JPS60137296A - Production of l-lysine - Google Patents

Production of l-lysine

Info

Publication number
JPS60137296A
JPS60137296A JP24357183A JP24357183A JPS60137296A JP S60137296 A JPS60137296 A JP S60137296A JP 24357183 A JP24357183 A JP 24357183A JP 24357183 A JP24357183 A JP 24357183A JP S60137296 A JPS60137296 A JP S60137296A
Authority
JP
Japan
Prior art keywords
molasses
lysine
fermentation
exchange resin
sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24357183A
Other languages
Japanese (ja)
Other versions
JPH0466558B2 (en
Inventor
Tetsuya Kaneko
哲也 金子
Kiyoshi Tanaka
清 田中
Masaru Saeki
佐伯 賢
Tetsuya Kawakita
川喜田 哲哉
Shigeo Ikeda
茂穂 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP24357183A priority Critical patent/JPS60137296A/en
Publication of JPS60137296A publication Critical patent/JPS60137296A/en
Publication of JPH0466558B2 publication Critical patent/JPH0466558B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:Molasses is treated with a cationic ion-exchange resin and subjected to fermentation to achieve high-yield production of L-lysine through fermentation process. CONSTITUTION:Cane molasses or beet molasses is diluted into an appropriate concentration of saccharides, e.g., 10-55g/dl, then passed through a cationic ion-exchange resin, and eluted with water. The resultant eluate is used as a carbon source to produce L-lysine by a known fermentation process.

Description

【発明の詳細な説明】 本発明は、モラセスから、L−リジン(以下リジンと略
す。)を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing L-lysine (hereinafter abbreviated as lysine) from molasses.

モラセスは、せ蔗糖あるいは甜菜糖等の製糖工業に於て
生ずる副生物であり、主として、シュークロースを含ん
だ糖液であるが、糖の他に、多量の夾雑物質を含んでい
るだめ、糖を経済的に分離することができず、現在では
L−グルタミン酸発酵・リジン発酵あるいはアルコール
発酵原料として使用されている。
Molasses is a by-product produced in the sugar manufacturing industry, such as sucrose or beet sugar. Molasses is a sugar solution that mainly contains sucrose, but it also contains a large amount of impurities in addition to sugar. cannot be separated economically, and is currently used as a raw material for L-glutamic acid fermentation, lysine fermentation, or alcohol fermentation.

しかしながら、発酵原料として使用する場合であっても
、やはシ多量の夾雑物、特に塩類や着色物が存在するた
め、発酵生産物を分離・精製する上で、また廃液の処理
の面からも大きなコスト負担となっている。リジン発酵
液は、酸性条件下で、カチオン交換樹脂にリジンを吸着
させるプロセスによって、分離精製が行われるが通常で
あるが、モラセス由来のカリウム、カルシウムなどの夾
雑カチオンが発酵液中に多量に存在するため、強酸性下
で樹脂処理せざるを得ない。即ち、周知のようにリジン
の如き塩基性アミノ酸は、Pllによシ、1価陽イオン
と2価陽イオンになシ得、2価イオンが1価イオンよシ
イオン交換樹脂への吸着能が強いので、夾雑カチオンが
少ない場合は1価イオンであるPH″4.5で吸着させ
ればよいのであるが、モラセス原料のリジン発酵液のよ
うに夾雑カチオンが多い場合は、夾雑カチオンを排除し
て吸着させるためには2価イオンであるP)(2付近で
吸着させねばならない。
However, even when used as a fermentation raw material, there are a large amount of impurities, especially salts and colored substances, so it is difficult to separate and purify the fermented product and to treat waste liquid. This poses a large cost burden. Lysine fermentation liquid is usually separated and purified by a process in which lysine is adsorbed to a cation exchange resin under acidic conditions, but a large amount of contaminant cations such as potassium and calcium derived from molasses are present in the fermentation liquid. Therefore, the resin must be treated under strong acidity. That is, as is well known, basic amino acids such as lysine can absorb Pll, monovalent cations and divalent cations, and divalent ions have a stronger adsorption ability to ion exchange resins than monovalent ions. Therefore, if there are few contaminant cations, it is sufficient to adsorb them with a monovalent ion of pH 4.5, but if there are many contaminant cations, such as in the lysine fermentation liquid used as raw material for molasses, remove the contaminant cations. In order to adsorb P, which is a divalent ion, it must be adsorbed at around 2.

′このため、吸着のための酸使用量、溶離のためのアル
カリの使用量、吸着廃液の中和のだめのアルカリの使用
量がいずれも大量となシ、コスト負担が大きいという欠
点を有していた。
'For this reason, the amount of acid used for adsorption, the amount of alkali used for elution, and the amount of alkali used to neutralize the adsorption waste liquid are all large, which has the disadvantage of a large cost burden. Ta.

そこで、本発明者等は、モラセスを原料とする発酵液を
安価に分離・精製する方法を開発すべく種々研究を重ね
た結果、モラセスを陽イオン型カチオン交換樹脂を詰め
た塔に通した後に該樹脂塔に水を流し、糖を含む溶出液
区分を採取すれば、該糖溶出液区分中にはモラセス中に
含まれていた種々のカチオンが1種類のカチオンに置換
されるか、又は除去されること、及び該糖溶出液区分を
発酵法によるリジンを製造するための炭素源として用い
れば、リジン発酵液中のリジンをカチオン交換樹脂で分
離・精製する際の酸及びアルカリの使用量が大巾に低減
できることを発見し、本発明を完成するに至った。
Therefore, the present inventors conducted various researches to develop a method to inexpensively separate and purify the fermentation liquid using molasses as a raw material. When water is poured into the resin column and an eluate section containing sugar is collected, various cations contained in the molasses are replaced with one type of cation or removed in the sugar eluate section. If the sugar eluate fraction is used as a carbon source for producing lysine by fermentation, the amount of acid and alkali used when separating and purifying lysine in the lysine fermentation solution using a cation exchange resin can be reduced. They have discovered that it is possible to significantly reduce the amount of heat generated, and have completed the present invention.

即ち、本発明はモラセスを陽イオン型カチオン交換樹脂
を詰めた塔に通した後に該樹脂塔に水を流し、糖を含む
溶出液区分を発酵法により L −IJリジン製造する
ための炭素源として用いることを特徴とするL−リジン
の製造法に関する。
That is, in the present invention, molasses is passed through a tower packed with a cation-type cation exchange resin, water is poured into the resin tower, and the eluate fraction containing sugar is used as a carbon source for producing L-IJ lysine by a fermentation method. The present invention relates to a method for producing L-lysine.

1本発明で1更用するモラセスは、ケーンモラセス又ハ
ビートモラセス等のモラセス類である。
The molasses used in the present invention is molasses such as cane molasses and beet molasses.

本発明で使用するカチオン交換樹脂としてはr −r 
ンハーライトIR−120J、「ダウエックス−50」
及び「ダイヤイオンS耽−IB」等の強酸性カチオン交
換樹脂、「アンバーライトIRC−50J、rアンバー
ライトXE−80J及び「ダイヤイオンWK−114等
の弱酸性カチオン交換樹脂等があり、使用に際しては、
H型あるいはNH4型にして使用する。NH4型の場合
は、処理したモラセスに移行したN)I3は発酵培地と
して有効に利用される。HWの場合は処理したモラセス
の声が低下するが、NH3で中和して使用に供すれば良
い。
The cation exchange resin used in the present invention is r - r
Nharite IR-120J, “Dowex-50”
There are strong acidic cation exchange resins such as ``Diaion S-IB'' and weakly acidic cation exchange resins such as ``Amberlite IRC-50J, r Amberlite XE-80J'' and ``Diaion WK-114.'' teeth,
Use in H type or NH4 type. In the case of the NH4 type, N)I3 transferred to the treated molasses is effectively used as a fermentation medium. In the case of HW, the voice of the treated molasses decreases, but it can be used after neutralizing it with NH3.

本発明においてモラセスを陽イオン型カチオン交換樹脂
を詰めた塔に通した後に、該樹脂塔に水を流し、糖を含
む溶出区分を採取するには、上記カチオン型のイオン交
換体を適当な大きさの樹脂塔に充填しこの充填塔に、適
当な糖濃度、例えば10〜55 E/dtの希釈モラセ
スを供給した後に該樹脂塔に水を流し、流出するイオン
置換されたモラセスを回収すれば良い。操作温度は室温
から90℃、好ましくは50から80℃であシ、供給速
度は0.5から58V(溶出容量/樹脂容量X時)であ
る。イオン交換体のイオン交換容量を越え、流出するモ
ラセスに、他のカチオンの混入がイオン当量比で1〜7
%程認められた時点で、モラセスの供給を中止する。イ
オン交換体は、再生すれば何度でも使用でき、その再生
方法は通常の方法で、再生剤には何を用いても良い。
In the present invention, after passing molasses through a tower packed with a cation-type cation exchange resin, water is poured through the resin tower to collect the eluted fraction containing sugar. After filling a resin column and supplying diluted molasses with an appropriate sugar concentration, for example 10 to 55 E/dt, to this packed column, water is allowed to flow through the resin column and the ion-substituted molasses flowing out is recovered. good. The operating temperature is from room temperature to 90°C, preferably from 50 to 80°C, and the feed rate is from 0.5 to 58V (elution volume/resin volume in X hours). The ion exchange capacity of the ion exchanger has been exceeded and other cations have been mixed into the flowing molasses at an ion equivalent ratio of 1 to 7.
%, the supply of molasses will be discontinued. The ion exchanger can be used any number of times if it is regenerated, and the regeneration method can be any conventional method, and any regenerating agent may be used.

また、イオン交換樹脂処理に先だち超高速遠心分離機例
えばウエストフアリア製5AOH型等によってモラセス
中に含有される固形物、いわゆるスラ、ジを除去したり
、リン酸あるいはリン酸塩類を加え、濁シを除くと共に
カルシウム塩類を除いておくと、イオン交換樹脂処理に
おけるイオン交換体の負荷を軽°減することができる。
In addition, prior to the ion exchange resin treatment, solids contained in the molasses, so-called sludge, are removed using an ultrahigh-speed centrifugal separator, such as Westphalia's 5AOH model, and phosphoric acid or phosphates are added to make the molasses cloudy. By removing calcium salts as well as carbon, the load on the ion exchanger during ion exchange resin treatment can be reduced.

上記の方法を用いてイオン置換されたモラセスを、通常
のリジン発酵に供することにより、無処理のモラセスを
使用した時に比べて発酵収率が飛躍的に向上する。
By subjecting the ion-substituted molasses using the above method to normal lysine fermentation, the fermentation yield is dramatically improved compared to when untreated molasses is used.

このようにして得られた糖を炭素源として発酵法によj
jl IJリジン製造するには、従来使用されて生物の
培養条件も特錬なものではない。
The sugar obtained in this way is used as a carbon source by fermentation method.
jl In order to produce IJ lysine, the culture conditions of organisms conventionally used are not particularly sophisticated.

従来知られているリジン生産能を有する微生物としては
、例えば以下のものがある。
Examples of conventionally known microorganisms capable of producing lysine include the following.

ブレビバクテリウム?フラブムATCC21475゜ブ
レビバクテリウム、7−ラクドフアーメン′タムATC
C21798、ブレビバクテリウム2#−シフトファー
メンタムFERMP−1944、コリネバクテリウム)
グルタミクムFEBMP−1986 培地中に含まれる炭素源は本発明の方法で得られた糖で
あるが、他に少量の他の炭素源、例えば粗糖、澱粉酸又
は酵素氷解物等、を併用してもよい・ 得られ丸発酵液を菌体含有のまま、あるいは適当な方法
で菌体を除去したのち、鉱酸で−を2〜5に調整する。
Brevibacterium? flavum ATCC21475゜Brevibacterium, 7-Rakudofamen'tumATC
C21798, Brevibacterium 2#-shift fermentum FERMP-1944, Corynebacterium)
Glutamicum FEBMP-1986 The carbon source contained in the medium is the sugar obtained by the method of the present invention, but small amounts of other carbon sources such as raw sugar, starch acid, or enzyme melted products may also be used in combination. Good: The obtained round fermented liquid may be left with bacterial cells, or the bacterial cells may be removed by an appropriate method, and then - adjusted to 2 to 5 with mineral acid.

しかるのちにカチオン交換樹脂に吸着させ、適当な溶離
剤で溶離することによ〕、精製されたリジン溶液を得る
ことができる。
Thereafter, a purified lysine solution can be obtained by adsorbing it onto a cation exchange resin and eluting it with a suitable eluent.

吸着に先立って行なう一調整の−は、モラセスの脱カチ
オンの程度によって決定すれば良い。即ち、カチオンが
殆んど除去されている場合は、リジンが1価のカチオン
であるPH4〜5付近でよく、カチオンの除去率が低く
なるに従って、リジンが2価のカチオンとなるP)(2
に近づけてゆけば良い。
The adjustment to be made prior to adsorption may be determined by the degree of decationization of the molasses. That is, when most of the cations are removed, the pH may be around 4 to 5, where lysine is a monovalent cation, and as the cation removal rate decreases, lysine becomes a divalent cation (P) (2
It would be better if we could get closer to it.

以上述べたごとく、モラセスの脱カチオンの程度により
、発酵液の樹脂処理の際に用うべき鉱酸の量を削減する
ことができる。
As described above, depending on the degree of decationization of molasses, it is possible to reduce the amount of mineral acid that should be used during resin treatment of fermentation liquor.

以下、実施例を説明する。Examples will be described below.

実施例 ビートモラセスあるいはケインモラセスに水を加え、糖
濃度を約50117dtに調整する。NH4型カチオン
交換樹脂(「ダイヤイオン5K−IBJ ) 240d
を充填したぁラム(30φX300m!11)のジャケ
ット温度を50℃に保持し、濃度調整したモラセスを5
0℃に調整し、SV2(480mJ?/Hr)にて供給
し、充填カラムよシ流出したモラセスを500d回収し
た。イオン交換樹脂処理したモラセスを原子吸光及び高
速液体クロマトグラフィーで、Na 、 K。
Example Water is added to beet molasses or cane molasses to adjust the sugar concentration to about 50,117 dt. NH4 type cation exchange resin (Diaion 5K-IBJ) 240d
The jacket temperature of the ram (30φ x 300m! 11) filled with molasses was maintained at 50℃, and the molasses with adjusted concentration was
The temperature was adjusted to 0° C., the molasses was supplied at SV2 (480 mJ?/Hr), and the molasses flowing out from the packed column was collected for 500 days. Molasses treated with ion exchange resin was analyzed by atomic absorption and high performance liquid chromatography to determine Na and K.

Mg 、 Cm 、 NH3を分析した結果ビートモラ
セスについてはイオン当量の97%が、ケインモラセス
についてはイオン当量の98%がNH4で置換されてい
た。
Analysis of Mg, Cm, and NH3 revealed that 97% of the ion equivalent of beet molasses and 98% of the ion equivalent of cane molasses were replaced by NH4.

イオン交換樹脂処理の終了後、得られた処理モラセスを
糖濃度(シュークロース換算)45%に調整し、その1
001mを第1表に示す組成の塩類溶液200+dと混
合し夫々300−のし−リジン発酵用培地を調製した。
After the ion exchange resin treatment, the resulting treated molasses was adjusted to a sugar concentration (sucrose equivalent) of 45%, and
001m was mixed with 200+d of a salt solution having the composition shown in Table 1 to prepare a medium for fermentation of 300-lysine.

第1表 塩類溶液の組成 KH2P O40,1517dt MgSO,・7I(、OO,06# Fe3O4”IH201,5m97atMnSO< ・
4)ItO’ 1.5 1サイアミン塩酸塩 30 μ
m77dt大豆蛋白加水分解液(TN 6.9/dA)
 3.811LVatこのようにして調製したリジン生
産用培地300dを1.0I容発酵槽に夫々張込み、1
15℃にて10分間加熱殺菌した。これに予め培養した
プレヒハクテリウムゆラクトフェルメンタムFERM−
P−1944を接種し、31.5℃にて−をアンモニア
ガスにて6.5に保ちつつ、通気攪拌下2日間培養した
O 培養液中に蓄積したリジンの景及び対糖収率を第2表に
示す。
Table 1 Composition of salt solution KH2P O40,1517dt MgSO,・7I(,OO,06# Fe3O4”IH201,5m97atMnSO<・
4) ItO' 1.5 1thiamine hydrochloride 30 μ
m77dt soybean protein hydrolyzate (TN 6.9/dA)
3. Pour 300 d of the lysine production medium prepared in this way into a 1.0 I capacity fermenter, and
Heat sterilization was performed at 15° C. for 10 minutes. This was pre-cultured with Prehyacterium lactofermentum FERM-
P-1944 was inoculated and cultured at 31.5°C for 2 days with aeration and agitation while maintaining the temperature at 6.5 with ammonia gas. It is shown in Table 2.

第2表 し−リジン発酵収率 L−リジン(塩酸塩換算) /−闇罰−−−−罎阿噌−−優−−−−h慟幡語1−一
罎圏一峠−I−―“10111陽得られた発酵液を、硫
酸でP)(2及び4に調整し各々、カチオン交換樹脂(
「ダイヤイオン5K−IBJ)に対するリジンの飽和吸
着量を測定した。その結果を第3表に示す。
Table 2 Lysine Fermentation Yield L-Lysine (in terms of hydrochloride) /-Dark Punishment---Kan-A---Yu---h. 10111 The obtained fermentation liquid was adjusted to P2 and 4 with sulfuric acid, respectively, and cation exchange resin (
The saturated adsorption amount of lysine on "Diaion 5K-IBJ" was measured. The results are shown in Table 3.

第3表 リジンの飽和吸着量(77/l Re5in)
なお本実施例と同一のビートモラセスあるいはケインモ
ラセスをカチオン交換樹脂無処理のtま、同様の条件で
発酵し、その発酵液の硫醸酸性下におけるカチオン交換
樹脂(「ダイヤイオン8 K−I BJ)に対するリジ
ンの飽和吸着量を第3表に示す。
Table 3: Saturation adsorption amount of lysine (77/l Re5in)
Note that the same beet molasses or cane molasses as in this example was fermented under the same conditions without cation exchange resin treatment, and the fermented liquid was fermented with cation exchange resin ("Diaion 8 K-I BJ") under sulfuric acidity. ) The saturated adsorption amount of lysine is shown in Table 3.

出願人 味の素株式会社Applicant: Ajinomoto Co., Inc.

Claims (1)

【特許請求の範囲】[Claims] モラセスを陽イオン型カチオン♀換樹脂を詰めた塔に通
した後に該樹脂塔に水を流し、糖を含む溶出液区分を発
酵法によシL−リジンを製造するための炭素源として用
いることを特徴とするL−リジンの製造法。
After passing the molasses through a column packed with a cation-type cation exchange resin, water is flowed through the resin column, and the eluate fraction containing sugar is used as a carbon source for producing L-lysine by a fermentation method. A method for producing L-lysine, characterized by:
JP24357183A 1983-12-23 1983-12-23 Production of l-lysine Granted JPS60137296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24357183A JPS60137296A (en) 1983-12-23 1983-12-23 Production of l-lysine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24357183A JPS60137296A (en) 1983-12-23 1983-12-23 Production of l-lysine

Publications (2)

Publication Number Publication Date
JPS60137296A true JPS60137296A (en) 1985-07-20
JPH0466558B2 JPH0466558B2 (en) 1992-10-23

Family

ID=17105810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24357183A Granted JPS60137296A (en) 1983-12-23 1983-12-23 Production of l-lysine

Country Status (1)

Country Link
JP (1) JPS60137296A (en)

Also Published As

Publication number Publication date
JPH0466558B2 (en) 1992-10-23

Similar Documents

Publication Publication Date Title
JP4638598B2 (en) Process for purifying nutrients from processed foods
AU2007318897B2 (en) Treatment of sugar juice
US2375165A (en) Recovery of nitrogenous products from organic wastes
CA1333779C (en) Method for producing galactooligosaccharide
DE3400574C2 (en)
JPS60137296A (en) Production of l-lysine
CN1125037C (en) Process for producing glutamic acid
JPH0767398B2 (en) How to treat beet sugar solution
JPH02115193A (en) Purification of difructose-dianhydride
JP3916858B2 (en) Method for producing mannose by enzymatic method
AU726559B2 (en) Process for the purification of nutrients from food process streams
WO2006051940A1 (en) L-ornithine crystal and process for producing the same
JP3776160B2 (en) Method for producing D-calcium pantothenate
JPH11221100A (en) Purification of beet sugar liquid
JPS6054700A (en) Production of fermentation stock material
JPH04183395A (en) Method for separating and purifying mannitol
JPS60248195A (en) Preparation of l-glutamine by fermentation
JPS59227269A (en) Production of slightly carious sweetening agent from beet molasses
Norman Juice enhancement by ion exchange and adsorbent technologies
JPS60256392A (en) Treatment of fermentation mixture
JP2005151927A (en) Lactobacillus growth promoter and method for producing the same
WO2007105788A1 (en) Process for purification of amino acid
JPH01199583A (en) Separation and recovery of erythritol from erythritol-containing culture fluid
JPH04178349A (en) Method for separating tartaric acid
JPS6394987A (en) Novel production of beta-d-galactopyranosyl-(1-6)-beta-d-galactopyranosyl-(1-4)-d-fructose