JPS60136492A - Chrominance signal processor - Google Patents

Chrominance signal processor

Info

Publication number
JPS60136492A
JPS60136492A JP24940483A JP24940483A JPS60136492A JP S60136492 A JPS60136492 A JP S60136492A JP 24940483 A JP24940483 A JP 24940483A JP 24940483 A JP24940483 A JP 24940483A JP S60136492 A JPS60136492 A JP S60136492A
Authority
JP
Japan
Prior art keywords
signal
processing
color
low
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24940483A
Other languages
Japanese (ja)
Other versions
JPH0480595B2 (en
Inventor
Yukio Nakagawa
幸夫 中川
Masao Tomita
富田 雅夫
Tokikazu Matsumoto
松本 時和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24940483A priority Critical patent/JPS60136492A/en
Priority to US06/666,375 priority patent/US4754340A/en
Priority to EP84307529A priority patent/EP0140716B1/en
Priority to KR1019840006876A priority patent/KR900004990B1/en
Priority to DE8484307529T priority patent/DE3484000D1/en
Publication of JPS60136492A publication Critical patent/JPS60136492A/en
Publication of JPH0480595B2 publication Critical patent/JPH0480595B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/83Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal
    • H04N9/831Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal using intermediate digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/87Regeneration of colour television signals
    • H04N9/8707Regeneration of colour television signals using a demodulator and a remodulator, e.g. for standard conversion

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To obtain a processor which is high in general-purpose use and allows demodulation of a low-band conversion chrominance signal by generating timing for separation of a color difference signal from the demodulation axis of the low-band conversion chrominance signal by a relatively simple digital circuit. CONSTITUTION:A low-band conversion chrominance signal (q) inputted from a terminal 1 is A/D-converted in timing of a clock (b) by an A/D convertor 5, and added to a code inversion circuit 6, where only a minus component among color different signal components is code-inverted in timing of a code inversion pulse (f), and supplied to latch circuits 7a and 7b. In the latch circuits 7a and 7b, color-difference signal separating pulses q1 and q2 are latched, and two color different signal data d1 and d2 are separated from said pulses. The color difference signal separating pulses q1 and q2 delay the code inverting pulse (f) by one clock through a flip-flop 14, and are generated through an exclusive OR circuit 15 and a flip-flop 16.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、回転ヘッド形VTRなどで磁気7−プに記録
された低域変換色信号を再生する際に、隣接1〜ラツク
からのクロストーク除去方v1として用いられる、低域
変換色信号の位相を隣り合うトラック(以下Aトラック
、F3+−ラックという)で反対方向に111毎に90
°シフトするPS処理を行2、rう方法(以下PS方式
という)、またAトラックに対しB i−ラックの位相
を11」毎に反転さぜる1)1処理を行なう方法(以下
P I方式という)で記録された低域変換色信号を2つ
の色差信号に分−2− −1′する色信号処理装置に関するものである。。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a method for eliminating crosstalk from adjacent racks when reproducing a low frequency converted color signal recorded on a magnetic disk in a rotary head type VTR or the like. The phase of the low-frequency conversion color signal used as the direction v1 is changed by 90 in the opposite direction every 111 in adjacent tracks (hereinafter referred to as A track, F3+- rack).
There is a method in which the phase of the B i-rack is inverted every 11" for the A track (hereinafter referred to as the PS method), and a method in which the phase of the B i-rack is inverted every 11" (hereinafter referred to as the P I This invention relates to a color signal processing device that divides a low-pass conversion color signal recorded using a method (referred to as a method) into two color difference signals. .

従来例の構成とその問題点 従来の回転ヘッド形VTRにおいて、カラー映像信号の
記録再生を行なう場合、F IVI変調された変調輝度
信号と、低域搬送周波数fcの−bのに変換されlζ低
域変換色信号とを混合して磁気テープに記録するように
している、5この場合、隣接づるトラックの間にガート
バンドを介在させない高密度記録を行なうため、変調輝
度信号に関しては、傾斜アジマス記録を行ない、低域変
換色信号に関しT tま、隣り合うトラック間で周波数
インターリーブの関係が成立するJ:う(cPS方式ま
たはPI方式が採用されている。上記したJ、うに[)
S処理または1)1処即が行なわれlζ低域変換色信号
は、再生時にシフ1−まIこは反転された位相をもとに
戻し、ざらにもどの高い搬送周波数fsc (Ni−3
C方式では3.58 M 11 Z )に周波数変換覆
る事が必要−て゛あり、その方法と1ノで、第1に、回
路的にPSS処理1./、=はP I処理が行4丁われ
Iこ低域搬送周波数[Cの信号を作成し、前記低域搬送
周波数(aの信号と−3− 周波数fsca′)33i!仇号どを乗vqr Irl
路t= −r m Iff シ、周波数fsc + f
cなる信号を作成し、ざらにこの周波数fsc −1−
fcf7)信号と低域変換色信号とを@粋回路で乗算す
ることにJ:す、搬送周波数かfsc −1fa−fo
−fscの搬送色信号を1!Iる方法があるが、第2の
方?7、として、低域変換色信号は変調軸がPS′A:
たはP I処理された直角二相平衡変調波と考えられる
ため、低域変換色信号を−【」2つの色差信号に復調し
、復調後さらに基準周波数fscの搬送波で直角二相平
衡変調を行なうことにより、所定の搬送周波数fscの
搬送色信号を1tする小も可能である。
Conventional configuration and its problems In a conventional rotary head type VTR, when recording and reproducing color video signals, a modulated luminance signal modulated by FIVI and a low carrier frequency fc converted into -b of lζ low In this case, in order to perform high-density recording without intervening guard bands between adjacent tracks, the modulated luminance signal is recorded on the magnetic tape by mixing it with the gamut conversion color signal. Then, regarding the low-frequency conversion color signal, a frequency interleave relationship is established between adjacent tracks. (The cPS method or the PI method is adopted.
S processing or 1) 1 processing is performed, and the low-pass converted color signal is shifted 1- or 1) during reproduction, returning the inverted phase to its original state, and roughly converting it to any high carrier frequency fsc (Ni-3
In the C method, it is necessary to convert the frequency to 3.58 M 11 Z ), and the method and 1.1. /,= means that the PI processing is performed in 4 rows to create a signal of low carrier frequency [C, and the low carrier frequency (signal of a and -3-frequency fsca') 33i! Vqr Irl
path t=-r m Iff, frequency fsc + f
Create a signal c, and roughly give this frequency fsc -1-
Multiplying the fcf7) signal and the low-frequency conversion color signal using the circuit, the carrier frequency is fsc -1fa-fo.
-fsc carrier color signal to 1! There is a way to do it, but is there a second way? 7, the modulation axis of the low frequency conversion color signal is PS'A:
Since it is considered to be a quadrature two-phase balanced modulation wave that has been subjected to PI processing, the low-pass conversion color signal is demodulated into two color difference signals, and after demodulation, quadrature two-phase balanced modulation is performed using a carrier wave with a reference frequency fsc. By doing so, it is possible to reduce the carrier color signal of a predetermined carrier frequency fsc to 1t.

十記第1の方法は従来量ら一般的1.rものであるが、
乗算回路が2つ必要で、ざらにそれに付随して重募1こ
にり発生づる一1側波帯111こ1j、下側波ηシを除
去づるl、:めのバンドパスフィルタがおのおのの乗多
事回路について路−要C1回路規模が人E5 < ’r
’にるという欠点をイイし、第2の方法にJ3いては、
低域変換a1仇)シを1接復調Jる際に、P S h式
・P I方式tこ従った復調軸を作成する回路及び復調
軸を−1− 1i1へ1にイ1(域変換色信号を復調する回路が新/
jに必要である。
The first method is conventional method 1. Although it is r,
Two multiplier circuits are required, and along with them, a bandpass filter is used to remove the lower sidebands 111 and 111, which generate the heavy noise, and the lower sideband η, respectively. Regarding the multiplication circuit, the required C1 circuit scale is E5 <'r
If you take advantage of the drawback of 'Niru' and use the second method as J3,
When demodulating the low frequency conversion a1), the circuit for creating the demodulation axis according to the PSh formula and the PI method and the demodulation axis are converted to -1-1i1 to 1 (region conversion The circuit that demodulates the color signal is new/
It is necessary for j.

5tた低域変換急信8の記録再生方法は、V l−18
The recording and playback method of 5t low frequency conversion express 8 is V l-18
.

ベータ、8ミリ等の各方式によってPS処理、PI処即
のどちらを行イr・うかが巽なり、低域搬送周波数もぞ
れぞれ異なっている。さらに記録再生するテレビジ・1
ン信号の方式、例えばN 1” S C方式、PAL方
式等によってもPS処理、P1処理の違いや、低域搬送
周波数の違いがある。近年−に記した様に方式の異なる
低域変換色信号の記録再生回路として、方式切換え信号
にJ:り回路動作を切換え、回路に汎用性をもたせてコ
ス(〜ダ1クンをはかる傾向があるが、各方式に対応で
るために回路規模が大きくなるという欠点をイイしてい
た。。
Depending on the system, such as Beta or 8mm, PS processing or PI processing is performed, and the low frequency carrier frequency is also different. TV 1 for further recording and playback
There are also differences in PS processing, P1 processing, and low-frequency carrier frequencies depending on the system of the signal, such as the N1'' SC system and PAL system. As a signal recording/reproducing circuit, there is a tendency to change the circuit operation in response to the system switching signal, and to make the circuit more versatile and reduce cost, but the circuit size is large because it is compatible with each system. I liked the drawback of becoming...

発明の目的 本発明は一1記従来の欠点を解消するもので、低域変換
色信号の再生方法としてl−記第2の方法を採用(jる
場合に、比較的筒中なデジタル回路で(fU111変換
色信号の復調軸から色差信号分離用のタイミングを作成
ηることにより、低域変1!11−信昼の− 5 − 復調を可能(51ノ、かつ小規模なイζl加回路と6式
切換え用の入力端rとにJ:す、上記各方式に対応でさ
る)ル用性の高い色fハ号処理装賀をJF14供′Il
ることを目的とする。
OBJECTS OF THE INVENTION The present invention solves the drawbacks of the prior art as described in (1) above, and adopts the second method (1) as a method for reproducing low-frequency converted color signals (in the case of using a comparatively compact digital circuit). By creating the timing for color difference signal separation from the demodulation axis of the fU111 converted color signal, it is possible to demodulate the low frequency 1! The input terminal r for switching the 6-type switch is compatible with each of the above methods.
The porpose is to do.

発明の構成 上記目的を達成するため、本発明の色信号処理装置は、
位相シフi〜または位相反転の処理が行なわれた低域変
換色信号を低域搬送周波数の4倍の周波数をもつクロッ
クでサンプルホールドおにびアナ[]グ・デジタル変換
づる変換手段と、この変換手段からのデジタルデータを
前記低域変換色信号の復調軸に沿って↑90反転おJ、
′Cf分幅1を行なう処理手段と、前記デジタルデータ
の符号反転を行なうパルスと前記クロックとから色Z信
号分離用のパルスを作成して前記処理手段に供給するパ
ルス作成手段とを備え、前記低域変換色16月を2つの
色差信号データに分離する構成としたものである。
Structure of the Invention In order to achieve the above object, the color signal processing device of the present invention comprises:
A conversion means for sample-holding, analogizing, and digitally converting a low-frequency conversion color signal that has been subjected to phase shift or phase inversion processing using a clock having a frequency four times as high as the low-frequency carrier frequency; The digital data from the conversion means is inverted by ↑90 along the demodulation axis of the low frequency conversion color signal,
'Cf width 1, and a pulse generating means that generates a pulse for color Z signal separation from the pulse for sign inverting the digital data and the clock and supplies it to the processing means, The configuration is such that the low frequency conversion color 16 months is separated into two color difference signal data.

かかる構成によれば、デジタルデータの符号反転を行な
うパルスかlら色差信号データ分離用のバー 6 − ルスを作成するようにしたので、比較的低速かつ簡単な
デジタル回路で低域変換色信号を2つの色差信号データ
に復vAツる事ができ、さらにわずかの回路を付加づる
事にJ:すPS、PI処理の両方に対応できる。
According to this configuration, since the pulse for separating color difference signal data is created from the pulse for sign inverting the digital data, it is possible to generate a low frequency converted color signal using a relatively slow and simple digital circuit. It is possible to restore two color difference signal data, and by adding a small number of circuits, it is possible to support both PS and PI processing.

実施例の説明 以下、本発明の一実施例について、図面にUづいて説明
する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例にお()るPSS処理行なわ
れた低域変換色信号を2つの色差信号データに分離Jる
色信号処理装置の回路J[1ツク図、第2図は第1図の
回路に供給される低域変IIA色信号のベタ1−ル図、
第3図は第1図の回路における各部信号波形図である。
Fig. 1 shows a circuit J of a color signal processing device according to an embodiment of the present invention, which separates a low frequency converted color signal subjected to PSS processing into two color difference signal data. is a solid diagram of the low frequency variable IIA color signal supplied to the circuit of Fig. 1,
FIG. 3 is a diagram of signal waveforms at various parts in the circuit of FIG. 1.

第1図において、1は低域変換色信号qが入力される入
力端子、2は低域変換搬送周波数の4倍の夕日ツクbが
入力される入力端子、3は△1〜ラックと131−ラッ
クとで論理値1」、1−が反転するフィールド判別信号
iが入力される端子、4は水平同期パルスhが入力され
る端子である。まず入力−7一 端子1から入力された低域変換色信M Qは、A/D変
換器5により入力端子2から入力されたクロックbのタ
イミングでアナログ・デジタル変換される。低域変換色
信@qは第2図に示づJ:うに色差信号のR−Y成分0
どB−Y成分0がベクトル的に90°の位相をもってお
り、クロッ/71)は例えば水平同期パルスhJ′3J
:び低域変換バーストからPLI−回路によって作成し
、定常状態で第3図のタイミングに示づようにΔD変換
出力データCが色差信号成分p、o、−p、−oの繰り
返しデータになるようなりロックとしている。次に変換
されたA D変換出力データCは、符号反転回路6によ
り、符甥反転パルスfのタイミングによりデータが−p
 、−oの部分のみ符号反転が行なわれ、へ〇変模デー
ク1(はp、0の繰り返しデータどなる1、符号反転パ
ルスfは、クロックbを分周鼎9で4分周したものから
シフトレジスタ10ににす1クロックづつずらした4相
のパルスを作成し、これをデータはレクタ13ににす1
1−1角に切換えて出力する事ににり得られる。符号反
転パルスfの切−8− 換えは、水平同期パルスhの立ち下がりでフィールド判
別信号1をフリツブフロツブ11でラッチした信号jを
作成し、水平同期パルスhをカラン1〜するアップダウ
ンカウンタ12のアップダウン動作を#配信号jで切換
え、このアップダウンカウンタ12の出力QA、 Q8
 により行なう。上記回路描成により、符号反転パルス
fはフィールド判別信号iが論I!J! +11−1の
場合に1日毎に位相がクロックbの1クロック分進み、
フィールド判別信号1が論理値1−の場合は1H毎に1
クロック分遅れることになり、サンプリング復調軸にぞ
った符号反転が行なわれる。さらに符号反転パルスfは
、フリップ70ツブ14によりクロックhの1クロック
分理延された信号と排他的論理和回路15により排他的
論理和が作成される。フリップ70ツブ16により排他
的論理和回路15の出力をラッチして2つの色差信号デ
ータd1.d2の0次ホールドおよび色差信号分離パル
ス01.(12としている。符号反転回路6を通過した
A D変換データには、前記色差信号分離パルスQ1.
g2をもとにラッチ回−〇 − 路7a、7hでぞれぞれラッチされ、2つの色差信号デ
ータdi、d2に分離される。この色差信号データd1
.d2はタイミング的に他方の色差信号データをもつ部
分があるため、klH的にフリッブフ日ツブQa、8b
でさらにラップをか(プ、使用可能な色差信号成分pま
たは0に分離されlζ色差信号データe1,02どして
いる。
In FIG. 1, 1 is an input terminal to which a low-frequency conversion color signal q is input, 2 is an input terminal to which a sunset signal b that is four times the low-frequency conversion carrier frequency is input, and 3 is an input terminal for △1~rack and 131- 4 is a terminal to which a field discrimination signal i having a logical value of 1 and 1- is inverted is input, and a terminal 4 is input to a horizontal synchronizing pulse h. First, the low frequency conversion color signal MQ inputted from the input terminal -7 - terminal 1 is converted from analog to digital by the A/D converter 5 at the timing of the clock b inputted from the input terminal 2. Low-pass conversion color signal @q is shown in Figure 2. J: R-Y component of sea urchin color difference signal 0
The B-Y component 0 has a vectorial phase of 90°, and clock/71) is, for example, the horizontal synchronizing pulse hJ'3J
: and low-frequency conversion burst by the PLI circuit, and in a steady state, the ΔD conversion output data C becomes repeated data of color difference signal components p, o, -p, -o as shown in the timing of Fig. 3. It's like a lock. Next, the converted A/D conversion output data C is changed to -p by the sign inversion circuit 6 according to the timing of the sign inversion pulse f.
, -o part only is sign inverted, to Create 4-phase pulses shifted by 1 clock each in register 10, and transfer the data to register 13 by 1 clock.
This can be obtained by switching to 1-1 angle and outputting. The switching of the sign inversion pulse f is performed by creating a signal j by latching the field discrimination signal 1 with the flipflop 11 at the falling edge of the horizontal synchronization pulse h, and then switching the horizontal synchronization pulse h from 1 to the up/down counter 12. The up/down operation is switched by the # distribution signal j, and the output QA of this up/down counter 12 is Q8.
This is done by According to the above circuit diagram, the field discrimination signal i of the sign-inverted pulse f is logic I! J! In the case of +11-1, the phase advances by one clock of clock b every day,
If field discrimination signal 1 is logical value 1-, 1 every 1H
This results in a clock delay, and sign inversion along the sampling demodulation axis is performed. Further, the exclusive OR circuit 15 creates an exclusive OR of the sign-inverted pulse f with a signal that is delayed by one clock of the clock h by the flip 70 block 14. The output of the exclusive OR circuit 15 is latched by the flip 70 tab 16, and the two color difference signal data d1. d2 zero-order hold and color difference signal separation pulse 01. (12).The A/D converted data that has passed through the sign inversion circuit 6 is supplied with the color difference signal separation pulse Q1.
Based on the signal g2, the signal is latched by the latch circuits 7a and 7h, respectively, and separated into two color difference signal data di and d2. This color difference signal data d1
.. Since d2 has a part that has the other color difference signal data due to timing, it is different from the other color difference signal data in terms of timing.
Then, the signal is further wrapped and separated into usable color difference signal components p or 0, and the color difference signal data e1, 02 are obtained.

第3図の各部の波形において、」−配色信号処理回路の
ある時点の低域変換パーストの期間のタイミング(18
目)と次の水平期間におけるバースト期間のタイミング
(2H目)とを示しノているが、低域変換色信号qの低
域搬送周波数fcば水平同期周波数fs の1/2の整
数倍に定められており、イ氏1或変換色信シづqは11
−1目と2ト(目とでI) S処理にJ、す90°位相
がシフトしており、低域変換バーストrの位相も同様に
シフ]〜している。また、2つの色差信号データe1.
c2は低域搬送周波数fcの2倍の2rcで得られるた
め、一つの色差信号データに関しては水平同期パルスh
を基準にすると1H目と2H目とでサンプリング点が1
80°位−10− 相ジノi〜【ッ、f−夕が不連続と1ノる。このため本
実施例の回路Cは、サンプリング点の中間のデータとし
て、前のり゛ンプリング点のデータを補間づる0次ホー
ルドフィルタで補間を行ない、各色差伯8データどし連
続でかつ111当りのデータの出力タイミングがそろっ
たらのとし、後の処理を行ないやづく()ている。
In the waveforms of each part in FIG.
(2H) and the timing of the burst period (2H) in the next horizontal period, where the low frequency carrier frequency fc of the low frequency conversion color signal q is set to an integral multiple of 1/2 of the horizontal synchronization frequency fs. Mr. Lee 1 and conversion color confidence Shizuq are 11
-1st and 2nd (I) The phase of the S processing is shifted by 90°, and the phase of the low-frequency conversion burst r is similarly shifted. Furthermore, two color difference signal data e1.
Since c2 is obtained at 2rc which is twice the low carrier frequency fc, for one color difference signal data, the horizontal synchronizing pulse h
Based on 1H and 2H, the sampling point is 1.
80° -10- Phase jino i~ [t, f-Yu is discontinuous and 1 no. For this reason, the circuit C of this embodiment uses a zero-order hold filter to interpolate the data of the previous sampling point as the intermediate data of the sampling points, so that 8 data of each color difference are continuous and 111. Once the data output timing is aligned, the subsequent processing is done ().

上記説明では、PS処理が行なわれた低域変換色信号(
1を2゛つの色、iクイ:1号データ(! 1 、 (
i 2に分離する場合について述べたが、PI処理が行
なわれた低域変換色信号を扱う場合には、例えば第4図
に示づように、第1図のシフ1−レジスタ10をクロッ
ク1)の4分周波とイの反転出力との2つのパルスを出
力するインバータ17に置き換え、アップダウンカウン
タ12をフリップフ[1ツブ18−個の分周器に置き換
え、さらにフリッブフ[Jツブ11の出力174号jが
論即値1−のどき水平同期パルス1]の分周波を作成づ
るフリップフロップ18のクロック入力に入る水平同期
パルスhを禁+l−する論理和回路19を付加し、フィ
ールド判別信号iにより符号反−11− 転パルス[を11−1175に反転ざl!たり、イのま
J、連続に出力1”る様に動作させることにより、PS
処理の場合と同様な色差信号データ81.02が1qら
れる。なお20はデータヒレフタである。また1)1凱
狸tこおいては低域搬送周波数が水)11101191
周波数[、I の1/4の奇数倍に定められており、P
 S処理の場合と同様に、水平同期パルスhを駐準にす
ると1H目と21」目とで1ノンプリング点が180°
位相ジノ1〜し、4ノンプリングが不)す!続となるた
め、0次ホールドでサンプリング点の中間のデータの補
間を行ない、色差信号データの標本化周波数fsが低域
搬送周波数fcの4倍で連続でありかつfl、I の整
数倍のデータに変換している。ま7ノ以上はNTSC方
式の搬送色信号PS、PI方式で記録再生1ノた場合の
ように、11−1相関のある低域変換色信号の場合につ
いて述べたが、PAL方式のJ:うに21−1相関のあ
る場合、上記説明から明らかなように、サンプリング点
の中間のデータを補間後の6色差信号データの標本化周
波数は、低域搬送周波数の4倍でかつf、/2の奇数倍
にな−12− リ、21−1当りのデータの出力タイミングがそろえら
れる。
In the above explanation, the low-frequency conversion color signal (
1 to 2 colors, i Kui: No. 1 data (! 1, (
Although we have described the case where the shift 1-register 10 in FIG. ) is replaced with an inverter 17 that outputs two pulses, a 4-frequency wave of 4 and an inverted output of No. 174 j adds an OR circuit 19 that inhibits the horizontal synchronizing pulse h input to the clock input of the flip-flop 18, which creates a frequency-divided wave of the immediate value 1 - the horizontal synchronizing pulse 1], and generates the field discrimination signal i. The sign of the pulse is inverted by 11-1175. By operating so that the output is 1" continuously, the PS
Color difference signal data 81.02 similar to that in the processing is 1q. Note that 20 is a data filler. Also, 1) In this case, the low carrier frequency is water) 11101191
The frequency is set to be an odd multiple of 1/4 of I, and P
As in the case of S processing, when horizontal synchronization pulse h is set to standard, the 1 non-pulling point is 180° between 1H and 21''.
Phase Gino 1~, 4 non-pull is not good! Therefore, data in the middle of the sampling points is interpolated using zero-order hold, and the sampling frequency fs of the color difference signal data is continuous at four times the low carrier frequency fc, and the data is an integer multiple of fl,I. is being converted to . Above, we have discussed the case of a low-frequency conversion color signal with an 11-1 correlation, such as the case where the carrier color signal PS of the NTSC system and the recording/reproduction 1 node of the PI system, but the J: sea urchin of the PAL system When there is a 21-1 correlation, as is clear from the above explanation, the sampling frequency of the six color difference signal data after interpolating the data between the sampling points is four times the low carrier frequency and f,/2. The output timings of data per odd number times -12- and 21-1 are aligned.

以上のように本実施例によれば、PS処理、[)1処即
の場合とも、サンプリング復調軸に沿った符号反転パル
スfと低域搬送周波数の4倍のりロックbとから、フリ
ップ70ツブ14.16と排他的論理和回路15とから
なる回路により、色差信号分離パルスQ1.Q2を作成
し、符号反転回路6を通過した後のAD変換データk 
〔色差信号データpと0の繰り返しデータ〕を、前記色
差信号分離パルスQ1.Q2によりラッチ回路7a、7
bでp成分とO成分のデータに分離することにより、低
域変換色信号qを2つの色差信号データdi。
As described above, according to this embodiment, in both the PS processing and [) 1 processing, a flip 70 block is generated from the sign-inverted pulse f along the sampling demodulation axis and the four times the low carrier frequency beam lock b. 14.16 and an exclusive OR circuit 15, the color difference signal separation pulses Q1. AD conversion data k after creating Q2 and passing through the sign inversion circuit 6
[Repetition data of color difference signal data p and 0] is applied to the color difference signal separation pulse Q1. Latch circuits 7a, 7 by Q2
By separating the data of the p component and the O component at step b, the low-pass converted color signal q is converted into two color difference signal data di.

d2に分離している。It is separated into d2.

また本実施例のPStB理、PI処唾の動作説明から明
らかなようにPS処理とPl処理とで興なる点は、符号
反転パルスfの作成法が若干異なるだけであり、前記し
た符号反転パルスtを作成する回路を、PS処理用どP
I処理用との2つをもち、外部から切換信号により符号
反転パルスfの−13= 作成回路を切換える事により、PS、PIの両方式に対
応できる。
Furthermore, as is clear from the explanation of the operations of PStB processing and PI processing in this embodiment, the only difference between PS processing and Pl processing is that the method of creating the sign-inverted pulse f is slightly different; The circuit that creates t is used for PS processing, etc.
It has two circuits, one for I processing, and can support both PS and PI types by switching the -13= generation circuit for the sign-inverted pulse f using an external switching signal.

第5図はPS、PIの両方式に対応できるように構成し
た色信号処理装置の回路図で、22はPS処理用の符号
反転パルス作成回路であり、第1図の回路図におけるシ
フトレジスタ10、アップダウンカウンタ12、データ
セレクタ13を含めた回転パルス作成回路で、第4図の
回路図におけるノリツブフロップ18、論理和回路19
、インバータ17、データセレクタ20を含めた回路構
成となっている。
FIG. 5 is a circuit diagram of a color signal processing device configured to be compatible with both PS and PI systems, and 22 is a sign inversion pulse generation circuit for PS processing, and the shift register 10 in the circuit diagram of FIG. , an up/down counter 12, and a data selector 13.It is a rotating pulse generation circuit including an up/down counter 12, and a data selector 13.
, an inverter 17, and a data selector 20.

この実施例では、符号反転パルス作成回路としてPS処
理用の符号反転パルス作成回路22とPI処理用の符号
反転パルス作成回路23との2つをもつ他に、方式切換
信号入力端子21と信号切換回路24.25どをもち、
方式切換信@Sによって符号反転パルス「をP S処理
用の符号反転パルス「2とに信号切換回路25にJ:っ
て切換えられるようにしている。また方式切換信@Sは
符号各反転パルス作成回路22.23にも供給され、切
換信@Sににり型法の回路の動作を停止し、消費電力の
増加等を防−14− 止している。さらに、pso即、I−) I処理で低域
搬送周波が貢なるので、低域搬送周波数4倍のクロック
1)も信号切換回路で切換えるようにし、例えば入力端
子2aからPS処理用の低bIA搬送周波数の41.i
5のり[1ツクb1を人力し、入力端子2bからPI処
理用の低域搬送周波数の4倍のクロックb2を入力して
やればよい。また第5図において他の回路は第1図およ
び第4図のものと同等のものでにい。
In this embodiment, in addition to having two sign-inverted pulse generating circuits, a sign-inverted pulse generating circuit 22 for PS processing and a sign-inverted pulse generating circuit 23 for PI processing, a system switching signal input terminal 21 and a signal switching signal input terminal 21 are provided. It has circuit 24.25 etc.
The system switching signal @S allows the signal switching circuit 25 to switch between the sign inversion pulse ``PS'' and the sign inversion pulse 2 for S processing. It is also supplied to the creation circuits 22 and 23, and the switching signal @S stops the operation of the circuit of the Nari type method, preventing an increase in power consumption. Since the low-band carrier frequency contributes to I processing, the clock 1) with a quadrupled low-band carrier frequency is also switched by the signal switching circuit, and for example, the low-bIA carrier frequency 41.
It is sufficient to input the clock b2 of 4 times the low frequency carrier frequency for PI processing from the input terminal 2b by manually inputting the clock b1 of 5 [1 clock b1]. The other circuits in FIG. 5 are the same as those in FIGS. 1 and 4.

1配説明では、I) S処理、PI処理の2つを切換え
る場合について説明したが、切換信号入力端子およびブ
ロック入力端子を増設し、各種記録再生方式に対応して
符号反転パルス作成回路を付加することにより、2秒以
上の方式に対1ノでも対応できる色信号処理装置を実現
することも可能である。
In the first installation explanation, we explained the case of switching between I) S processing and PI processing, but it is also possible to add a switching signal input terminal and a block input terminal, and add a sign inversion pulse generation circuit to support various recording and playback methods. By doing so, it is also possible to realize a color signal processing device that can handle a method of 2 seconds or more even in a 1-no.

さらに、上記のような構成の色信号処理回路を使用して
搬送周波数fscの搬送色信号を得るには、D/Aコン
バータで2つの色差信号データをアブログ値に変換した
後に直角二相平衡変調する方法、−15− または、得られた色差イに号データをデジタルカラーエ
ン]−ダにより搬送色信号データに変換後、1〕/△変
換し搬jX邑信号を1qる方法が挙げられるが、色差信
号データをO/△変換した77す[1グ信8J、たは4
t)られた搬送魚信8のり【−1スト−り成分(ま本来
の43号に対し水平同期周波数の1/2ずれているため
、くl)形フィルターにJ、り除去で・き、PS処理、
P1処理による効果は失なわれない。
Furthermore, in order to obtain a carrier color signal with a carrier frequency fsc using the color signal processing circuit configured as described above, two color difference signal data are converted into an ablog value using a D/A converter, and then quadrature two-phase balanced modulation is performed. -15- Alternatively, there is a method in which the obtained color difference data is converted into carrier color signal data by a digital color encoder, and then 1]/△ is converted and the carrier signal is converted to 1q. , 77S [1G signal 8J, or 4
t) The conveyed fish signal 8 can be removed using a -1 stroke component (because it is shifted by 1/2 of the horizontal synchronization frequency with respect to the original No. 43) type filter. PS processing,
The effects of P1 treatment are not lost.

発明の効果 以−卜説明したように本発明によれば、[)SまたはP
I処理がなされIC低域変換色信号を低域搬送周波数の
4倍のり【−1ツクでA/D変換して2つの色差信号に
復調する場合に、復調軸に沿った符号反転パルスから荀
号反転の処1jllが行なわれた後のΔ/D変換データ
を分離する色差信号分離パルスを作成Jるようにしたの
で、筒中なデジタル回路で、低域変換色信号を2つの色
差信号データに復調することができ、色信号処理のデジ
タル買および低価格化が容易である。また、わずかの(
=j加回路によりps、pi処理の両方に対応Jること
が−16− でき、切換入力により各種方式に対応できるよう構成し
集積化した場合、各方式に対し同一回路で対応できるの
で、汎用性が高くかつ低価格な色信号処理回路を供給す
ることが可能である。
Effects of the Invention As explained below, according to the present invention, [)S or P
When I processing is performed and the IC low frequency converted color signal is A/D converted at 4 times the low frequency carrier frequency and demodulated into two color difference signals, the signal is converted from the sign inverted pulse along the demodulation axis. Since a color difference signal separation pulse is created to separate the Δ/D converted data after the signal inversion process has been performed, the low frequency converted color signal is divided into two color difference signal data using an internal digital circuit. It can be demodulated, and color signal processing can be easily purchased digitally and at lower prices. Also, a small amount (
It is possible to support both ps and pi processing using the adder circuit, and if it is configured and integrated to support various systems using switching inputs, the same circuit can handle each system, making it a general-purpose device. It is possible to provide a color signal processing circuit with high performance and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における色信号処理vi、w
の回路ブロック図、第2図は低域変換色信号のベクトル
図、第3図は第1図に示す回路の各部信号波形図、第4
図および第5図はそれぞれ〆本発明の別の実施例におけ
る色信号処理装置の回路ブロック図である。 5・・・A/D変換器、6・・・符号反転回路、7a。 7b−・・ラッチ回路、8a 、 8b 、 11.1
4.16.18・・・フリップフロップ、9・・・分周
器、10・・・シフトレジスタ、12・・・アップダウ
ンカウンタ、13.20・・・データセレクタ、15・
・・排他的論理和回路、17・・・インバータ、19・
・・論理積回路、22.23・・・符号反転パルス作成
回路、24.25・・・信号切換回路代理人 森 本 
義 弘 − 17 − 第2図 1紬 第3図 手続補正書(帥) 、J−一 1、事件の表示 子−2 昭和58 年特 許 願第 249404 月2、発明
の名称 色信号処理装置 3、補正をする者 事件との関係 特許出願人 名称 (582)松下電器産業株式会社昭和 年 月 
日 6、補正により増加する発明の数 7、補正の対象 ■ 明和1書の発明の詳細な説明の掴 (υ第14頁第7行目〜同頁第8行目 「データセレクタ13を含めた回転パルス作成回路で、
」とあるを「データセレクタ13を含めた回路構成とな
っており、23はPI処理用の符号反転パルス作成回路
で、」と訂正す本(2)第14頁第16行目 [符号反転パルスf2とにjとあるを「符号反転パルス
f、とPI処理用の符号反転パルスf2とに」と訂正す
る。 (3)第16頁第18行目 「テシタル買」とあるをrデジタル化」ト訂正する。 (2)
FIG. 1 shows color signal processing vi, w in an embodiment of the present invention.
Figure 2 is a vector diagram of the low frequency conversion color signal, Figure 3 is a signal waveform diagram of each part of the circuit shown in Figure 1, and Figure 4 is a circuit block diagram of the circuit shown in Figure 1.
5 and 5 are circuit block diagrams of a color signal processing device in another embodiment of the present invention, respectively. 5... A/D converter, 6... Sign inversion circuit, 7a. 7b--latch circuit, 8a, 8b, 11.1
4.16.18... Flip-flop, 9... Frequency divider, 10... Shift register, 12... Up/down counter, 13.20... Data selector, 15.
・・Exclusive OR circuit, 17・・Inverter, 19・
...Logic product circuit, 22.23 ... Sign inversion pulse generation circuit, 24.25 ... Signal switching circuit agent Morimoto
Yoshihiro - 17 - Fig. 2 1 Tsumugi Fig. 3 Procedural amendment (marshal), J-11, Case indication Child-2 1981 Patent Application No. 249404 April 2, Title of invention Color signal processing device 3 , Relationship with the case of the person making the amendment Patent applicant name (582) Matsushita Electric Industrial Co., Ltd. Showa Year/Month
Day 6, number of inventions increased by amendment 7, subject of amendment ■ Grasping of detailed explanation of inventions in Book 1 of Meiwa (υ page 14, line 7 to page 8 line ``Including data selector 13 In the rotation pulse generation circuit,
'' is corrected to ``The circuit configuration includes a data selector 13, and 23 is a sign-inverted pulse generating circuit for PI processing.'' Book (2), page 14, line 16 [sign-inverted pulse The text "j" in "f2" is corrected to "the sign-inverted pulse f, and the sign-inverted pulse f2 for PI processing." (3) On page 16, line 18, correct the phrase ``digital purchase.'' (2)

Claims (1)

【特許請求の範囲】 1、位相シフトまたは位相反転の処理が行なわれた低域
変換色信号を低域搬送周波数の4倍の周波数をもつり[
1ツクでリンプルホールドおよびアナログ・デジタル変
換する変換手段と、この変換手段からのデジタルデータ
を前記低域変換色信号の復調軸に沿って符号反転おJ:
び分離を行なう処理手段と、前記デジタルデータの符号
反転を行なうパルスと前記クロックとから色差信号分離
用のパルスを作成して前記処理手段に供給するパルス作
成手段とを備え、前記低域変換色信号を2つの色差信号
データに分離する構成とした色信号処理装置。 2、変換手段は、各種方式判別のための切換信号により
低111搬送周波数の4倍の周波数をも)クロックをそ
れぞれの処理に対応した周波−1− 数の−?>のにすJ換える切換手段を右し、パルス作成
手段は、デジタルデータの符号反転を行なうパルスをf
(成する符号反転パルス作成回路としてPS処理用とP
1処理用との2つを只備し、前記切換信号にJ、り前記
符号反転パルス作成回路を切換えることにより、l’ 
S処理、[)1処理の両方に対処Jる構成とした特許請
求のgA皿第1項記載の色4”:S 5’j処理装置。
[Claims] 1. A low frequency converted color signal that has been subjected to phase shift or phase inversion processing has a frequency four times as high as the low frequency carrier frequency [
Conversion means that performs ripple hold and analog-to-digital conversion in one step, and sign-inverting the digital data from this conversion means along the demodulation axis of the low-frequency conversion color signal.
processing means for performing color difference signal separation, and pulse generation means for creating a pulse for color difference signal separation from the pulse for sign inverting the digital data and the clock and supplying it to the processing means; A color signal processing device configured to separate a signal into two color difference signal data. 2. The converting means uses a switching signal for distinguishing between various systems to convert the clock (even four times the frequency of the low 111 carrier frequency) to a frequency corresponding to each process. The pulse generating means generates a pulse for inverting the sign of the digital data.
(For PS processing and P
By switching the sign inversion pulse generation circuit according to the switching signal,
A color 4'':S5'j processing apparatus according to claim 1, which is configured to handle both S processing and [)1 processing.
JP24940483A 1983-11-01 1983-12-24 Chrominance signal processor Granted JPS60136492A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24940483A JPS60136492A (en) 1983-12-24 1983-12-24 Chrominance signal processor
US06/666,375 US4754340A (en) 1983-11-01 1984-10-30 Method of reproducing a chrominance signal from a previously low-range-converted chrominance signal using comb filtering and sampling
EP84307529A EP0140716B1 (en) 1983-11-01 1984-11-01 Method and apparatus for reproducing a chrominance signal
KR1019840006876A KR900004990B1 (en) 1983-11-01 1984-11-01 Method of reproducing a chrominance signal
DE8484307529T DE3484000D1 (en) 1983-11-01 1984-11-01 METHOD AND DEVICE FOR PLAYING BACK A CHROMINANCE SIGNAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24940483A JPS60136492A (en) 1983-12-24 1983-12-24 Chrominance signal processor

Publications (2)

Publication Number Publication Date
JPS60136492A true JPS60136492A (en) 1985-07-19
JPH0480595B2 JPH0480595B2 (en) 1992-12-18

Family

ID=17192474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24940483A Granted JPS60136492A (en) 1983-11-01 1983-12-24 Chrominance signal processor

Country Status (1)

Country Link
JP (1) JPS60136492A (en)

Also Published As

Publication number Publication date
JPH0480595B2 (en) 1992-12-18

Similar Documents

Publication Publication Date Title
US4286283A (en) Transcoder
US4745463A (en) Generalized chrominance signal demodulator for a sampled data television signal processing system
US4464675A (en) Low frequency digital comb filter system
GB2124848A (en) Digital filter
US4456922A (en) Reduced data rate comb filter system
KR900004990B1 (en) Method of reproducing a chrominance signal
US4415918A (en) Digital color television signal demodulator
JPS60136492A (en) Chrominance signal processor
US4695873A (en) Horizontal line data position and burst phase encoding apparatus and method
JPS59205889A (en) Filter
JPS59196685A (en) Device for demodulating chrominance signal sampling data format
JPS58206285A (en) Phase synchronizing circuit
JPS60111591A (en) Recording and reproducing method of color video signal
JPS59501390A (en) Reduced data rate signal separator
JP3063480B2 (en) Digital color signal processing method
JPH038634B2 (en)
JPH034158B2 (en)
JPS60111590A (en) Digital processor of chrominance signal
EP0476922B1 (en) Circuit for processing the frequency of a signal for a video cassette recorder
JPH0232836B2 (en)
JPH078052B2 (en) Color signal processing circuit
JP2508443B2 (en) Clock synchronization circuit for sampling rate conversion circuit
JPH10341457A (en) Circuit device for chrominance signal processing
JPH04356890A (en) Chrominance signal processor
JPH0382249A (en) Demodulation circuit for psk signal