-treatment is simply referred to as raw material) It is well known that when the pseudo-graining condition is expressed by the pseudo-graining index (hereinafter referred to as GI) shown in the following equation (1), when the GI improves, the air permeability and the sintering rate improve.

GI=(A1−” +A雪−B2 )xloo (1)
AIA。
GI=(A1-”+A snow-B2)xloo (1)
AIA.

GI:擬似粒化指数 Al:擬似粒子の粒度分布における0、5〜025uの
割合(重量比) Al:擬似粒子の粒度分布における 0、25關以下の割合(重量比) B1:擬似粒子の真粒度における0、 5〜0.25關
の割合(重量比) B雪:擬似粒子の真粒度における0、 25U以下の割
合(重量比) そこで本発明者等は擬似粒子の性状と焼結鉱の落下強度
および歩留等との関連について調査した。
GI: Pseudo-granulation index Al: Proportion of 0, 5 to 025 u in the particle size distribution of pseudo particles (weight ratio) Al: Proportion of 0, 25 u or less in the particle size distribution of pseudo particles (weight ratio) B1: True of pseudo particles Ratio of 0.5 to 0.25 U in particle size (weight ratio) B snow: Ratio of 0.25 U or less in true particle size of pseudo particles (weight ratio) Therefore, the present inventors investigated the properties of pseudo particles and sintered ore. We investigated the relationship between drop strength and yield, etc.

第1図は下記第1表に示す平均粒径が2〜3Uφ以下の
粉鉱石を他の原料(塊破砕粉鉱石、副原料、コークス等
)と共にミキシングしたのち水分添加量全種々変化させ
て造粒し、該造粒された擬似粒子を鍋試験装言で焼結し
て、落下強度(8I )、点火前通気性(JPU)、焼
結速度、および成品歩留等を調査した結果を示すもので
ある。
Figure 1 shows the production process by mixing powdered ore with an average particle size of 2 to 3Uφ or less as shown in Table 1 below with other raw materials (pulverized ore powder, auxiliary raw materials, coke, etc.) and then varying the amount of water added. The granulated pseudo-particles were sintered using a pot tester to investigate the drop strength (8I), air permeability before ignition (JPU), sintering speed, and product yield. It is something.

第1表 第1表において試料工は0.5 ag以下の微粒中にお
けるA/203の含有率が2.1%、同じく試料■が2
.5%で、該試料■が前記難焼結性原料を多量に使用し
たものに相当する。
Table 1 In Table 1, the content of A/203 in the fine particles of 0.5 ag or less was 2.1% for the sample work, and 2.
.. 5%, which corresponds to sample (1) using a large amount of the above-mentioned difficult-to-sinter raw material.

第1図より造粒時に水分添加量を増加すると前記GIは
向上し、これに伴って1点火前通気性および焼結速度も
向上することが判る。このことは焼結原料中に微粒が少
なくなるためで前述したように従来エリ一般的には知ら
れていたことであり前記特公昭39−1801号、特開
昭53−142301号も該G■の向上を狙ったもので
ある。ところが、落下強度、成品歩留には最適水分範囲
がありこれは焼結原料中における2〜5Mφの擬似粒子
の含有率が最大となる範囲とほぼ一致する。つまり、前
記実施例により焼結原料中における2〜5關φの擬似粒
子の含有率を高めると紋料Iおよび■とも落下強度お工
び成品歩留が向上すると云う新知見が得られた。さて第
2図は前記第1図の造粒性につでは逆に良好な造粒性を
示す工うになる。又。
From FIG. 1, it can be seen that when the amount of water added during granulation is increased, the GI is improved, and the permeability before ignition and the sintering rate are also improved accordingly. This is because the number of fine particles in the sintering raw material decreases, and as mentioned above, it has been generally known in the past. The aim is to improve However, there is an optimum moisture range for drop strength and product yield, and this almost coincides with the range in which the content of pseudo particles of 2 to 5 Mφ in the sintering raw material is maximum. In other words, new findings were obtained from the above examples that by increasing the content of pseudo particles of 2 to 5 diameter in the sintering raw material, the drop strength and yield of finished products were improved for both pigments I and II. Now, FIG. 2 shows a better granulation property than that shown in FIG. 1. or.

同一原料においては粗粒部分に比べ微粒部分の造粒性が
優れていることは周知である。
It is well known that the granulation properties of fine particles are better than those of coarse particles when using the same raw material.

而して本発明者等は、高ki203含有鉱石の一つであ
るハマスレーを第3図に示す如く千六ゴぞ篩分機3で篩
分け、篩下の微粒をパンペレタイザー60で擬似粒子と
したのち、篩上の粗粒と合流せしめてその粒度分布を測
定した。
Therefore, the present inventors sieved Hamasley, which is one of the high ki203-containing ores, using a Senrokugozo sieve 3 as shown in FIG. 3, and made the fine particles under the sieve into pseudo particles using a pan pelletizer 60. Thereafter, the particles were combined with the coarse particles on the sieve and the particle size distribution was measured.

第4図は、その測定結果の一例?示すものである。Is Figure 4 an example of the measurement results? It shows.

該第4図における(a)はパンペレタイザー6゜051
/時間としたものでパンペレタイザー60の1基当りの
能力が高くなるに従って造粒時間が短かくなる。第4図
より、篩分基準を2〜4Mφとすると2〜5uの擬似粒
子の割合を60%以上、2關以下の微粒を20%以下と
することができた。就中3Hφを基準として篩分けした
ものは、造粒時間の長短にか〜わらず秀れた効果を発揮
することが確認された。次に種々の粉鉱石f 3 m 
f基準として篩分けし、3闘φ以下の微粒の造粒性を調
査した。第5図はその調査結果の一例を示すもので高A
/2o3含有鉱石で6 ル前記ハマスレー、マウントニ
ューマンと他の微粒鉱石を適宜な割合で配合して造粒性
(A : 5 mφ以上、B:2〜5Mφ、 0 : 
2 mφ以下の割合)、落下崩壊率(擬似粒子ヲ1.5
mの高さから3回落下させたとき擬似粒子が崩壊した割
合)および造粉時の水分をそれぞれ示している。第5図
+alはハマスレーと他の微粒鉱石を、第5図(blは
マウントニューマンと他の微粒鉱石全それぞれ配合せし
めたもので最適水分下で造粒すると高A/2o3含有微
粒鉱石単独のものが他の微粒鉱石?配合しKものよりそ
の造粒性および落下崩壊率とも秀れていた。
(a) in FIG. 4 is a pan pelletizer 6°051
/hour, and as the capacity per pan pelletizer 60 increases, the granulation time becomes shorter. From FIG. 4, when the sieving standard was set to 2 to 4 Mφ, the proportion of pseudo particles of 2 to 5 u could be reduced to 60% or more, and the proportion of fine particles of 2 u or less to 20% or less. In particular, it was confirmed that those sieved on the basis of 3Hφ exhibited excellent effects regardless of the length of the granulation time. Next, various fine ore f 3 m
The particles were sieved using the f standard, and the granulation properties of fine particles with a diameter of 3 mm or less were investigated. Figure 5 shows an example of the survey results.
/2o3-containing ore is blended with the above-mentioned Hammersley, Mt.
2 mφ or less), falling collapse rate (pseudo particles 1.5
The percentage of pseudo particles disintegrated when dropped three times from a height of m) and the moisture content during powdering are shown, respectively. Figure 5+al is a combination of Hammersley and other fine-grained ores, Figure 5 (bl is a mixture of Mt. Newman and all other fine-grained ores, and when granulated under optimal moisture, it is a single fine-grained ore containing high A/2O3. However, it was superior to other fine-grained ores in terms of granulation properties and falling disintegration rate.

さて、次に第2表に示す原料のうち、ロープリバーF 
、 1vltニユーマンFIハマスレーFvi#3關φ
を基準として篩分けし、その篩下、即ち、311aφ以
下の微粒を混合し、2〜5uφの擬似粒子としたのち、
該擬似粒子を前記篩上の3寵φ以上の粗粒および前記ロ
ーブリノ々−F 、 Mt。
Now, of the raw materials shown in Table 2, Rope River F
, 1vlt Newman FI Hamasley Fvi#3關φ
After sieving based on the sieve and mixing the fine particles under the sieve, that is, 311aφ or less, to obtain pseudo particles of 2 to 5uφ,
The pseudo-particles are coarse particles having a size of 3 or more diameters on the sieve and the above-mentioned Roblino-F, Mt.

ニューマンF、ハマスレーFt−除<他の原料ト共にミ
キシングして擬似粒塊(前記篩下の微粒のみを造粒した
擬似粒子に対し、該擬似粒子と他の原料と會ミキシング
しつN造粒したものを以下擬似粒塊と云う)とした。尚
、本実施例では第2表の原料に対し、粉コークスは3.
1%配合した。
Newman F, Hamasley Ft - Removal The resulting particles were hereinafter referred to as pseudo-grain agglomerates). In this example, for the raw materials shown in Table 2, coke powder was 3.
1% was added.

第6図は、前記擬似粒塊の粒度を調査したもので本発明
に基づき、3wφ以下の微粒のみを予め擬似粒子とした
ものは3分間のミキシングによって焼結原料中の2〜5
閣の111合を50%以上にすることができた。これに
対し、従来法による総ての原料tltJ時にミキシング
しだものでは6分間のミキシング(比較例■)でも精々
40%程度、3分間のミキシング(比較例■)では40
%を大巾に下回るものであった。
FIG. 6 shows the investigation of the particle size of the pseudo-granules. Based on the present invention, when only fine particles of 3wφ or less were made into pseudo-particles in advance, 2 to 5
I was able to increase the 111 go of the cabinet to over 50%. On the other hand, when all raw materials are mixed at the time of tltJ using the conventional method, even when mixed for 6 minutes (Comparative Example ■), the percentage is at most 40%, and when mixed for 3 minutes (Comparative Example ■), the percentage is 40%.
%.

又前記擬似粒子は前述の如く含水率が8〜9%と高いが
該含水率の低い他の原料とのミキシングによって焼結原
料としての含水率は6〜65%となり、擬似粒子時の高
含水率も全(問題とならなかった。第7図は、前記擬似
粒塊を鍋試験装置で焼結し、SI、RDl、生産率等を
調査した結果を示すものである。該第7図エリ明らかな
ように本発明の実施により、SI、成品歩留、RDl、
生産率、JPD等のいずれにおいても従来法とは比較に
ならない秀れた効果が確認された。
Furthermore, as mentioned above, the pseudo particles have a high water content of 8 to 9%, but when mixed with other raw materials with low water content, the water content as a sintering raw material becomes 6 to 65%. Fig. 7 shows the results of investigating the SI, RDl, production rate, etc. by sintering the pseudo grain agglomerates using a pot testing device. As is clear, by implementing the present invention, SI, product yield, RDl,
Excellent effects incomparable to conventional methods were confirmed in terms of production rate, JPD, etc.

以上のように本発明は2〜4uφの範囲内の予め設定さ
れた篩分点を基準として粉鉱石の篩分けを行い、篩下の
微粒を最適水分下で造粒することによって粒径2〜5關
φの擬似粒子としたのち、篩上の粗粒および副原料、コ
ークス等の他の原料と共にミキシングしつ〜造粒し擬似
粒塊を製造するものである。而して本発明においては、
焼結原料として使用される粉鉱石の全量を前記篩分けを
実施し篩下−の微粒を2〜5Hφの擬似粒子とすること
(該篩分けを実施し篩下の微粒を擬似粒子とすることを
以下1選択造粒と云う)が好ましいが、本発明者等の経
験では、難焼結性原料を用いない場合には前記選択造粒
した擬似粒子の使用量が高まるとそれに伴って本発明の
前記機能をより高めることができる。しかしながら高A
/xo、含有の難焼結性原料は前述したような種々の問
題を有していることから該問題点を抜本的に解決するに
は難燃性原料の使用量10%増に対し少なくとも15%
以上を選択造粒することが必要であった。
As described above, the present invention sieves fine ore based on a preset sieving point within the range of 2 to 4 uφ, and granulates the fine particles under the sieve under optimal moisture. After forming pseudo particles with a diameter of 5 mm, they are mixed with the coarse particles on the sieve and other raw materials such as auxiliary raw materials and coke, and then granulated to produce pseudo granule agglomerates. Therefore, in the present invention,
The entire amount of powdered ore used as a sintering raw material is subjected to the sieving described above, and the fine particles under the sieve are made into pseudo particles of 2 to 5Hφ (by performing the sieving, the fine particles under the sieve are made into pseudo particles) (hereinafter referred to as one-selective granulation), but according to the experience of the present inventors, when a difficult-to-sinter raw material is not used, as the amount of the selectively granulated pseudo-particles increases, the present invention The above-mentioned functions can be further enhanced. However, high A
/xo, since the contained sintering-resistant raw materials have various problems as mentioned above, in order to fundamentally solve these problems, at least 15% of the amount of flame-retardant raw materials used is %
It was necessary to selectively granulate the above.

〈実施例〉 次に本発明の具体的な実施例について説明する。第8図
は、本発明に基づく一実施例を示す設備フロー図である
<Examples> Next, specific examples of the present invention will be described. FIG. 8 is an equipment flow diagram showing an embodiment based on the present invention.

本実施例では粉鉱石をベルトコンベヤ1aを介して運搬
しノ々ンカー2に貯留する。バンカー2より切出された
粉鉱石は篩分機3によって予め設定された篩分基準で篩
分けられる。
In this embodiment, fine ore is transported via a belt conveyor 1a and stored in a dump truck 2. The fine ore cut out from the bunker 2 is sieved by a sieving machine 3 according to a preset sieving standard.

本実施例では篩分機3の篩網を取替ることにより篩分基
準点を2闘φ、3Wφ、4Wφに変更できるように構成
し、粉鉱石の篩分処理量や後述する造粒機の能力等に応
じた最適の篩分基準でその篩分を実施できるようにした
。篩分機3で篩分けられた粉鉱石のうち篩上の粗粒は、
直接ミキサー4へ送給される。一方篩下の微粒は混錬機
5で水分を添加しながら混錬され、パンペレタイザー等
の造粒機6で必要に応じ更に水分を添加しながら造粒さ
れ、2〜5Mの擬似粒子となる。該擬似粒子は前記篩上
の粗粒と合流せしめ、もしくは図示はしないけれども粗
粒とそれぞれ独立してミキサー4へ送給される。石灰石
、蛇紋岩等の副原料、コークス粉、および前記篩分けを
行わない粉鉱石等は、ベルトコンベヤ1bよりバンカー
20を介して前記ミキサー4へ送給される。而してミキ
サー4においては、前記擬似粒子が篩上の粗粒および篩
分機3を通過することのない他の原料と共にミキシング
され、造粒されて、焼結原料用の擬似粒塊となり、焼結
機(図示せず)へ順次送給される。
In this embodiment, by replacing the sieve mesh of the sieve separator 3, the sieving reference point can be changed to 2 to φ, 3 W φ, and 4 W φ. The sieving can be carried out using the optimum sieving criteria according to the situation. Of the fine ore sieved by the sieving machine 3, the coarse particles on the sieve are
It is fed directly to the mixer 4. On the other hand, the fine particles under the sieve are kneaded in a kneading machine 5 while adding moisture, and then granulated in a granulator 6 such as a pan pelletizer while adding moisture as necessary to become pseudo particles of 2 to 5M. . The pseudo particles are combined with the coarse particles on the sieve, or are fed to the mixer 4 independently from the coarse particles, although not shown. Auxiliary raw materials such as limestone and serpentine, coke powder, and the unsifted ore powder are fed from the belt conveyor 1b to the mixer 4 via the bunker 20. In the mixer 4, the pseudo particles are mixed with the coarse particles on the sieve and other raw materials that do not pass through the sieve separator 3, and are granulated to form pseudo granule agglomerates for sintering raw materials, which are then sintered. It is sequentially fed to a binding machine (not shown).

さて、前記第8図に示す設備において本発明を実施し、
製造された焼結原料’t 183 m’ (有効焼結面
積)のDL焼結機に供給して焼結鉱を製造した。第3表
は、本実施例に用いた焼結原料の配合割合金示すもので
第4表に示す粉鉱石について3 m lψを基準として
前記選択造粒を実施した。
Now, the present invention is implemented in the equipment shown in FIG. 8,
The produced sintered raw material was supplied to a DL sintering machine having an effective sintering area of 183 m to produce sintered ore. Table 3 shows the blending ratio of the sintering raw materials used in this example, and the selective granulation was performed on the fine ore shown in Table 4 using 3 ml ψ as a standard.

第3表 分級後 第 4 表 又、該選択造粒にあたり1石灰石の微粒も添加し、混合
した。この結果本発明に基づ〈実施例では選択造粒品を
使用しない従来法(比較例)に対し、生石灰’i 0.
3%、粉コークスt 0.08免削減することができ、
しかも生産率39.5、屯/rr1724時間の高生産
下で8Iも86.5%(比較例87.0%)1維持でき
た。
Table 3 After classification Table 4 Also, during the selective granulation, 1 limestone fine particles were also added and mixed. As a result, based on the present invention, quicklime'i0.
3%, coke powder can be reduced by 0.08,
Furthermore, 8I could be maintained at 86.5% (comparative example: 87.0%)1 under high production conditions with a production rate of 39.5 and a ton/rr of 1724 hours.

〈効果〉 本発明の実施にエリ、焼結鉱の品質、生産性等を低下さ
せることなく、コークスや石灰石の添加量を少なくでき
、特に従来その使用に多くの制約のあった低価格の難焼
結性原料を焼結原料として、積極的に、かつ有効に活用
できるようになった。この結果、焼結鉱の製造コストも
大巾に低減させることができた。
<Effects> The present invention can be implemented without reducing the amount of coke or limestone added without reducing the quality or productivity of sintered ore. Sinterable raw materials can now be actively and effectively used as sintering raw materials. As a result, the manufacturing cost of sintered ore was also significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は粉鉱石の造粒時水分を種々に変えて行った焼結
試験結果を示すグラフ、第2図は第1図の造粒性を拡大
して示すグラフ、第3図は実験装置の概略図、第4図は
第3図の装置で得られた原料の粒度分布の測定結果金示
すグラフ、第5図は粉鉱石の3Mφ以下の微粒の造粒性
の調査結果を示すグラフ、第6図は擬似粒塊の粒度の調
査結果を示すグラフ%第7図は本発明法および従来法に
なる擬似粒塊の焼結試験結果を示すグラツマ癌&。・私
+zJ翠吐に茎ゲ< −f、fr町p・J番り叙嘩20
−目で・・ある。 代理人 弁理士 秋 沢 政 光 他2名 倒卆黒伸8 相@子全2 7註 IN、。 1、事件の表示 特願昭58−第247215 号 2、発明の名称 焼結原料製造方法 3、補正をする者 事件との関係出願人 住所(居所)東京都千代田区大手町2丁目6番3号氏名
(名称) (665)新日本製鐵株式会社4、代 理 
人 居 所 東京都中央区日本橋兜町12番1号大洋ビル補
正命令 5、tlu#□E13,111.の日付昭和 年 月 
日(発送)(υ 明細書第3頁下から8行目「粉鉄鉱石
2〜4Wφ」とあるを「粉鉄鉱石を2〜4Nφ」と訂正
する。 (2)・同第8頁7行目「0は」とあるをr(0はjと
訂正する。 (3) 同第9頁4行目「造粉時の」とあるを「造粒時
の1と訂正する。 (4)同第11頁下から3行目rJPD等」 とあるを
rJPU Jと訂正する。 (5)同第177頁6行目sIも86.5%」とあるを
rsIも87.6%」と訂正する。 (6)同第15頁第3表を下記の通シ訂正する。 1 第 、表 特許庁本官 殿 1、事件の表示 符 願昭は一第λq7λ/「号 2、全1の名称 事件との関係 出 増雫入
Figure 1 is a graph showing the results of sintering tests conducted with various moisture contents during granulation of fine ore, Figure 2 is an enlarged graph showing the granulation properties of Figure 1, and Figure 3 is the experimental equipment. 4 is a graph showing the measurement results of the particle size distribution of the raw material obtained with the apparatus shown in FIG. 3. FIG. FIG. 6 is a graph showing the investigation results of the particle size of pseudo-granules. FIG. 7 is a graph showing the results of sintering tests of pseudo-granules obtained by the method of the present invention and the conventional method.・Me + zJ Midori ni Sutenge < -f, fr town p・J number fight 20
-With my eyes... Agent: Patent attorney Masaaki Akizawa, Hikaru, and 2 other people, Makoto Makoto 8 Ai@kozen 2 7 notes IN,. 1. Indication of the case Japanese Patent Application No. 1982-247215 2. Name of the invention Process for producing sintered raw materials 3. Person making the amendment Applicant related to the case Address (residence) 2-6-3 Otemachi, Chiyoda-ku, Tokyo No. Name (665) Nippon Steel Corporation 4, Agent
Location: 12-1 Taiyo Building, Kabutocho, Nihonbashi, Chuo-ku, Tokyo, 5, tlu#□E13,111. Date of Showa year month
Date (Shipping) (υ Correct the statement "Iron ore powder 2-4Wφ" in the 8th line from the bottom of page 3 of the specification to "Iron ore powder 2-4Nφ". (2)・Page 8, line 7 of the specification (3) On page 9, line 4 of the same page, correct the phrase "at the time of powdering" to read "1 at the time of granulation." On the 3rd line from the bottom of page 11, correct "rJPD, etc." to rJPU J. (5) On page 177, line 6, correct the statement "sI is also 86.5%" to read "rsI is also 87.6%." (6) Table 3 on page 15 of the same page is corrected as follows: 1. Name of the case: 1. Name of the case: 1. λq7.lambda. Relationship with

Claims (1)

【特許請求の範囲】[Claims] (1)粉鉄鉱石を2〜4Hφを基準として篩分を行い、
篩下の微粒t1粒径2〜5鑓φの擬似粒子としたのち、
前記篩上の粗粒および他の原料と共にミキシングして焼
結原料用擬似粒塊全製造することt−特徴とする焼結原
料製造方法。
(1) Sieve powdered iron ore based on 2-4Hφ,
After making the subsieve fine particles t1 pseudo particles with a particle size of 2 to 5 φ,
A method for producing a sintering raw material, characterized in that pseudo grain agglomerates for a sintering raw material are entirely produced by mixing together with the coarse particles on the sieve and other raw materials.
JP24721583A 1983-12-26 1983-12-26 Production of raw material to be sintered Pending JPS60138020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24721583A JPS60138020A (en) 1983-12-26 1983-12-26 Production of raw material to be sintered

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24721583A JPS60138020A (en) 1983-12-26 1983-12-26 Production of raw material to be sintered

Publications (1)

Publication Number Publication Date
JPS60138020A true JPS60138020A (en) 1985-07-22

Family

ID=17160155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24721583A Pending JPS60138020A (en) 1983-12-26 1983-12-26 Production of raw material to be sintered

Country Status (1)

Country Link
JP (1) JPS60138020A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046140C (en) * 1994-07-06 1999-11-03 杨润泉 Sintering process for making cherry small ball by adding water soluble additives in iron concentrate
CN106591567A (en) * 2016-11-15 2017-04-26 江苏省冶金设计院有限公司 Method for restraining and reducing reduction degradation of iron sand pellets and system special for method for restraining and reducing reduction degradation of iron sand pellets
CN106636623A (en) * 2016-11-15 2017-05-10 江苏省冶金设计院有限公司 Method for increasing reduction degree of ferrochromium pellet ore and special system for method
CN106702147A (en) * 2016-11-15 2017-05-24 江苏省冶金设计院有限公司 Method and system for reducing reduction degradation of vanadium-titanium magnet pellets
CN106755978A (en) * 2016-11-15 2017-05-31 江苏省冶金设计院有限公司 A kind of method and system of control laterite nickel ore pellets reduction swellability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117820A (en) * 1976-03-31 1977-10-03 Sumitomo Metal Ind Ltd Sintering method of raw material for blast furnace
JPS54104403A (en) * 1978-02-06 1979-08-16 Kawasaki Steel Co Production of sintered ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117820A (en) * 1976-03-31 1977-10-03 Sumitomo Metal Ind Ltd Sintering method of raw material for blast furnace
JPS54104403A (en) * 1978-02-06 1979-08-16 Kawasaki Steel Co Production of sintered ore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046140C (en) * 1994-07-06 1999-11-03 杨润泉 Sintering process for making cherry small ball by adding water soluble additives in iron concentrate
CN106591567A (en) * 2016-11-15 2017-04-26 江苏省冶金设计院有限公司 Method for restraining and reducing reduction degradation of iron sand pellets and system special for method for restraining and reducing reduction degradation of iron sand pellets
CN106636623A (en) * 2016-11-15 2017-05-10 江苏省冶金设计院有限公司 Method for increasing reduction degree of ferrochromium pellet ore and special system for method
CN106702147A (en) * 2016-11-15 2017-05-24 江苏省冶金设计院有限公司 Method and system for reducing reduction degradation of vanadium-titanium magnet pellets
CN106755978A (en) * 2016-11-15 2017-05-31 江苏省冶金设计院有限公司 A kind of method and system of control laterite nickel ore pellets reduction swellability

Similar Documents

Publication Publication Date Title
JP3902629B2 (en) Pretreatment method of sintering raw materials
KR20180110034A (en) Method for producing sintered ores
CN104313313A (en) Preparation method for granulating fine-particle fuel for sintering of iron ore in advance
JP4786508B2 (en) Pretreatment method of sintering raw material
JPS60138020A (en) Production of raw material to be sintered
JP5224917B6 (en) Manufacturing method of sintered raw material
JP4996100B2 (en) Method for producing sintered ore
JP6369113B2 (en) Method for producing sintered ore
JP4786441B2 (en) Pretreatment method of sintering raw material
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JPS60131930A (en) Pellet for sintered ore
JP2000256756A (en) Method for granulating sintering raw material
JP4231468B2 (en) Method for producing sintered ore
JP3476284B2 (en) Sinter production method
JP3888981B2 (en) Method for producing sintered ore
JP4630091B2 (en) Pretreatment method of sintering raw material
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP2589633B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JP3537214B2 (en) Sintering material pre-treatment method
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering
JP2000303121A (en) Pretreatment of sintering raw material
JP3058985B2 (en) Sinter production method
JP7067372B2 (en) Granulation method for compounded raw materials
JP4356929B2 (en) Method for producing sintered ore
JP2746030B2 (en) Pre-processing method for sintering raw materials