JPS60136493A - Chrominance signal processor - Google Patents

Chrominance signal processor

Info

Publication number
JPS60136493A
JPS60136493A JP24942083A JP24942083A JPS60136493A JP S60136493 A JPS60136493 A JP S60136493A JP 24942083 A JP24942083 A JP 24942083A JP 24942083 A JP24942083 A JP 24942083A JP S60136493 A JPS60136493 A JP S60136493A
Authority
JP
Japan
Prior art keywords
frequency
low
pulse
signal
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24942083A
Other languages
Japanese (ja)
Other versions
JPH034158B2 (en
Inventor
Yukio Nakagawa
幸夫 中川
Masao Tomita
富田 雅夫
Tokikazu Matsumoto
松本 時和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24942083A priority Critical patent/JPS60136493A/en
Priority to KR1019840006876A priority patent/KR900004990B1/en
Publication of JPS60136493A publication Critical patent/JPS60136493A/en
Publication of JPH034158B2 publication Critical patent/JPH034158B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/83Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

PURPOSE:To allow demodulation of a low-band conversion chrominance signal digitally and to obtain a low-prices processor of a chrominance signal by preparing the demodulation axis of a low-band conversion chrominance signal by an A/D convertor circuit and a relatively simple digital circuit. CONSTITUTION:A low-band conversion chrominance signal (q) inputted from an input terminal 1 is A/D-converted in timing of a clock (b), and added to a code inverting circuit 6. The code inverting circuit 6 code-inverts only -P and -O parts out of A/D-converted output data (color-difference signal components P, O, -P and -O, provided that O is R-Y component and P is B-Y component) in timing of a code inverting pulse (f), and supplies them to latch circuits 7a and 7b. A phase of the code inverting pulse (f) advances by one clock at every hour when a field decision signal (i) is a logical value H, and delays by one clock when the decision signal (i) is a logical value L; therefore code inversion along a sampling demodulation axis is carried out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、回転ヘッド形VTRなどで磁気−フープに記
録された低域変換色信号を再生する際に、−2− 隣接1〜ラツクからのりロストーク除去方法として用い
られる、低域変換色信号の位相を隣り合うトラック(以
下△1へラック、13トラツクという)で反対方向に1
1」毎に90°シフ1−するPS処理を行なう方法(以
−卜P S方式という)、またAトラックに対し[3+
−ラックの位相を1 Hfi3に反転さぜる1)1処即
を行なうjjffi(以下1)1方式という)で記録さ
れた低域変換色信号を2つの色差信号に分m1ll−J
る色信号処理)!i置に関Jるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for reproducing low frequency converted color signals recorded on a magnetic hoop in a rotary head type VTR or the like. Used as a removal method, the phase of the low-frequency conversion color signal is changed by 1 in the opposite direction in adjacent tracks (hereinafter referred to as △1 rack, 13 tracks).
A method in which PS processing is performed by shifting 90 degrees by 1- for every 1" (hereinafter referred to as PS method), and
- Invert the phase of the rack to 1Hfi3 1) Separate the low frequency conversion color signal recorded by jjffi (hereinafter referred to as 1) method) into two color difference signals m1ll-J
color signal processing)! This is related to the location.

従来例の構成とイの問題点 従来の回転ヘッド形VTRにおいて、カラー映像信号の
記録再生を行なう場合、F M変調されlζ変FJII
輝度信号と、低域搬送周波数fcのものに変換された低
域変換色信号とを)11合して磁気テープに記録りるよ
うにしている。この場合、隣接゛す′る1〜ラツクの間
にガートバンドを介在させない高密度記録を行なうため
、変調輝度信号に関しでは、傾斜アジマス記録を行ない
、低域変換色信号に関しては、隣り合う1−ラック問′
で周波数インターり一ブの関係が成立づるようにPS方
式またはPI方−3一 式が採用されている。1記したようにI” S処理また
はPI処理が行なわれた低域変換色信号は、再生時にシ
フトまたは反転された位相をもとに戻し、ざらにもとの
高い搬送周波数fsc(NTSC方式では3.58 M
+−1,! )に周波数変換する事が必要−【゛あり、
ぞの方法として、第1に、回路的にPS処理またはPI
5I!1111!が行なわれた低域搬送周波数fcの信
号を作成し、前記低域搬送周波数fcの信号と周波数f
saの基準信号とを乗算回路にて型筒【ハ周波数fsc
+fcなる信号を作成し、さらにこの周波数fsc +
 fcの信号と低域変換色信号とを乗算回路で乗算する
ことににす、搬送周波数がfsa+fc−fc= fs
cの搬送色信号を得る方法があるが、第2の方法として
、低域変換色信号は変調軸がPSまたはPI5I!ll
[!された直角二相平衡変調波と考えられるため、低域
変換色信号を−β2つの色差信号に復調し、復調後さら
に基準周波数fscの搬送波で直角二相平衡変調を行な
うことにより、所定の搬送周波数fsaの搬送色信号を
得る事も可能である。
Conventional configuration and problem A When recording and reproducing color video signals in a conventional rotary head type VTR, FM modulated lζ variable FJII
The luminance signal and the low frequency converted color signal converted to the low frequency carrier frequency fc are combined and recorded on the magnetic tape. In this case, in order to perform high-density recording without intervening a guard band between adjacent 1-racks, inclined azimuth recording is performed for modulated luminance signals, and for low-frequency conversion color signals, adjacent 1-racks are recorded. rack question
The PS method or the PI method-3 set is adopted so that the relationship of frequency interleaving can be established. As mentioned in 1 above, the low-pass converted color signal that has been subjected to I''S processing or PI processing returns its shifted or inverted phase to its original state during reproduction, and returns to its original high carrier frequency fsc (in the NTSC system). 3.58M
+-1,! ) It is necessary to convert the frequency to
The first method is to perform PS processing or PI processing in a circuit.
5I! 1111! A signal with a low carrier frequency fc is created, and the signal with the low carrier frequency fc and the frequency f
The standard signal of sa and the multiplication circuit are used to calculate the mold cylinder [c frequency fsc
+fc is created, and this frequency fsc +
The fc signal and the low frequency conversion color signal are multiplied by a multiplier circuit, and the carrier frequency is fsa+fc-fc=fs
There is a method to obtain a carrier color signal of c, but as a second method, the modulation axis of the low frequency conversion color signal is PS or PI5I! ll
[! Since it is considered to be a quadrature two-phase balanced modulated wave, the low-pass conversion color signal is demodulated into two -β color difference signals, and after demodulation, quadrature two-phase balanced modulation is performed using a carrier wave with a reference frequency fsc. It is also possible to obtain a carrier color signal of frequency fsa.

−4= 一1記第1の方法は従来最も一般的なものであるが、乗
算回路が2つ必要で、さらにそれに付随して乗算により
発生する上側波帯または下側波帯を除去するためのバン
ドパスフィルタがおのおのの乗算回路について必要で、
回路規模が大きくなるとい゛う欠点を有し、第2の方法
においては、低域変換fit (ムロを内接復調する際
に、PS方式・P I方式に従った復調軸を作成する回
路及び復調軸を基準に低域変換色信号をvfi調する回
路が新たに必要である。
-4= 11. The first method is conventionally the most common method, but it requires two multiplication circuits, and it also requires two multiplication circuits to remove the upper sideband or lower sideband generated by multiplication. bandpass filters are required for each multiplier circuit,
The second method has the disadvantage of increasing the circuit scale, and the second method requires a low-frequency conversion fit (a circuit that creates a demodulation axis according to the PS method/PI method when demodulating the unevenness by inscribing it). A new circuit is required to perform VFI adjustment of the low frequency conversion color signal with reference to the demodulation axis.

発明の目的 本発明は」記従来の欠点を解潤づ−るもので、低域変換
色信号の再生方法として、卜記第2の方法を採用する場
合に、比較内命11Iなデジタル回路により低域変換色
信号の復調軸を作成し、さらにデジタル的に低域変換色
f38を復調づる事が可能でかつ安価な色信号処理装置
を提供することを目的と覆る。
OBJECTS OF THE INVENTION The present invention solves the drawbacks of the conventional methods described above, and when the second method is adopted as a method for reproducing low-frequency converted color signals, it The object of the present invention is to provide an inexpensive color signal processing device that is capable of creating a demodulation axis of a low-frequency conversion color signal and digitally demodulating the low-frequency conversion color f38.

発明の構成 一1記口的を達成するため、本発明の色信号処理−5− 装置は、位相シフl〜まlこは位相反転の処理が行なわ
れた低域変換色信号を低域搬送周波数の4倍の周波数を
もつクロックで1ノンプルホールドおよびアナ[1グ・
デジタル変換する変換手段と、前記クロックから水平同
期パルスおJ、び)・r−ルド判別信号をもとに低域変
換バーストと同周波数でかつ位相同期した符号反転パル
スJりよびこの符号反転パルスの2倍の周波数を有する
色差信号分離パルスを作成するパルス作成手段と、前記
符号反転パルスと色差信号分離パルスとにより前記変換
手段からのデジタル出力の符同反転および分離を行なう
処理手段とを備え、前記低域変換色信号から2つの色差
信号データを1qる構成としたl:、)のである。
Structure of the Invention In order to achieve the above objectives, the color signal processing-5- device of the present invention carries out low-frequency conversion color signals that have been subjected to phase shift and phase inversion processing. 1 non-pull hold and analog [1
A converting means for digital conversion, and a sign-inverted pulse J having the same frequency and phase synchronization as the low-frequency conversion burst based on the horizontal synchronizing pulse J, and) and r- field discrimination signal from the clock. pulse generating means for generating a color difference signal separation pulse having a frequency twice that of , and processing means for performing sign inversion and separation of the digital output from the conversion means using the sign inversion pulse and the color difference signal separation pulse. , l:,), which is configured to extract two color difference signal data by 1q from the low frequency converted color signal.

実施例の説明 以下、本発明の一実施例について、図面に工tづいて説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例にお()るPS処理が行なわ
れた低域変換色信号を2つの色差信号データに分1ll
11りる色信号処理装置の回路ブl」ツク図、第2図は
第1図の回路に供給される低域変換急信−6− ′;Jのムク1〜ル図、第3図は第1図の回路にお(X
Iる各部信号波形図である。
Figure 1 shows how a low frequency converted color signal that has been subjected to PS processing according to an embodiment of the present invention is divided into two color difference signal data.
11 The circuit block diagram of the color signal processing device, Figure 2 is the low-frequency conversion urgent signal supplied to the circuit in Figure 1. In the circuit shown in Figure 1 (X
1 is a diagram of signal waveforms at various parts.

第1図において、1は低域変換色4* j’: Qが入
力される入力端子、2は低域変換搬送周波数の4倍のり
[1ツクbが人力される入力端子、3)はΔi・ラック
と81−ラックとで論理値1]、[が反転するフィール
ド判>3’、l信@iが人力される喘イ、4は水sr、
r同期パルスi1が入力される端子である。まず入力端
子1から入力された低域変換色信号qは、A/D変換器
5により入力端子2から入力されたりロック1)のタイ
ミングでアブログ・デジタル変換される。低域変換色信
号qは第2図に示づように色差信号の1’<−’l’成
分()ど]3−Y成分pがベクI〜ル的に90゛の位相
をもっており、クロックhは例えば水平同期パルスhお
よび低域変換バーストからP L L回路によって作成
し、定常状態で第3図のタイミングに示−リ、、l−)
にA D変換出力データCが色差信号成分p、O,−p
、−0の繰り返しデータに4−゛るようイrり11ツク
どしでいる。次に変換されたAD変換出力データCは、
符号反転回路6に= 7 − J、す、70 j3反転パルスfのタイミングにJ、リ
ゾータが−p 、−oの部分のみ符号反転が行なわれ、
AD変換データにはp、0の繰り返しデータとなる。符
号反転パルスfは、クロックbを分周器9で4分周した
ものからシフトレジスタ10により1クロックづつずら
した4相のパルスを作成し、これをデータセレクタ13
により111伯に切換λて出力する事により得られる。
In Fig. 1, 1 is the input terminal to which the low-pass conversion color 4*j': Q is input, 2 is the input terminal for four times the low-pass conversion carrier frequency [1 b) is the input terminal for manual input, and 3) is the input terminal for inputting Δi. - Logical value 1 for rack and 81-rack, [field size >3' where [is reversed, l input @i is input manually, 4 is water sr,
This is the terminal to which the r synchronization pulse i1 is input. First, the low frequency conversion color signal q inputted from the input terminal 1 is inputted from the input terminal 2 by the A/D converter 5, and is subjected to an all-log digital conversion at the timing of lock 1). As shown in Fig. 2, the low-pass conversion color signal q has a phase of 90゛ in terms of the vector I~, and the 1'<-'l' component (), etc. of the color difference signal has a phase of 90゛ in vector I~. For example, h is generated by a PLL circuit from a horizontal synchronizing pulse h and a low-frequency conversion burst, and is shown in the timing shown in Fig. 3 in a steady state.
The A/D conversion output data C is the color difference signal components p, O, -p.
, -0 repeated data is 4-11 times. Next, the converted AD conversion output data C is
Sign inversion circuit 6 = 7 - J, 70 j3 At the timing of inversion pulse f, J, resotor -p, sign inversion is performed only at -o part,
The AD conversion data consists of repeated data of p and 0. The sign-inverted pulse f is obtained by dividing the clock b by 4 using the frequency divider 9, and then using the shift register 10 to create 4-phase pulses shifted by 1 clock.
It can be obtained by switching λ to 111 and outputting it.

符号反転パルスfの切換えは、水平同期パルスhの立1
5下がりでフィールド判別信@iをフリップフロップ1
1でラッチした信号jを作成し、水平同期パルスhをカ
ウントするアップダウンカウンタ12のアップダウン動
作を前記信号jで切換え、このアップダウンカウンタ1
2の出力Q4 、Qβにより行なう。上記回路構成にJ
:す、符号反転パルスfは)−f−ルド判別仁号iが論
理値Hの場合に1日毎に位相がクロックbの1クロック
分進み、フィールド判別信号iが論理値1の場合は11
」毎に1クロック分遅れることになり、サンプリングv
i調軸にでっだ符号反転が行なわれる。さらに符号反転
パルスfは、フリー 8 − ツブフロップ14にJ、リフロック1)の1り[lツク
分遅延され1.:信号と排他的論理和回路1;iにJ:
り排他的論理和が作成される。フリップフ[1ツブ1G
により排他的論理和回路15の出力をラッチして2つの
色X信号データd 1 、 d 2の0次ホールドおJ
、び色差信号分離パルスQ1.(J2としている。符号
反転回路6を通過[)たA D変換デ・−夕1(は、前
記色差イa@分離パルス01.(12をもとにラッチ回
路7a 、7bでそれぞれラッチされ、2つの色差信号
データd1.d2に分離される。この色差信号データd
1 、d2はタイミング的に他方の色差信号データをも
つ部分があるため、最終的にフリッブフ[コツプ8a、
Elbでさらにラッチをかけ、使用可能な色差信号成分
pまたは0に分離された色差信号データe j 、 (
! 2としている。
The sign inversion pulse f is switched on the first rising edge of the horizontal synchronizing pulse h.
5 down, field discrimination signal @i flip-flop 1
1 to create a latched signal j, and use the signal j to switch the up/down operation of an up/down counter 12 that counts horizontal synchronizing pulses h.
This is done using the outputs Q4 and Qβ of 2. J to the above circuit configuration
:S, the sign inversion pulse f is) -f- When the field discrimination signal i is a logic value H, the phase advances by one clock of the clock b every day, and when the field discrimination signal i is a logic value 1, the phase advances by 11.
”, the sampling time will be delayed by one clock every time
An extreme sign inversion is performed on the i-key axis. Further, the sign-inverted pulse f is delayed by 1 [l] of the free 8-block flop 14 and the reflock 1). : Signal and exclusive OR circuit 1; J to i:
An exclusive OR is created. Flipf [1 tube 1G
latches the output of the exclusive OR circuit 15 and holds the two color X signal data d 1 and d 2 in the 0th order.
, color difference signal separation pulse Q1. The A/D conversion data 1 (passed through the sign inversion circuit 6) are latched by the latch circuits 7a and 7b based on the color difference a@separation pulse 01.(12). It is separated into two color difference signal data d1 and d2.This color difference signal data d
1 and d2 have the other color difference signal data due to timing, so in the end they are
Elb further applies a latch, and the color difference signal data e j , (
! It is set at 2.

第3図の各部の波形において、」−配色信号処理回路の
ある時点の低域変換バーストの期間のタイミング(11
1目)と次の水平期間におりるパースト期間のタイミン
グ(2F]目)とを示しているが、低域変換色信号qの
低域搬送周波数Ccは水平同期−9− 周波数1Hの1/2の整数倍に定められており、低域変
換色信号qは11−1日と21」目とでPS処理により
90゛位相がシフトしており、低域変換バーストrの位
相も同様にシフトしている。また、2つの色差信号デー
タe1,82は低域搬送周波数faの2倍の2rcで得
られるため、一つの色差信号データに関しては水平同期
パルスhを基準にすると1F4目と21−1目とです“
ンブリング点が180°イ立相シフ1〜し、データh<
不連続と覆る。このため本実施例の回路では、サンプリ
ング点の中間のデータとして、前のサンプリング点のデ
ータを補間J−る0次ホールドフィルタで補間を行ない
、各色差信号データども連続でかつ1F−1当りのデー
タの出力タイミングがそろったものとし、後の処理を行
ないやすくしている。
In the waveforms of each part in FIG.
1) and the timing of the burst period (2F] that begins the next horizontal period. The phase of the low-pass conversion color signal q is shifted by 90° between the 11th and 21st days due to PS processing, and the phase of the low-pass conversion burst r is similarly shifted. are doing. Also, since the two color difference signal data e1 and 82 are obtained at 2rc, which is twice the low frequency carrier frequency fa, one color difference signal data is 1F4th and 21-1st based on the horizontal synchronization pulse h. “
The embedding point is 180°, the vertical phase shift is 1~, and the data h<
Cover with discontinuity. Therefore, in the circuit of this embodiment, the data of the previous sampling point is interpolated as the intermediate data of the sampling point using a zero-order hold filter, so that each color difference signal data is continuous and per 1F-1. It is assumed that the data output timing is aligned, making it easier to perform subsequent processing.

上記説明では、PS処理が行なわれた低域変換色信号q
を2つの色差信号データ(!l、e2に分離する場合に
ついて述べたが、p+処理が行なわれた低域変換色信号
を扱う場合には、例えば第4図に示すように、第1図の
シフ1〜レジスタ10をり−10− ロックbの4分周波とその反転出力との2つのパルスを
出力するインバータ17に置き換え、アップダウンカウ
ンタ12をフリップ70ツブ18−個の分周器に冒き換
え、さらにフリップフロップ11の出力信号jが論理1
「11−のとぎ水平同期パルスhの分周波を作成するフ
リ・ンブフロツブ18のタロツク入力に入る水平向II
パルスhを禁止する論理積回路19を付加し、フィール
ド判別信号iにより符号反転パルスfを111毎に反転
させたり、そのまま連続に出力する様に動作させること
により、PSS処理場合と同様な色差信号データ01,
02が1qられる。なお20はデータセレクタである。
In the above explanation, the low-frequency conversion color signal q that has been subjected to PS processing is
We have described the case where the color difference signal is separated into two color difference signal data (!l, e2, but when dealing with a low-pass converted color signal that has been subjected to p+ processing, for example, as shown in Fig. 4, the method shown in Fig. 1) Shift 1 to register 10 are replaced with an inverter 17 that outputs two pulses: the quarter-frequency wave of lock b and its inverted output, and the up/down counter 12 is replaced with a frequency divider of 70 flips and 18. Furthermore, the output signal j of the flip-flop 11 becomes logic 1.
"11-Horizontal direction II which enters the tarok input of the fringe block 18 that creates a frequency-divided wave of the horizontal synchronizing pulse h"
By adding an AND circuit 19 that inhibits the pulse h, and operating the sign-inverted pulse f every 111 times using the field discrimination signal i, or outputting it continuously as it is, a color difference signal similar to that in PSS processing can be generated. data 01,
02 is reduced by 1q. Note that 20 is a data selector.

またP■処理においては低域搬送周波数が水平同期周波
数1Hの1/4の奇数倍に定められており、PS処理の
場合と同様に、水平同期パルスhを基準にすると1H目
と2)」目とでサンプリング点が180°位相シフ1〜
し、勺ンブリングが不連続となるため、0次ホールドで
サンプリング点の中間のデータの補間を行ない、色差信
号データの標本化周波数fsが低域搬送周波数fcの4
倍で連続であり−11− かつfl、I の整数倍のデータに変換している。また
以上はNTSC方式の搬送色信号PS、Pr方式で記録
再生した場合のように、11」相関のある低域変換色(
i号の場合について述べたが、PAI一方式のj;うに
2日相関のある場合、]−記説明から明らかなように、
サンプリング点の中間のデータを補間後の各色差信号デ
ータの標本化R:1波数は、低域搬送周波数の4倍でか
つ[1,l /2の奇数倍になり、21−1当りのデー
タの出力タイミングがそろえられる。
In addition, in P■ processing, the low carrier frequency is set to an odd multiple of 1/4 of the horizontal synchronization frequency 1H, and as in the case of PS processing, the 1H and 2) are based on the horizontal synchronization pulse h. The sampling point has a 180° phase shift between 1 and the eye.
However, since the frequency ringing becomes discontinuous, data in the middle of the sampling points is interpolated using zero-order hold, and the sampling frequency fs of the color difference signal data is set to 4 of the low carrier frequency fc.
It is converted into data that is continuous at multiples of -11- and is an integer multiple of fl,I. In addition, as in the case of recording and reproducing using the carrier color signals PS and Pr of the NTSC system, the above shows 11" correlated low-frequency conversion colors (
I have described the case of issue i, but if there is a two-day correlation between PAI one-way j;
The sampling R:1 wave number of each color difference signal data after interpolating the data between the sampling points is 4 times the low carrier frequency and an odd multiple of [1,l/2, and the data per 21-1 The output timings of the two can be aligned.

上記のような構成の色信号処理回路を使用して搬送周波
数fscの搬送色信号を得るには、D/A]ンバータで
2つの色差信号データをアナログ偵に変換した後に直角
二相平衡蛮調する方法、または、得られた色差信号デー
タをデジタルカラー−1−ンコーダにより搬送色信号デ
ータに変換後、D/A変換し搬送色信号を得る方法が挙
げられるが、色差信号データをD/A変換したアナログ
信号または得られた搬送色信号のクロストーク成分は本
来の信号に対し水平同期周波数の1/2ずれてい−12
− るため、くし形フィルターにより除去でき、PS処理、
PI処理による効果は失なわれない。
In order to obtain a carrier color signal with a carrier frequency fsc using the color signal processing circuit configured as described above, two color difference signal data are converted into analog data using a D/A converter, and then quadrature two-phase balanced barometric Alternatively, the obtained color difference signal data may be converted into carrier color signal data by a digital color-1-encoder, and then D/A converted to obtain the carrier color signal. The crosstalk component of the converted analog signal or the obtained carrier color signal is shifted by 1/2 of the horizontal synchronization frequency with respect to the original signal.
- Can be removed using a comb filter, PS treatment,
The effects of PI treatment are not lost.

発明の詳細 な説明したJ:うに本発明によれば、A/D変換器によ
るサンプリング手段と、簡単な構成のデジタル回路にJ
:す、PS11!l理またはPI処理で不連続となった
低域変換色信号をPS処理、PI処理のクロストーク除
去効果を失なわないように連続なデジタルの色差信号に
できるので、後の信号処理を簡単にすることができ、ざ
らにアナログ的な周波数変換を使用しないので、色信号
処理のデジタル化を容易にでき、回路の集積化、低価格
化が可能である。
Detailed explanation of the invention According to the present invention, a sampling means using an A/D converter and a digital circuit of a simple configuration.
:S-PS11! Low-frequency conversion color signals that have become discontinuous due to l or PI processing can be made into continuous digital color difference signals without losing the crosstalk removal effect of PS or PI processing, making subsequent signal processing easier. Since analog frequency conversion is not used, color signal processing can be easily digitized, and circuit integration and cost reduction are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における色信号処理装置の回
路ブロック図、WX2図は低域変換色信号のべりトル図
、第3図は第1図に示す回路の各部信号波形図、第4図
は本発明の別の実施例における色信号処理装置の回路ブ
ロック図である。 5・・・A/D変換器、6・・・符号反転回路、7a。 −13− 7b−=−ラッチ回路、8a 、 8b 、 11.1
4.16.18・・・フリップフロップ、9・・・分周
器、10・・・シフトレジスタ、12・・・アップダウ
ンカウンタ、13.20・・・データセレクタ、15・
・・排他的論理和回路、17・・・インバータ、19・
・・論理積回路 代理人 森 本 義 弘 −14− 第2図 −(R−Y)軸 I# 第3図
FIG. 1 is a circuit block diagram of a color signal processing device according to an embodiment of the present invention, FIG. FIG. 4 is a circuit block diagram of a color signal processing device in another embodiment of the present invention. 5... A/D converter, 6... Sign inversion circuit, 7a. -13- 7b-=-latch circuit, 8a, 8b, 11.1
4.16.18... Flip-flop, 9... Frequency divider, 10... Shift register, 12... Up/down counter, 13.20... Data selector, 15.
・・Exclusive OR circuit, 17・・Inverter, 19・
...Logic product circuit agent Yoshihiro Morimoto-14- Fig. 2 - (R-Y) axis I# Fig. 3

Claims (1)

【特許請求の範囲】 1、位相シフトまたは位相反転の処理が行なわれた低域
変換色信号を低域搬送周波数の4倍の周波数をもつり[
1ツクでり”ンブルホールドおよびアナログ・デジタル
変換づる変換手段と、前記クロックから水平同期パルス
おJ:びフィールド判別信号をもとに低域変換バースト
ど同周波数でかつ位相同期した符号反転パルスおよびこ
の符号反転パルスの2倍の周波数を有する色差信号分離
パルスを作成するパルス作成手段と、前記符号反転パル
スと色差信号分離パルスとにJ:り前記変換手段からの
デジタル出力の符号反転および分離を行なう処理手段と
を備λ、@記低域変換色信号から2つの色差信号データ
を得る構成とした邑信号処l!Il装置。 2、低域変換色信号【まf0相シフトの処理が行な−1
− われており、パルス作成手段は、低域搬送周波数の4倍
の周波数をもつクロックから前記低域搬送周波数と同周
波数の4相のパルスを作成(〕、この4相のパルスを1
水平期間毎に順次切換λて符同反転パルスを1qる構成
とtノた特許請求の範囲第1項記載の色信号処理装置。 3、低域変換色信号は((/相反転の処理が行なわれて
おり、パルス作成手段は、低域搬送周波数の4倍の周波
数を−しつり1]ツクから前記低域搬送周波数と同周波
数のパルスとこのパルスを反転したパルスとの2つのパ
ルスを作成し、この2つのパルスからなるクロツタを1
1」旬に切換えて符号反転パルスを1qる構成とした特
許請求の範囲第1項記載の色信号処理装置。
[Claims] 1. A low frequency converted color signal that has been subjected to phase shift or phase inversion processing has a frequency four times as high as the low frequency carrier frequency [
One output is a low frequency conversion burst based on the horizontal synchronization pulse and field discrimination signal from the clock, a sign-inverted pulse and a sign-inverted pulse synchronized in phase with each other at the same frequency. pulse generating means for creating a color difference signal separation pulse having twice the frequency of the sign inversion pulse; A signal processing device configured to obtain two color difference signal data from the low frequency converted color signal.2. Na-1
- The pulse generating means generates four-phase pulses having the same frequency as the low-frequency carrier frequency from a clock having a frequency four times the low-frequency carrier frequency, and converts these four-phase pulses into one.
2. The color signal processing device according to claim 1, further comprising a configuration in which 1q pulses with the same sign and inversion are sequentially switched every horizontal period. 3. The low frequency conversion color signal is subjected to phase inversion processing, and the pulse generating means generates a frequency four times as high as the low frequency carrier frequency. Create two pulses: a frequency pulse and a pulse that is the inversion of this pulse.
1. The color signal processing device according to claim 1, wherein the color signal processing device is configured to switch the sign-inverted pulse to 1q by switching to 1q.
JP24942083A 1983-11-01 1983-12-24 Chrominance signal processor Granted JPS60136493A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24942083A JPS60136493A (en) 1983-12-24 1983-12-24 Chrominance signal processor
KR1019840006876A KR900004990B1 (en) 1983-11-01 1984-11-01 Method of reproducing a chrominance signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24942083A JPS60136493A (en) 1983-12-24 1983-12-24 Chrominance signal processor

Publications (2)

Publication Number Publication Date
JPS60136493A true JPS60136493A (en) 1985-07-19
JPH034158B2 JPH034158B2 (en) 1991-01-22

Family

ID=17192705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24942083A Granted JPS60136493A (en) 1983-11-01 1983-12-24 Chrominance signal processor

Country Status (1)

Country Link
JP (1) JPS60136493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286996A (en) * 1985-10-14 1987-04-21 Hitachi Ltd Magnetic recording and reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286996A (en) * 1985-10-14 1987-04-21 Hitachi Ltd Magnetic recording and reproducing device

Also Published As

Publication number Publication date
JPH034158B2 (en) 1991-01-22

Similar Documents

Publication Publication Date Title
US4464675A (en) Low frequency digital comb filter system
JPS5967716A (en) Sampled data filter
CA1206597A (en) Reduced data rate signal separation system
KR900004990B1 (en) Method of reproducing a chrominance signal
JPS60136493A (en) Chrominance signal processor
JPS59196685A (en) Device for demodulating chrominance signal sampling data format
KR900005810A (en) Chroma Signal Processing Circuit of Video Tape Recorder
JPH0232836B2 (en)
JPS60111591A (en) Recording and reproducing method of color video signal
JPS60111590A (en) Digital processor of chrominance signal
JPS60136492A (en) Chrominance signal processor
JPH038634B2 (en)
EP0476922B1 (en) Circuit for processing the frequency of a signal for a video cassette recorder
Hashimoto Digital decoding and encoding of the NTSC signal at 912 samples per line
JP2508443B2 (en) Clock synchronization circuit for sampling rate conversion circuit
JP2650162B2 (en) Video signal processing device
JPS61290894A (en) Digital processing chrominance signal processing device
KR960012594B1 (en) A digital color demodulating apparatus
JPH02107096A (en) Signal converter
JP2545844B2 (en) Color encoding device
JPH0636616B2 (en) Color signal processor
JPS63246091A (en) Color encoder
JPH0382249A (en) Demodulation circuit for psk signal
JPH0352486A (en) Chrominance subcarrier reproducing circuit
JPH07274187A (en) Chrominance signal processing circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term