JPH0466558B2 - - Google Patents

Info

Publication number
JPH0466558B2
JPH0466558B2 JP24357183A JP24357183A JPH0466558B2 JP H0466558 B2 JPH0466558 B2 JP H0466558B2 JP 24357183 A JP24357183 A JP 24357183A JP 24357183 A JP24357183 A JP 24357183A JP H0466558 B2 JPH0466558 B2 JP H0466558B2
Authority
JP
Japan
Prior art keywords
molasses
lysine
fermentation
sugar
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24357183A
Other languages
Japanese (ja)
Other versions
JPS60137296A (en
Inventor
Tetsuya Kaneko
Kyoshi Tanaka
Masaru Saeki
Tetsuya Kawakita
Shigeo Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP24357183A priority Critical patent/JPS60137296A/en
Publication of JPS60137296A publication Critical patent/JPS60137296A/en
Publication of JPH0466558B2 publication Critical patent/JPH0466558B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、モラセスから、L−リジン(以下リ
ジンと略す。)を製造する方法に関する。 モラセスは、甘蔗糖あるいは甜菜糖等の製糖工業
に於て生ずる副生物であり、主として、シユーク
ロースを含んだ糖液であるが、糖の他に、多量の
夾雑物質を含んでいるため、糖を経済的に分離す
ることができず、現在ではL−グルタミン酸発
酵・リジン発酵あるいはアルコール発酵原料とし
て使用されている。 しかしながら、発酵原料として使用する場合で
あつても、やはり多量の夾雑物、特に塩類や着色
物が存在するため、発酵生産物を分離・精製する
上で、また廃液の処理の面からも大きなコスト負
担区なつている。リジン発酵液は、酸性条件下
で、カチオン交換樹脂にリジンを吸着させるプロ
セスによつて、分離精製が行われるが通常である
が、モラセス由来のカリウム、カルシウムなどの
夾雑カチオンが発酵液中に多量に存在するため、
強酸性下で樹脂処理せざるを得ない。即ち、周知
のようにリジンの如き塩基性アミノ酸は、PHによ
り、1価陽イオンと2価陽イオンになり得、2価
イオンが1価イオンよりイオン交換樹脂への吸着
能が強いので、夾雑カチオンが少ない場合は1価
イオンであるPH4.5で吸着させればよいのである
が、モラセス原料のリジン発酵液のように夾雑カ
チオンが多い場合は、夾雑カチオンを排除して吸
着させたるためには2価イオンであるPH2付近で
吸着させねばならない。 このため、吸着のための酸使用量、溶離のため
のアルカリの使用量、吸着廃液の中和のためのア
ルカリの使用量がいずれも大量となり、コスト負
担が大きいという欠点を有していた。 そこで、本発明者等は、モラセスを原料とする発
酵液を安価に分離・精製する方法を開発すべく
種々研究を重ねた結果、モラセスを陽イオン型カ
チオン交換樹脂を詰めた塔に通した後に該樹脂塔
に水も流し、糖を含む溶出液区分を採取すれば、
該糖溶出液区分中にはモラセス中に含まれていた
種々のカチオンが1種類のカチオンに置換され
か、又は除去されること、及び該糖溶出液区分を
発酵法によるリジンを製造するための炭素源とし
て用いれば、リジン発酵液中のリジンをカチオン
交換樹脂で分離・精製する際の酸及びアルカリの
使用量が大巾に低減できることを発見し、本発明
を完成するに至つた。 即ち、本発明はモラセスを陽イオン型カチオン
交換樹脂を詰めた塔に通した後に該樹脂塔に水を
流し、糖を含む溶出液区分を発酵法によりL−リ
ジンを製造するための炭素源として用いることを
特徴とするL−リジンの製造方法に関する。 本発明で使用するモラセスは、ケーンモラセス
又はビートモラセス等のモラセス類である。 本発明で使用するカチオン交換樹脂としては
「アンバーライトIR−120」、「ダウエツクス−50」
及び「ダイヤイオンSK−1B」等の強酸性カチオ
ン交換樹脂、「アンバーライトIRC−50」、「アン
バーライトXE−80」及び「ダイヤイオンWK−
11」等の弱酸性カチオン交換樹脂等があり、使用
に際しては、H型あるいはNH4型にして使用す
る。NH4型の場合は、処理したモラセスに移行
したNH3は発酵培地として有効に利用される。
H型の場合は処理したモラセスのPHが低下する
が、NH3で中和して使用に供すれば良い。 本発明においてモラセスを陽イオン型カチオン
交換樹脂を詰めた塔に通した後に、該樹脂塔に水
を流し、糖を含む溶出区分を採取するには、上記
カチオン型のイオン交換体を適当な大きさの樹脂
塔に充填しこの充填塔に、適当な糖濃度、例えば
10〜55g/dlの希釈モラセスを供給した後に該樹
脂塔に水を流し、流出するイオン置換されたモラ
セスを回収すれば良い。操作温度は室温から90
℃、好ましくは50から80℃であり、供給速度は
0.5から5SV(溶出容量/樹脂容量×時)である。
イオン交換体のイオン交換容量を越え、流出する
モラセスに、他のカチオンの混入がイオン当量比
で1〜7%程認められた時点で、モラセスの供給
を中止する。イオン交換体は、再生すれば何度で
も使用でき、その再生方法は通常の方法で、再生
剤には何を用いても良い。 また、イオン交換樹脂処理に先だち超高速心分
離機例えばウエストフアリア製SAOH型等によ
つてモラセス中に含有される固形物、いわゆるス
ラツジを除去したり、リン酸あるいはリン酸塩類
を加え、濁りを除くと共にカルシウム塩類を除い
ておくと、イオン交換樹脂処理におけるイオン交
換体の負荷を軽減することができる。 上記の方法を用いてイオン置換されたモラセス
を、通常のリジン発酵に供することにより、無処
理のモラセスを使用した時に比べて発酵収率が飛
躍的に向上する。 このようにして得られた糖を炭素源として発酵
法によりリジンを製造するには、従来使用されて
いるリジン生産能を有する微生物のすべてが使用
でき、又この発明において使用される培地及び微
生物の培養条件も特殊なものではない。 従来知られているリジン生産能を有する微生物
としては、例えば以下のものがある。 ブレビバクテリウム・フラブムATCC21475、
ブレビバクテリウム・ラクトフアーメンタム
ATCC21798、ブレビバクテリウム・ラクトフア
ーメンタムFERM P−1944、コリネバクテリウ
ム・グルタミクムFERM P−1986 培地中に含まれる炭素源は本発明の方法で得ら
れた糖であるが、他に少量の他の炭素源、例えば
粗糖、澱粉酸又は酸素水解物等、を併用してもよ
い。 得られた発酵液を菌体含有のまま、あるいは適
当な方法で菌体を除去したのち、鉱酸でPHを2〜
5に調整する。しかるのちにカチオン交換樹脂に
吸着させ、適当な溶難剤で溶離することにより、
精製されたリジン溶液を得ることができる。 吸着に先立つて行なうPH調整のPHは、モラセス
の脱カチオンの程度によつて決定すれば良い。即
ち、カチオンが殆んど除去されている場合は、リ
ジンが1価のカチオンであるPH4〜5付近でよ
く、カチオンの除去率が低くなるに従つて、リジ
ンが2価のカチオンとなるPH2に近づけてゆけば
良い。 以上述べたごとく、モラセスの脱カチオンの程
度により、発酵液の樹脂処理の際に用うべき鉱酸
の量を削減することができる。 以下、実施例を説明する。 実施例 ビートモラセスあるいはケインモラセスに水を
加え、糖濃度を約50g/dlに調整する。NH4
カチオン交換樹脂(「ダイヤイオンSK−1B」)
240mlを充填したカラム(30φ×300mm)のジヤケ
ツト温度を50℃に保持し、濃度調整したモラセス
を50℃に調整し、SV2(480ml/Hr)にて供給し、
充填カラムより流出したモラセスを500ml回収し
た。イオン交換樹脂処理したモラセスを原子吸光
及び高速液体クロマトグラフイーで、Na,K,
Mg,Ca,NH3を分析した結果ビートモラセスに
ついてはイオン当量の97%が、ケインモラセスに
ついてはイオン当量の98%がNH4 +で置換されて
いた。 イオン交換樹脂処理の終了後、得られた処理モ
ラセスを糖濃度(シユークロース換算)45%に調
整し、その100mlを第1表に示す組成の塩類溶液
200mlと混合し夫々300mlのL−リジン発酵用培地
を調製した。
The present invention relates to a method for producing L-lysine (hereinafter abbreviated as lysine) from molasses. Molasses is a byproduct produced in the sugar manufacturing industry, such as cane sugar or beet sugar. Molasses is a sugar solution that mainly contains sucrose, but since it contains a large amount of impurities in addition to sugar, It cannot be separated economically and is currently used as a raw material for L-glutamic acid fermentation, lysine fermentation, or alcohol fermentation. However, even when used as a fermentation raw material, there are still large amounts of impurities, especially salts and colored substances, so it costs a lot in terms of separating and refining the fermented product and also in terms of waste liquid treatment. It is becoming a burden area. Lysine fermentation liquid is usually separated and purified by a process in which lysine is adsorbed to a cation exchange resin under acidic conditions, but there are large amounts of contaminant cations such as potassium and calcium derived from molasses in the fermentation liquid. Because it exists in
The resin must be treated under strong acidity. That is, as is well known, basic amino acids such as lysine can become monovalent cations and divalent cations depending on the pH, and since divalent ions have a stronger adsorption ability to ion exchange resins than monovalent ions, they are less susceptible to contaminants. If there are few cations, it is sufficient to adsorb them with monovalent ions of pH 4.5, but if there are many contaminant cations, such as in the lysine fermentation liquid used as a raw material for molasses, it is necessary to remove the contaminant cations and adsorb them. must be adsorbed near PH2, which is a divalent ion. Therefore, the amount of acid used for adsorption, the amount of alkali used for elution, and the amount of alkali used for neutralizing the adsorption waste liquid are all large, resulting in a large cost burden. Therefore, the present inventors conducted various researches to develop a method to inexpensively separate and purify the fermentation liquid using molasses as a raw material. If water is also passed through the resin tower and the eluate fraction containing sugar is collected,
In the sugar eluate section, various cations contained in the molasses are replaced with one type of cation or removed, and the sugar eluate section is used for producing lysine by fermentation. The inventors discovered that the amount of acid and alkali used when separating and purifying lysine in a lysine fermentation liquid using a cation exchange resin can be significantly reduced by using it as a carbon source, leading to the completion of the present invention. That is, in the present invention, molasses is passed through a column filled with a cation exchange resin, water is poured into the resin column, and the eluate containing sugar is used as a carbon source for producing L-lysine by a fermentation method. The present invention relates to a method for producing L-lysine. The molasses used in the present invention is molasses such as cane molasses or beet molasses. The cation exchange resins used in the present invention include "Amberlite IR-120" and "Dowex-50".
and strongly acidic cation exchange resins such as “Diaion SK-1B”, “Amberlite IRC-50”, “Amberlite XE-80” and “Diaion WK-”
There are weakly acidic cation exchange resins such as "11", and when used, they are used in the H form or NH 4 form. In the case of NH 4 type, NH 3 transferred to the treated molasses is effectively used as a fermentation medium.
In the case of type H, the pH of the treated molasses decreases, but it can be used after being neutralized with NH3 . In the present invention, after passing molasses through a tower packed with a cation-type cation exchange resin, water is poured through the resin tower to collect the eluted fraction containing sugar. This packed tower is filled with an appropriate sugar concentration, e.g.
After supplying 10 to 55 g/dl of diluted molasses, water may be allowed to flow through the resin column, and the ion-substituted molasses flowing out may be recovered. Operating temperature ranges from room temperature to 90°C
℃, preferably 50 to 80℃, and the feeding rate is
0.5 to 5SV (elution volume/resin volume x hours).
When the ion exchange capacity of the ion exchanger is exceeded and the outflowing molasses is found to be contaminated with other cations in an ion equivalent ratio of 1 to 7%, the supply of molasses is stopped. The ion exchanger can be used any number of times if it is regenerated, and the regeneration method can be any conventional method, and any regenerating agent may be used. In addition, prior to ion-exchange resin treatment, solids contained in the molasses, so-called sludge, are removed using an ultra-high-speed heart separator, such as Westphalia's SAOH model, and phosphoric acid or phosphates are added to reduce turbidity. By removing both calcium salts, the load on the ion exchanger during ion exchange resin treatment can be reduced. By subjecting the ion-substituted molasses using the above method to normal lysine fermentation, the fermentation yield is dramatically improved compared to when untreated molasses is used. To produce lysine by fermentation using the sugar obtained in this way as a carbon source, all conventionally used microorganisms capable of producing lysine can be used, and the culture medium and microorganisms used in this invention can be used. The culture conditions are also not special. Conventionally known microorganisms capable of producing lysine include, for example, the following. Brevibacterium flavum ATCC21475,
Brevibacterium lactofamentum
ATCC21798, Brevibacterium lactofamentum FERM P-1944, Corynebacterium glutamicum FERM P-1986 The carbon source contained in the medium is the sugar obtained by the method of the present invention, in addition to a small amount of other A carbon source such as raw sugar, starch acid or oxygen hydrolyzate may be used in combination. The resulting fermentation liquid may be left containing bacteria, or after the bacteria have been removed by an appropriate method, the pH is adjusted to 2~2 with mineral acid.
Adjust to 5. Then, by adsorbing it on a cation exchange resin and eluting it with a suitable refractory agent,
A purified lysine solution can be obtained. The pH of the pH adjustment performed prior to adsorption may be determined depending on the degree of decationization of the molasses. That is, if most of the cations have been removed, the pH may be around 4 to 5, where lysine is a monovalent cation, and as the cation removal rate decreases, the pH may be around 2, where lysine is a divalent cation. You just have to get closer. As described above, depending on the degree of decationization of molasses, the amount of mineral acid to be used during resin treatment of fermentation liquor can be reduced. Examples will be described below. Example Water is added to beet molasses or cane molasses to adjust the sugar concentration to approximately 50 g/dl. NH 4 type cation exchange resin (“Diaion SK-1B”)
The jacket temperature of the column (30φ x 300mm) packed with 240ml was maintained at 50℃, the concentration-adjusted molasses was adjusted to 50℃, and was supplied at SV2 (480ml/Hr).
500 ml of molasses flowing out from the packed column was collected. Molasses treated with ion exchange resin was analyzed using atomic absorption and high performance liquid chromatography to determine Na, K,
Analysis of Mg, Ca, and NH 3 revealed that 97% of the ion equivalents of beet molasses and 98% of the ion equivalents of cane molasses were replaced by NH 4 + . After the ion exchange resin treatment, the resulting treated molasses was adjusted to a sugar concentration (sucrose equivalent) of 45%, and 100ml of it was added to a salt solution with the composition shown in Table 1.
200 ml of each were mixed to prepare 300 ml of L-lysine fermentation medium.

【表】 このようにして調製したリジン生産用培地300
mlを1.0容発酵槽に夫々張込み、115℃にて10分
間加熱殺菌した。これに予め培養したブレビバク
テリウム・ラクトフエルメンタムFERM−P−
1944を接種し、31.5℃にてPHをアンモニアガスに
て6.5に保ちつつ、通気撹拌下2日間培養した。 培養液中に蓄積したリジンの量及び対糖収率を
第2表に示す。
[Table] Lysine production medium 300 prepared in this way
ml of each was poured into a 1.0 volume fermenter and sterilized by heating at 115°C for 10 minutes. Brevibacterium lactofermentum FERM-P- cultured in advance on this
1944 was inoculated and cultured at 31.5°C for 2 days with aeration and stirring while maintaining the pH at 6.5 with ammonia gas. Table 2 shows the amount of lysine accumulated in the culture solution and the sugar yield.

【表】 ケインモラセス〓
〓 有 4.20 28.0
〓 無 4.35 29.0
ビートモラセス〓
〓 無 4.50 30.0
得られた発酵液を、硫酸でPH2及び4に調整し
各々、カチオン交換樹脂(「ダイヤイオンSK−
1B」)に対するリジンの飽和吸着量を測定した。
その結果を第3表に示す。
[Table] Cane molasses
〓 Yes 4.20 28.0
〓 None 4.35 29.0
Beet molasses
〓 None 4.50 30.0
The obtained fermentation liquor was adjusted to pH 2 and 4 with sulfuric acid and treated with cation exchange resin (Diaion SK-
1B") was measured.
The results are shown in Table 3.

【表】 なお本実施例と同一のビートモラセスあるいは
ケインモラセスをカチオン交換樹脂無処理のま
ま、同様の条件で発酵し、その発酵液の硫酸酸性
下におけるカチオン交換樹脂(「ダイヤイオンSK
−1B」)に対するリジンの飽和吸着量を第3表に
示す。
[Table] The same beet molasses or cane molasses as in this example was fermented under the same conditions without treatment with cation exchange resin, and the fermented liquid was fermented with cation exchange resin (Diaion SK) under acidic sulfuric acid.
Table 3 shows the saturated adsorption amount of lysine for 1B).

Claims (1)

【特許請求の範囲】[Claims] 1 モラセスを陽イオン型カチオン交換樹脂を詰
めた塔に通した後に該樹脂塔に水を流し、糖を含
む溶出液区分を発酵法によりL−リジンを製造す
るための炭素源として用いることを特徴とするL
−リジンの製造法。
1. A method characterized by passing molasses through a tower packed with a cation-type cation exchange resin, then flowing water through the resin tower, and using the eluate fraction containing sugar as a carbon source for producing L-lysine by a fermentation method. L to be
-Method for producing lysine.
JP24357183A 1983-12-23 1983-12-23 Production of l-lysine Granted JPS60137296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24357183A JPS60137296A (en) 1983-12-23 1983-12-23 Production of l-lysine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24357183A JPS60137296A (en) 1983-12-23 1983-12-23 Production of l-lysine

Publications (2)

Publication Number Publication Date
JPS60137296A JPS60137296A (en) 1985-07-20
JPH0466558B2 true JPH0466558B2 (en) 1992-10-23

Family

ID=17105810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24357183A Granted JPS60137296A (en) 1983-12-23 1983-12-23 Production of l-lysine

Country Status (1)

Country Link
JP (1) JPS60137296A (en)

Also Published As

Publication number Publication date
JPS60137296A (en) 1985-07-20

Similar Documents

Publication Publication Date Title
US6280985B1 (en) Process for the separation and purification of lactic acid from a fermentation medium
JP4638598B2 (en) Process for purifying nutrients from processed foods
US2375165A (en) Recovery of nitrogenous products from organic wastes
CA1333779C (en) Method for producing galactooligosaccharide
US5532148A (en) Process for producing of citric acid and monovalent citrate salts
DE3400574C2 (en)
CN1125037C (en) Process for producing glutamic acid
JPH0466558B2 (en)
US4288619A (en) Process for the recovery of α-hydroxy- and α-amino-carboxylic acids from sugar-containing media
US4543330A (en) Process for the production of a fermentation starting material
JPS6160050B2 (en)
US3639467A (en) Method of recovering glutamic acid from a fermentation broth
US3173949A (en) Recovery of glutamic acid from a fermentation broth using cation exchange resins
JPH0641476B2 (en) Method for producing high-purity lactulose syrup
JPS60248195A (en) Preparation of l-glutamine by fermentation
JP3776160B2 (en) Method for producing D-calcium pantothenate
KR860001821B1 (en) Method of isolating l-amino acids
US3336374A (en) Recovery of l-glutamic acid
JPH0513638B2 (en)
AU726559B2 (en) Process for the purification of nutrients from food process streams
KR960006578B1 (en) Separating method microorganisms from amino acid and nucleotide fermenting liquid
JP3916858B2 (en) Method for producing mannose by enzymatic method
RU2382823C2 (en) Method of extracting microbiological synthesis lysine
JPH0420599B2 (en)
JPH11221100A (en) Purification of beet sugar liquid