JPS60137026A - Optical irradiation heating method - Google Patents

Optical irradiation heating method

Info

Publication number
JPS60137026A
JPS60137026A JP58244321A JP24432183A JPS60137026A JP S60137026 A JPS60137026 A JP S60137026A JP 58244321 A JP58244321 A JP 58244321A JP 24432183 A JP24432183 A JP 24432183A JP S60137026 A JPS60137026 A JP S60137026A
Authority
JP
Japan
Prior art keywords
wafer
thickness
heat treatment
temperature
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58244321A
Other languages
Japanese (ja)
Inventor
Tetsuharu Arai
荒井 徹治
Hiroshi Shimizu
洋 清水
Yoshiki Mimura
芳樹 三村
Satoru Fukuda
悟 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP58244321A priority Critical patent/JPS60137026A/en
Publication of JPS60137026A publication Critical patent/JPS60137026A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To keep the temperature of heat treatment constnat, and to obtain a wafer having high quality by measuring the thickness of the wafer by a noncontact type sensor before the wafer is irraidiated by beams and open-controlling a pattern for the load electric power of a lamp by the measuring signal. CONSTITUTION:The thickness of a semiconductor wafer 7 is measured by a noncontact type sensor 1 before the wafer is irradiated by beams. A measuring signal from the sensor 1 is inputted to a power control section for lamps 2, and a pattern of load power for the wafer 7 thermally treated at the next cycle is determined on the basis of the measuring signal. When the wafer is thermally treated by the pattern, the heating rate and heat-treatment temperature of the wafer 7 are made constant regardless of the variability of thickness.

Description

【発明の詳細な説明】 本発明は半導体ウェハー(以下、単にウェハーと言う)
を光照射で加熱する方法に関するものである。
[Detailed Description of the Invention] The present invention relates to semiconductor wafers (hereinafter simply referred to as wafers).
The present invention relates to a method of heating by light irradiation.

一般に加熱処理を行なうための装置のうち、白熱電球よ
りの放射光を被処理物に照射する光照射炉は、種々の特
技を有するため、鋼材等の熱処理および乾燥、プラスチ
ック成型、熱時性試験装置等に巾広く利用されている。
Among the devices generally used for heat treatment, the light irradiation furnace, which irradiates the workpiece with synchrotron radiation from an incandescent light bulb, has various special skills, so it can be used for heat treatment and drying of steel materials, plastic molding, and thermal aging tests. It is widely used in equipment, etc.

特に最近においては、ウェハーの製造における加熱が必
要とされる工程、例えば不純物拡散工程、化学的気相成
長工程、イオン打ち込み層の結晶欠陥の回復工程、電気
的活性化のための熱処理工程、更にはシリコンウエノ・
−の表層を窒化若しくは酸化せしめるための熱処理工程
を遂行する場合の加熱炉として、従来から用いられてい
る電気炉、高周波炉等に代わって、光照射炉の利用が検
創されている。これは、光照射炉においては、ウェハー
を汚染し或いは′r1.i:気的に悪影物を与えること
がないこと、消費電力が小さいこと等のほか、従来の加
熱炉では大面積のウェハーを均一に加熱することができ
ず、最近におけるウェハーの大面積化に対応することが
できないからである。
Particularly recently, processes that require heating in wafer manufacturing, such as impurity diffusion processes, chemical vapor deposition processes, crystal defect recovery processes in ion implantation layers, heat treatment processes for electrical activation, and is silicon ueno・
The use of a light irradiation furnace as a heating furnace for carrying out a heat treatment process for nitriding or oxidizing the surface layer of - in place of the conventionally used electric furnace, high frequency furnace, etc. is being investigated. In the light irradiation furnace, this may contaminate the wafer or 'r1. i: In addition to the fact that it does not give any negative atmospheric effects and has low power consumption, conventional heating furnaces cannot uniformly heat large-area wafers, and the recent increase in the size of wafers This is because it is not possible to respond to

ところで、イオンが打ち込まれたウエノ・−金光照射に
より短時間で高速加熱して熱処理するとき、シート抵抗
値や接合深さなどの特性値をバラツキのない良好な値と
するために、ウェハーの熱処理条件を厳密に管理する必
要がある。、シートm抗は打ち込優れたイオンが100
チ電気的活性化すれば大きく変化しないが、接合深さは
熱処理温度によって大きく影響されるのでその重要性は
大きい。
By the way, when ion-implanted wafers are heat-treated by rapid heating in a short time using gold light irradiation, it is necessary to heat-treat the wafer in order to maintain good characteristic values such as sheet resistance and junction depth without any variation. Conditions need to be strictly controlled. , the sheet m resistance has an excellent implantation of 100 ions.
Although the junction depth does not change much if it is electrically activated, it is very important because the junction depth is greatly affected by the heat treatment temperature.

そこで、光照射により急速加熱を行う際に、ウェハーの
温度ケ直接検出し、これをフィードバックしてクローズ
ド制御によって温度制御することがもし可能であれば、
熱処理条件の管理は容易となるが、実際はこのクローズ
ド制御は光照射加熱の特長を生かして、生産性良く高速
加熱処理を行う場合は困難である。なぜならば、従来、
ウェハーの温度を測定する方法として、熱電対をウェハ
ーに直接接触させるか、あるいは、熱電対をウェハー近
傍の照射空間に露出しておくことが行われていたが、こ
の方法では熱電対によってウェハーが汚染され、また、
熱電対とウェハーとでは光照射による被加熱条件が異る
ので十分な測温精度、とくに早い応答性と両者の温度の
相関性が得られない問題点があるからである。更に、ウ
ェハーを適当な大きさのサセプターにセットして加熱す
る場合には、サセプターに熱′電対を埋め込んで測温す
る方法があるが、これはサセプターの熱容量が太きいた
め敏感に温度制御するのが困難であって、早い応答性が
なく、かつ高速加熱ではウェハーとサセプターの温度の
相関性がくずれる欠点がある。
Therefore, if it were possible to directly detect the temperature of the wafer when performing rapid heating by light irradiation, and use this as feedback to control the temperature using closed control, it would be possible to
Although it becomes easier to manage heat treatment conditions, in reality, this closed control is difficult when performing high-speed heat treatment with good productivity by taking advantage of the features of light irradiation heating. Because, conventionally,
The conventional methods for measuring the temperature of a wafer have been to bring the thermocouple into direct contact with the wafer, or to expose the thermocouple to the irradiation space near the wafer. contaminated, and
This is because thermocouples and wafers are heated under different conditions by light irradiation, so there is a problem that sufficient temperature measurement accuracy, particularly quick response, and correlation between the temperatures of both cannot be obtained. Furthermore, when heating a wafer by setting it in a susceptor of an appropriate size, there is a method of embedding a thermocouple in the susceptor to measure the temperature, but this method requires sensitive temperature control because the susceptor has a large heat capacity. It is difficult to control the temperature of the wafer, does not have a fast response, and has the disadvantage that the correlation between the temperatures of the wafer and the susceptor is lost in high-speed heating.

従って、あらかじめプログラムされた電力制御パターン
によるオーブン制御方式で昇温速度を一定とし、これに
よって熱処理温度を一定に管理するのが好ましい。
Therefore, it is preferable to keep the heating rate constant using an oven control method based on a pre-programmed power control pattern, thereby controlling the heat treatment temperature at a constant rate.

ところで第5図は、ウェハーを熱処理する際のウェハー
の温度と加熱源であるラングの負荷π1.力との関係を
定性的に示すが、最初の数秒間に高負荷をかけて急速昇
温し、1000〜1250℃程度の熱処理温度に到達す
ると負荷を小さくして3〜10秒間程度その温度に保持
し、以後は自然冷却される。そして、このとき負荷電力
のパターンを一定にしてウェハーの熱処理を行うと、ウ
ェハーによって昇温速度にバラツキが生じ、この結果、
第3図の点線で示すように到達温度が異って熱処理温度
も一定とならす、ウエノ・−の特性値に影響を与えるが
、この要因としてウエノ・−の厚さをあげることができ
る。
By the way, FIG. 5 shows the temperature of the wafer and the load π1. The relationship with force is qualitatively shown, but a high load is applied for the first few seconds to rapidly raise the temperature, and when the heat treatment temperature reaches a heat treatment temperature of about 1000 to 1250℃, the load is reduced and the temperature is maintained for about 3 to 10 seconds. It is then kept and cooled down naturally. At this time, if the wafer is heat-treated with a constant load power pattern, the temperature increase rate will vary depending on the wafer, and as a result,
As shown by the dotted line in FIG. 3, the achieved temperature is different and the heat treatment temperature is constant, which affects the characteristic values of Ueno--, and the thickness of Ueno-- can be mentioned as a factor for this.

現在使用されているウエノ・−の大きさは、直径が3〜
6インチ程度であって、直径によって厚さの中央仙も異
るが、その値は400〜600μmであり、これに対し
てそれぞれ±15μm程度の厚さのバラツキが存在する
。このバラツキのためにウェハーの熱容量が異なり、同
一の負荷鴇;力のパターンで照射加熱したのでは前述の
通り熱処理条件(熱処理温度一時間の曲線)が一定とな
らない。
The size of Ueno-- currently used is 3 to 3 in diameter.
The diameter is about 6 inches, and the thickness at the center varies depending on the diameter, but the value is 400 to 600 μm, and there is a variation in thickness of about ±15 μm. Because of this variation, the heat capacity of the wafer differs, and if the wafer is irradiated and heated with the same load/force pattern, the heat treatment conditions (heat treatment temperature 1 hour curve) will not be constant as described above.

例えば、照射光に対する平均反射率が0.66であって
、厚さの中央値が525μmのウェハー’に31.8ン
一の強度で照射し、5秒間で1120℃まで加熱した場
合に、厚さが1μm変化するとこれに対応して到達温度
は約1℃変動し、±15μn1の変化では約±15℃変
動することが判明した。
For example, when a wafer' with an average reflectance of 0.66 and a median thickness of 525 μm is irradiated with an intensity of 31.8 nm and heated to 1120°C for 5 seconds, the thickness It was found that when the temperature changes by 1 μm, the reached temperature changes by about 1° C., and when the temperature changes by ±15 μm, it changes by about ±15° C.

そこで本発明は、ウェハーを光で照射して急速に昇温せ
しめる際に、オープン制御によって熱処理条件を一定と
することが可能な光照射加熱方法を提供することを目的
とし、その構成は、ウエノ・−が光照射される前にその
厚みを非接触型センサーで測定し、この測定信号に基い
てランプの負荷電力のパターンを制御して昇温速度と熱
処理温度を一定とすることを特徴とする。
Therefore, an object of the present invention is to provide a light irradiation heating method that can keep the heat treatment conditions constant by open control when irradiating a wafer with light to rapidly raise the temperature.・The thickness of the lamp is measured with a non-contact sensor before it is irradiated with light, and the lamp's load power pattern is controlled based on this measurement signal to keep the heating rate and heat treatment temperature constant. do.

以下に図面に基いて本発明の実施例を具体的に説明する
Embodiments of the present invention will be specifically described below based on the drawings.

第1図と第2図は本発明の実施例に使用される光照射炉
を示すが、炉内の上面と下面には、850Wのハロゲン
ランプ2がそれぞれ平面状に密に並べられ、その背部に
は反射部材6が設けられてランプ2よりの発光が加熱空
間5に向けて照射されるようになっている。側方にも副
反射部材4が設けられているが、反射部材3、副反射部
材4の内部には冷却水路が設けられて水冷されて伝る。
1 and 2 show a light irradiation furnace used in an embodiment of the present invention. On the upper and lower surfaces of the furnace, 850W halogen lamps 2 are closely arranged in a planar manner, and the back A reflecting member 6 is provided so that the light emitted from the lamp 2 is directed toward the heating space 5 . A sub-reflection member 4 is also provided on the side, and a cooling channel is provided inside the reflection member 3 and the sub-reflection member 4 so that the cooling water is cooled and transmitted.

加熱空+ijsには石英ガラス製の反応容器6が配置さ
れ、その内部中央には被処理物であるウェハー7が石英
製の支持具8で支持さルているが、一方の副反射i部材
4が開閉扉を兼ねており、支持具8はこの開閉扉に固ノ
イされている。この光照射炉の開閉口に1lSiウエハ
ー7の搬入コンベヤ11と搬出コンベヤ12が配設され
ており、開閉局が110後動じて両コンベヤ11.12
の間に支持具8が移動可能となっている。そして搬入コ
ンベヤ11の端部上方には非接触型の厚み測定用センサ
ー1が設置されており、熱処理のために悄磯しているウ
ェハー7の厚さが順次測定される。このセンサー1は非
接触型で、従ってウェハー7を汚染することなく迅速に
測定できるものであればいずれのタイプのものでも良い
。そして、このセンサー1よりの測定信号はランプ2の
電力制御Sに入力され、それに基いて次のサイクルで熱
処理されるーフェノ・−7用の負荷電力のパターンが決
定される。この負荷電力のパターンとは第6図に示すよ
うな負葡電力値とその時間のプログラムを言うが、ウエ
ノ・−7の厚さが中央値より大きい場合はその偏位量に
応じて負Oil力値やその値の時間、あるいはその両方
を大きくし、厚さが中央値より小さい場合は逆にこれら
の値を小さくされるが、厚さとノ(ターンの間にはこの
ような相関+4Ll係が予めめられている。従ってセン
サー1よりの測定信号が制御部に入力されるとそれに対
応する)(ターンが決定されて、仁のパターンにて熱処
理されると厚みの、Cラツキにかかわらずウエノ・−7
の昇温速度と熱処理温度が一定となる。
A reaction vessel 6 made of quartz glass is placed in the heating space +ijs, and a wafer 7, which is an object to be processed, is supported in the center of the interior by a support 8 made of quartz. serves also as an opening/closing door, and the support 8 is firmly attached to this opening/closing door. A carry-in conveyor 11 and a carry-out conveyor 12 for carrying 1lSi wafers 7 are arranged at the opening and closing opening of this light irradiation furnace.
The support 8 is movable between the two. A non-contact type thickness measuring sensor 1 is installed above the end of the carry-in conveyor 11, and successively measures the thickness of the wafers 7 which are being exposed to heat treatment. The sensor 1 may be of any type as long as it is a non-contact type and can therefore perform rapid measurement without contaminating the wafer 7. Then, the measurement signal from the sensor 1 is input to the power control S of the lamp 2, and based on it, the pattern of the load power for the phenol 7 to be heat-treated in the next cycle is determined. This load power pattern refers to a program of negative power values and their times as shown in Figure 6, but if the thickness of Ueno-7 is larger than the median value, the negative oil will change depending on the amount of deviation. If the force value, the time for that value, or both are increased, and the thickness is smaller than the median value, these values will be decreased, but there is a correlation between the thickness and the turn. is predetermined.Therefore, when the measurement signal from sensor 1 is input to the control unit, it corresponds to it. Ueno-7
The heating rate and heat treatment temperature are constant.

しかして、上記構成の光照射炉において、未処理のウェ
ハー7が搬入コンベヤ11によって搬送されて来るが、
その終端でセンサ−1により厚さが測定され、炉外の支
持具8に移される。そして炉内に装入されて熱処理され
るが、前述のように厚さに対応した負荷電カバターンで
加熱されるので、最高加熱温度が目標温度と一致し、ウ
ェハー7の7−ト抵抗値や接合深さなどの特性値が変動
せずに一様な品質のものを得ることができる。
In the light irradiation furnace configured as described above, unprocessed wafers 7 are transported by the carry-in conveyor 11;
At its end, the thickness is measured by sensor 1 and transferred to support 8 outside the furnace. The wafer is then charged into the furnace and heat-treated, but as mentioned above, it is heated with a negative electric cover pattern corresponding to the thickness, so the maximum heating temperature matches the target temperature, and the 7-t resistance value of the wafer 7 and It is possible to obtain products of uniform quality without fluctuations in characteristic values such as bonding depth.

以上説明したように本発明は、ウェハーが光照射される
前にその厚みを非接触型センサーで測定し、この61す
定信号に基いてランプの負荷電力のパターンをオープン
制御するようにしたので、厚さのバラツキにかかわらず
熱処理温度が一定となり、高品質なウェハーを得ること
ができる。またセンサーを非接触型としたので工程サイ
クル内の時間で迅速に測定することができ、ウェハーを
汚染することもない。
As explained above, in the present invention, the thickness of the wafer is measured with a non-contact sensor before the wafer is irradiated with light, and the pattern of the load power of the lamp is controlled in an open manner based on this 61 constant signal. , the heat treatment temperature remains constant regardless of variations in thickness, making it possible to obtain high-quality wafers. In addition, since the sensor is non-contact, it can be measured quickly within the process cycle and does not contaminate the wafer.

尚、この方法tよ、熱処理条件は第6図のような単純な
熱処理の場合だけでなく、第4図のような複雑な熱処理
曲線の場合にも適用される。
In this method, the heat treatment conditions are applied not only to a simple heat treatment as shown in FIG. 6, but also to a complex heat treatment curve as shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に使用される装置の側面断面図
、第2図は同じく平面断面図、第6図と第4図は熱処理
温屁一時間曲線を示す。 1・・・センサー 2・・・ランプ 6・・・反射部材
6・・・反応容器 7・・・ウェハー 8・・・支持具
11・・・搬入コンベヤ 12・・・搬出コンベヤ出願
人 ウシオ電機株式会社 代理人 弁理士 田原寅之助 第 1 しべ1 第3図 第4図 Be同 手続補正書(自発) 昭和59年1月30日 特許庁長噛 若杉+1」夫 殿 1 事件の表示 昭和58 年 特詐願第 244321号2 発明の名
称 光照射加熱方法 3 補正をする者 事件との関係 ’i!in’r出1頭人4、代理人 氏 名 (8411) 弁+111士 1月 原 寅之
助5 補正命令の日刊° 自発 6 補正により増加する発明の数 す/7 補正の対象 明、則1」)の’l’5’ riQ晶求の析り囲腎よひ
発明の詳細な説明のjlll 8 補正の内容 別紙の□JThす 1、 特許請求の範囲を次の辿り補正する。 半尋体ウェハーを光で照射して急速に昇温し、加熱処理
を行う光照射加熱方法において、半畳体ウェハーが光照
射される前にその厚みを測定し、この測定結果に基いて
ジンクの負荷低力のパターンを1lfil 1all+
−て熱部3里温1尾−喝11iの曲解メを一定とするこ
とを特徴とする光照射加熱方法。 9 明+f(Hμ)均′56頁10行自から11行1−
i Kかけて第9仁j1()行目の21)ji Fヅ「
の[非考!’6i Qリセンサで」を削除する。 同第a 7N 11右目とへ1,9頁11fT目の2 
t・jiI升の「M11定信号」を[汗用定結釆」にh
li i1g’、する。 4.1川第71−417行目からJ8JI21丁目にか
けての[このセンサー1は・・・ものでも良い。」を[
このセンサー1は非接廟ルリに限らn、るもので(まな
く、接触ノ(リセンサーやマイクロメーターのようなし
111定器でもよいが、非接触型であればウェハー7を
汚染することなくて迅速に測定できる41点がある。」
に補正する。 5、 同1if48自−17付目の終りに次の文意を追
加する。「なお、非接触硯や接触)[lJのセンサーに
代えて、マイクロメーターのような測定器で厚みを測定
1−1It(気的信号が出力されない場合は、七〇測W
昭果にもとすいて低力制御部に信号を人為的に入力する
ことになる。−1 6、iii乙′j49貞15行目の「非扱触凰1とした
ので」を1−非灰触紗とすれはJ K ttti正する
。 以上
FIG. 1 is a side cross-sectional view of an apparatus used in an embodiment of the present invention, FIG. 2 is a plan cross-sectional view, and FIGS. 6 and 4 show one-hour heat treatment temperature fart curves. 1... Sensor 2... Lamp 6... Reflective member 6... Reaction container 7... Wafer 8... Support 11... Carrying in conveyor 12... Carrying out conveyor Applicant Ushio Inc. Company agent Patent attorney Toranosuke Tahara No. 1 Shibe 1 Figure 3 Figure 4 Be Amendment to the same procedure (spontaneous) January 30, 1985 Director of the Japan Patent Office Kami Wakasugi + 1 Husband Tono 1 Indication of the case 1988 Special Fraudulent Application No. 244321 2 Title of Invention Light Irradiation Heating Method 3 Relationship with the Amendment Case 'i! In'r appearance 1 person 4, agent name (8411) Ben + 111 person January Hara Toranosuke 5 Amendment order daily ° Spontaneous 6 Number of inventions increased by amendment / 7 Subject of amendment, Rule 1'') 'l'5' Analysis of riQ Crystal Detailed Description of the Invention Jlll 8 Contents of Amendment Attachment □JTh 1 The scope of the claims is amended as follows. In the light irradiation heating method, in which a half-fold wafer is irradiated with light to rapidly raise its temperature and then subjected to heat treatment, the thickness of the half-fold wafer is measured before it is irradiated with light, and based on this measurement result, the thickness of the half-fold wafer is measured. 1lfil 1all+ low load force pattern
- A light irradiation heating method characterized in that the degree of deformation of the hot part 3, 1, 1, and 11i is kept constant. 9 bright + f (Hμ) uniform' page 56, line 10 from line 11 1-
i K multiplied by 9th jin j1 () line 21) ji Fㅅ'
[non-consideration! Delete '6i Q resensor'. Same number a 7N 11 right eye and 1, 9th page 11fT 2nd
t・jiI square's "M11 fixed signal" to [sweat fixed button]
li i1g', do. 4. From lines 71-417 of the 1st river to J8JI 21st Street [This sensor 1 may be... "of[
This sensor 1 is limited to a non-contact type (instead, it may be a non-contact type sensor or a non-contact device such as a micrometer, but if it is a non-contact type, it will not contaminate the wafer 7. There are 41 points that can be quickly measured.
Correct to. 5. Add the following meaning to the end of the 17th line of 1if48-1. ``In addition, instead of using a non-contact inkstone or contact sensor, measure the thickness with a measuring device such as a micrometer.
As a result, a signal must be artificially input to the low-force control section. -1 6, iii O'j 49 Sada line 15, ``I made it a non-handled touch 1'' is corrected as 1-non-gray touch. that's all

Claims (1)

【特許請求の範囲】[Claims] 半導体ウェハーを光で照射して急速に昇温し、加熱処理
を行う光照射加熱方法において、半導体ウェハーが光照
射される前にその厚みを非接触型センサーで測定し、こ
の測定信号に基いてランプの負荷電力のパターンを制御
して熱処理温度一時間の曲線を一定とすることを特徴と
する光照射加熱方法。
In the light irradiation heating method, in which a semiconductor wafer is irradiated with light to rapidly raise its temperature and undergo heat treatment, the thickness of the semiconductor wafer is measured with a non-contact sensor before being irradiated with light, and the thickness is measured based on this measurement signal. A light irradiation heating method characterized by controlling a lamp load power pattern to maintain a constant heat treatment temperature curve per hour.
JP58244321A 1983-12-26 1983-12-26 Optical irradiation heating method Pending JPS60137026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58244321A JPS60137026A (en) 1983-12-26 1983-12-26 Optical irradiation heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58244321A JPS60137026A (en) 1983-12-26 1983-12-26 Optical irradiation heating method

Publications (1)

Publication Number Publication Date
JPS60137026A true JPS60137026A (en) 1985-07-20

Family

ID=17116979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58244321A Pending JPS60137026A (en) 1983-12-26 1983-12-26 Optical irradiation heating method

Country Status (1)

Country Link
JP (1) JPS60137026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206838A (en) * 1986-03-06 1987-09-11 Nec Corp Manufacture of silicon wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175826A (en) * 1981-12-04 1983-10-15 Ushio Inc Heating method for semiconductor through light irradiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175826A (en) * 1981-12-04 1983-10-15 Ushio Inc Heating method for semiconductor through light irradiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206838A (en) * 1986-03-06 1987-09-11 Nec Corp Manufacture of silicon wafer
JPH0646634B2 (en) * 1986-03-06 1994-06-15 日本電気株式会社 Method for manufacturing silicon wafer

Similar Documents

Publication Publication Date Title
JP3380988B2 (en) Heat treatment equipment
JP2961123B2 (en) Rapid heat treatment of semiconductor disks by electromagnetic radiation.
US9386632B2 (en) Apparatus for substrate treatment and method for operating the same
US6204484B1 (en) System for measuring the temperature of a semiconductor wafer during thermal processing
US6359263B2 (en) System for controlling the temperature of a reflective substrate during rapid heating
JPS60131430A (en) Measuring device of temperature of semiconductor substrate
JPH03116828A (en) Heat treatment device for semiconductor wafer
JP6153749B2 (en) Temperature measuring device, temperature measuring method and heat treatment device
JP3795788B2 (en) Substrate heat treatment method
JPS6037116A (en) Optical irradiating furnace
US7897524B2 (en) Manufacturing method for semiconductor device and manufacturing apparatus for semiconductor device
JPS60137027A (en) Optical irradiation heating method
JPS6294925A (en) Heat treatment device
JPS60137026A (en) Optical irradiation heating method
JP2008243950A (en) Thermal treatment equipment
JPH10144618A (en) Heater for manufacturing semiconductor device
JPH07201765A (en) Heat-treating device and heat treatment
JPS6252926A (en) Heat treatment device
JPH02298829A (en) Heat treatment apparatus
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
JPS60211947A (en) Annealing device by indirect heating
JPS60145629A (en) Heat treating method
JPS60160131A (en) Light irradiating heating method
JP2729283B2 (en) Lamp annealing furnace temperature controller
JPH10170343A (en) Temperature measuring apparatus