JPS60138009A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPS60138009A
JPS60138009A JP24451083A JP24451083A JPS60138009A JP S60138009 A JPS60138009 A JP S60138009A JP 24451083 A JP24451083 A JP 24451083A JP 24451083 A JP24451083 A JP 24451083A JP S60138009 A JPS60138009 A JP S60138009A
Authority
JP
Japan
Prior art keywords
reduction
furnace
ore
blast furnace
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24451083A
Other languages
Japanese (ja)
Inventor
Toshiro Sawada
沢田 寿郎
Kazuo Ichifuji
一藤 和夫
Kazuo Okumura
奥村 和男
Toshihiko Natsumi
夏見 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24451083A priority Critical patent/JPS60138009A/en
Publication of JPS60138009A publication Critical patent/JPS60138009A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To operate smoothly a blast furnace for a long period by charging hardly reducible ore having a specified rate of reduction into a place close to the wall of the furnace in the form of fine granules of a specified grain size so as to prevent hindrance to the operation. CONSTITUTION:When starting materials are charged into a blast furnace, hardly reducible ore having <=40% rate R of reduction is charged into a place close to the wall of the furnace in the form of fine granules of 3-10m/m grain size, and the furnace is operated. The rate R of reduction is calculated by the equation established by the results of a test carried out by reduction in a reducing atmosphere consisting of 30% CO and 70% N2 at 900 deg.C for 180min in accordance with JIS. In the equation, W0 is the weight of a sample before reduction, WF is the weight of the sample after reduction, Wi is the weight of a collection, A is T.Fe%, and B is FeO%.

Description

【発明の詳細な説明】 本発明は、高炉操業法とくに難還元性の鉱石を使っても
操業阻害を起すことなく長期に亘って円滑な炉操業が継
続できるその使い万、即ち該難還元性鉱石の装入につい
て特色のある高炉操業法について提案する。
[Detailed Description of the Invention] The present invention provides a method for operating a blast furnace, in particular, a versatile method that allows smooth operation of the furnace to continue for a long period of time without hindering the operation even when using hard-to-reducible ores. We propose a unique blast furnace operation method for ore charging.

イスコール等の銘柄で代表される難還元性鉱石金高炉装
入原料として使用すると、ガス利用率低下による炉熱不
足をひきおこすため、通常コークス比をあげた操業を余
儀なくされていた。−万ではこうした難還元性鉱石とい
えども、−10朋の細粒鉱石を装入すれば高炉内の通気
性に悪影響を及ぼすことは明らかであり長期間安定して
使うことができなかった。かような事情から、一般には
原料処理過程発生粉など一10間の小粒鉱石線焼結の原
料として使用しており、そのために破砕して微粉にして
からベツディングして使用していた。
When used as a raw material for charging a blast furnace with hard-to-reducible gold ores such as brands such as Iscor, the reduction in gas utilization rate causes a lack of furnace heat, which usually necessitates operation at a higher coke ratio. Even though it is a hard-to-reducible ore, it is clear that charging fine-grained ore of -10% would have a negative effect on the ventilation inside the blast furnace, and it could not be used stably for a long period of time. For these reasons, powder generated during the raw material processing process is generally used as a raw material for sintering small ore wires, and for this purpose, it is crushed into fine powder and then beaded.

ところが、難還元鉱石の場合、たとえ粉砕して焼結に使
用したとしても、焼結鉱の還元性にも影響を及ぼして、
いわゆる低温還元粉化性状を悪化する。そのため、焼結
鉱のコークス原単位を上げざるを得なかった。第1図に
は、難還元鉱石でおるイスコールの焼結原料中の配合比
とコークス原単位の相関を示した。すなわち、イスコー
ル’il係使うと、コークス原単位は0.’lkQ/を
上昇する。
However, in the case of hard-to-reducible ores, even if they are crushed and used for sintering, the reducibility of the sintered ore will be affected.
It worsens the so-called low-temperature reduction powdering properties. Therefore, the coke consumption rate of sintered ore had to be increased. Figure 1 shows the correlation between the mixing ratio of Iscor, which is a difficult-to-reducible ore, in the sintering raw material and the coke consumption rate. In other words, if Iscor'il is used, the coke consumption rate is 0. 'lkQ/ is increased.

そのため、焼結鉱中のイスコール配合割合を増加すると
、コストアップになる。
Therefore, increasing the proportion of isscol in the sintered ore increases the cost.

本発明は、難還元性鉱石の場合、塊で単味銘柄として使
えばガス利用率低下を招いて炉熱不足になるし、粉を焼
結に廻しても焼結のコークス原単位を押上げるという問
題点があることに着目し、こうした問題点を一掃するの
に効果のある難還元性鉱石の使い万についての新規な高
炉操業法を提案するところに上次る目的がある。以下に
その構□ 成を詳述する。
In the case of hard-to-reducible ores, if the lumps are used as a single brand, the gas utilization rate will decrease and the furnace heat will be insufficient, and even if the powder is used for sintering, the coke consumption rate of sintering will increase. The main purpose of this paper is to focus on these problems and propose a new blast furnace operation method for the use of refractory ores that is effective in eliminating these problems. The configuration is detailed below.

本発明法の構成は、基本的に、 高炉装入原料のうち、還元率が40チ以下の難還元性鉱
石については、3〜10m/Inの細粒状にして、炉壁
近傍の位置に装入して炉の操業を行う方法である。要す
るに、難還元鉱石の場合、−10市の小粒であれば還元
性の低下が見られないこと・および小粒鉱石でも炉壁近
傍のみに限定して装入すれば通気性を阻害することなく
円滑な炉操業ができるという本発明者らの新規知見にも
とづいて完成を見たものである。
The structure of the method of the present invention is basically that, among the raw materials charged in the blast furnace, refractory ores with a reduction rate of 40 cm or less are made into fine particles of 3 to 10 m/In and loaded near the furnace wall. This method involves entering the furnace and operating the furnace. In short, in the case of difficult-to-reducible ores, there is no reduction in reducibility if the particles are -10 sized, and even if small-grain ores are charged only near the furnace wall, they can be charged smoothly without impeding air permeability. This work was completed based on the inventors' new knowledge that the furnace can be operated in a variety of ways.

第2図は、各銘柄(焼結鉱、アンマン鉱、イスコール鉱
、ニューマン鉱〕についての還元性状の特性を示したも
のである。図よシ難還元性の鉱石であるイスコール鉱お
よびアンマン鉱は、塊状(> 10 m/In)だと還
元時間isomin、でも還元率(R)は40%に満た
ないが、これが3〜101Aの小粒状のものになると、
還元率は焼結鉱粉と変らない特性を示す。
Figure 2 shows the reducing properties of each brand (sintered ore, ammanite, iscol ore, and newman ore). , in the case of lumps (> 10 m/In), the reduction time isomin, but the reduction rate (R) is less than 40%, but when it becomes small particles of 3 to 101A,
The reduction rate shows the same characteristics as sintered ore powder.

従って、難還元性鉱石の場合、小粒状で高炉内に装入す
れば、従来懸念されていたガス利用率の低下が回避でき
ることが判る。
Therefore, in the case of hard-to-reducible ores, it can be seen that if they are charged into the blast furnace in the form of small particles, the decrease in gas utilization rate, which has been a concern in the past, can be avoided.

本発明において、還元率(R)とは、JISに従って、
co : a o%、 N、 : 70チ、900℃の
還元雰囲気で180m1n、還元したときの試験結果よ
り、下記式によりめる値である。
In the present invention, the return rate (R) is defined as
Co: ao%, N: 70 cm, the value calculated by the following formula from the test results when 180 m1n was reduced in a reducing atmosphere at 900°C.

式中のWo:R元前試料重量 WF:還元後試料重量 Wi:採取重量 A:’r、ire% B:Fe!O% しかしながら、小粒の鉱石をそのまま何の工夫もなく高
炉内に装入すると、還元性状は良好であるとしても通気
性を阻害することが考えられる。
In the formula, Wo: R original sample weight WF: sample weight after reduction Wi: collected weight A: 'r, ire% B: Fe! O% However, if small-sized ores are charged as they are into a blast furnace without any modification, even if the reducing properties are good, it is thought that the permeability will be inhibited.

これに対しては、本発明の場合、かかる難還元性鉱石の
小粒を炉壁近傍にのみ装入し、この領域での粒度を均一
化すれば、上記問題点が回避できるということを知見し
た。すなわち、第8図(イ)。
In contrast, in the case of the present invention, it has been found that the above-mentioned problem can be avoided by charging small particles of such difficult-to-reducible ore only near the furnace wall and making the particle size uniform in this area. . That is, Fig. 8 (a).

(ロ)鉱炉壁部に−5mAの粉を9.6俤程度加えた焼
結鉱と通常の装入焼結鉱の炉内粒度分布を示すものであ
るが、これによると炉半径方向の粒度は中心(ポインド
ナ4〕で粗く、炉壁寄り(ポイント+2)が細かいこと
が判る。そして、第4図から判るように、焼結鉱のみの
場合と粉焼結鉱を加えた場合とについて空隙率をみると
、炉中心での両者の差は顕著であるが、炉壁寄9のポイ
ンドナ1゜2の位置だと両者に差がなく、従って炉壁寄
シの位置に粉鉱石を装入しても、通気抵抗は悪化しない
ことが判る。
(b) This shows the in-furnace particle size distribution of sintered ore with approximately 9.6 tons of -5 mA powder added to the furnace wall and of normally charged sintered ore. It can be seen that the grain size is coarse at the center (Point No. 4) and fine near the furnace wall (Point +2).As can be seen from Figure 4, in the case of only sintered ore and in the case of added sintered ore powder. Looking at the porosity, there is a noticeable difference between the two at the center of the furnace, but there is no difference between the two at the point 1°2 position near the furnace wall. It can be seen that the ventilation resistance does not deteriorate even if the

そこで、上述したような、還元率Rが40チ以下の値を
示すような難還元鉱石、例えばイスコール鉱やアンマン
鉱については、小粒状にして炉壁寄9の位置を選んで装
入すると操業阻害を起すことなく、長期に安定した高炉
の操業ができる。
Therefore, as mentioned above, for difficult-to-reducible ores with a reduction rate R of 40 or less, such as Iscol ore or amman ore, it is recommended to make them into small particles and charge them at a selected position near the furnace wall. The blast furnace can be operated stably over a long period of time without any disturbance.

なお、上述の難還元性鉱石についての粒度は、第5図に
示すような通常の装入原料(焼結鉱A。
In addition, the particle size of the above-mentioned hard-to-reducible ore is as shown in FIG.

B、塊鉱石)を考慮し、細粒鉱石のうちでも特に10〜
8朋の大きさのものを選ぶ。上限の16mmはこれ以上
大きいと還元性が悪くなシ、下限の8朋は篩分は効率の
点から制限される。
B, lump ore), especially among fine ores, 10~
Choose one that is 8 mm in size. If the upper limit is 16 mm, if the size is larger than this, the reducing property will be poor, and the lower limit is 8 mm, and the sieving rate is limited from the point of view of efficiency.

以下に本発明の操業実施例について、第6.7図を参照
して説明する。
An operational example of the present invention will be described below with reference to FIG. 6.7.

難還元性鉱石としてイスコール鉱を用い、ベルアーマタ
イプの分布制御装置を有する高炉に適用した例を示す。
An example will be shown in which Iscol ore is used as a hard-to-reducible ore and applied to a blast furnace equipped with a bell armor type distribution control device.

装入方式を第6図に示す。従来操業例は、コークス装入
時はアーマ位置を0(co)とし、鉱石装入時はアーマ
位置を8 (08)に設定した0oO8を用いる。これ
に対し、本発明装入方式は10〜8朋の大きさの小塊イ
スコールを炉壁近傍に装入するため、鉱石全装入量の7
5チはOIとし、残925%は10〜8闘のイスコール
細粒鉱OIlとして2つに分割し、該OH装入時のアー
マ位置を5として炉心寄シに、また、該OIl装入時の
アーマ位置を2として炉壁寄りKしたO8o’oI、。
The charging method is shown in Figure 6. In the conventional operation example, when charging coke, the armor position is set to 0 (co), and when charging ore, the armor position is set to 8 (08), 0oO8. On the other hand, in the charging method of the present invention, small pieces of Iscor with a size of 10 to 8 mm are charged near the furnace wall.
5th is OI, and the remaining 925% is 10 to 8 pieces of Iscor fine grain OIl, which is divided into two parts, and the armor position at the time of OH charging is set to 5, and it is placed near the core. O8o'oI, with the armor position set to 2 and K closer to the furnace wall.

0 ’10 I =a @用いた。アーマ−をこのよう
に調節すれば1小塊イスコール鉱を、第6図(ロ)に示
すように、炉壁近傍のみ選択的に装入することが可能で
ある。
0 '10 I = a @ was used. By adjusting the armor in this manner, it is possible to selectively charge one small piece of iscol ore only near the furnace wall, as shown in FIG. 6(b).

第7図は、上記装入方式にもとづいて小塊イスコール鉱
を装入したときの従来操業例と、本発明操業例とを比較
した代表的な操業因子のグラフである。この図から判る
ように、lO〜8属愚の小塊イスコール鉱約9%装入し
ても、却って通気性(Dp)は低下することなく、また
スリップもない上、Sl、η。0の変動にも大きな影響
を及ばずことなく長期に安定した炉操業が可能になる。
FIG. 7 is a graph of typical operating factors comparing a conventional operating example and an operating example of the present invention when small-sized iscoal ore is charged based on the above-mentioned charging method. As can be seen from this figure, even when about 9% of small pieces of iscol ore of group 8 to 10 are charged, the permeability (Dp) does not deteriorate, there is no slip, and Sl, η. It is possible to operate the furnace stably for a long period of time without having a large effect even on fluctuations in zero.

以上説明したように本発明によれば、小粒化させ炉壁近
傍に装入することで、イスコール鉱などの難還元性鉱石
を操業阻害を引起すこと必;なくなり、かような鉱石を
使用する場合であっても長期に安定した炉操業が約束さ
れる。
As explained above, according to the present invention, by reducing the size of the grains and charging them near the furnace wall, it is no longer necessary to use difficult-to-reducible ores such as iscor ores that hinder operations, and such ores can be used. This ensures stable furnace operation over a long period of time, even in the worst case scenario.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、難還元性鉱石配合割合とコークス原単位との
関係を示すグラフ、 第2図は、各種銘柄の鉱石についての還元性状の特性を
示すグラフ、 第8図の(イ)、(ロ)は、炉半径方向の高炉装入物粒
度分布を示すグラフ、 第4図は、炉半径方向における塊鉱、塊粉混合鉱の空隙
率特性を比較するグラフ、 第5図は、高炉内装入原料の粒度構成を示すグラフ、 第6図は、従来法と本発明法′!i−実施するための装
入方式の説明図、 第7図は、従来一本発明操業例を比較する各操業要因変
動図である。 特許出願人 川崎製鉄株式会社 第1図 第2図 第3図 (イ) (ロ) 第4図 が4掻J 1%1 f)信J 第5図 第6図
Figure 1 is a graph showing the relationship between the proportion of hard-to-reducible ores and the coke consumption unit. Figure 2 is a graph showing the characteristics of the reducing properties of various brands of ore. B) is a graph showing the particle size distribution of blast furnace charge in the radial direction of the furnace. Figure 4 is a graph comparing the porosity characteristics of lump ore and mixed lump ore in the radial direction of the furnace. Figure 5 is the interior of the blast furnace. A graph showing the particle size structure of the input raw materials, Figure 6, shows the conventional method and the method of the present invention'! i-Explanatory diagram of the charging system for implementation, FIG. 7 is a diagram of each operational factor variation comparing the conventional operation example and the present invention operation example. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 2 Figure 3 (a) (b) Figure 4 is 4 1% 1 f) Shin J Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 L 高炉装入原料のうち、下記還元率が40%以下の難
還元性鉱石については、3〜10%の細粒状にして、炉
壁近傍の位置に装入して操業を行うことを特徴とする高
炉操業法。 記 式中のW。:還元前試料重量 WF:還元後試料重量 Wl:採取重量 A:T、Fe% B:Fe0% 但し、試験条件はCo : 80%、 N2: 70 
%900℃、180分の還元雰囲気を用いる。
[Claims] L Among the raw materials charged to the blast furnace, hard-to-reducible ores with a reduction rate of 40% or less are made into fine particles of 3 to 10% and charged near the furnace wall for operation. A blast furnace operating method characterized by carrying out the following. W in the notation. : Sample weight before reduction WF: Sample weight after reduction Wl: Collection weight A: T, Fe% B: Fe0% However, the test conditions are Co: 80%, N2: 70
A reducing atmosphere of %900°C and 180 minutes is used.
JP24451083A 1983-12-27 1983-12-27 Method for operating blast furnace Pending JPS60138009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24451083A JPS60138009A (en) 1983-12-27 1983-12-27 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24451083A JPS60138009A (en) 1983-12-27 1983-12-27 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPS60138009A true JPS60138009A (en) 1985-07-22

Family

ID=17119748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24451083A Pending JPS60138009A (en) 1983-12-27 1983-12-27 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPS60138009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229142A (en) * 1989-07-20 1993-07-20 Nissei Asb Machine Co., Ltd. Temperature adjusting and compressing in injection stretch blow molding for forming raised portions in the container produced

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229142A (en) * 1989-07-20 1993-07-20 Nissei Asb Machine Co., Ltd. Temperature adjusting and compressing in injection stretch blow molding for forming raised portions in the container produced

Similar Documents

Publication Publication Date Title
RU2435868C1 (en) Procedure for production of pelleted reduced iron and procedure for production of cast iron
CN102803523A (en) Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
JP2015074801A (en) Blast furnace operation method
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
US3153586A (en) Slag coated ore compacts and process for making the same
JPS60138009A (en) Method for operating blast furnace
Haque et al. Reduction of iron ore fines by coal fines in a packed bed and fluidized bed apparatus—A comparative study
US3083090A (en) Production of sinter
US3215521A (en) Method for the direct reduction of iron ore pellets
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JP2579785B2 (en) Pre-reduction device for smelting reduction
JP3829516B2 (en) Blast furnace operation method
JPS59153815A (en) Feeding device of raw material to melt-reducing furnace
WO2021152989A1 (en) Method for charging raw material into blast furnace
JPH08120311A (en) Method for charging raw material of blast furnace
JP3014549B2 (en) Blast furnace operation method
US3925069A (en) Process for producing pellets with cement
JP4379083B2 (en) Method for producing semi-reduced agglomerate
JP4599736B2 (en) Granulation method of sintering raw material
JP6885528B1 (en) How to charge raw materials to the blast furnace
JP2679101B2 (en) How to load sinter into the blast furnace
JP4724942B2 (en) Blast furnace operation method
JP2002285250A (en) Method for granulating raw material for sintering
JP2003171705A (en) Method for charging raw material into blast furnace
JP2600803B2 (en) Blast furnace raw material charging method