JPS60135882A - Measurement of diameter of ion beam - Google Patents

Measurement of diameter of ion beam

Info

Publication number
JPS60135882A
JPS60135882A JP24417083A JP24417083A JPS60135882A JP S60135882 A JPS60135882 A JP S60135882A JP 24417083 A JP24417083 A JP 24417083A JP 24417083 A JP24417083 A JP 24417083A JP S60135882 A JPS60135882 A JP S60135882A
Authority
JP
Japan
Prior art keywords
ion beam
diameter
semiconductor
intensity
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24417083A
Other languages
Japanese (ja)
Inventor
Hiroshi Arimoto
宏 有本
Eizo Miyauchi
宮内 栄三
Toshio Hashimoto
橋本 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24417083A priority Critical patent/JPS60135882A/en
Publication of JPS60135882A publication Critical patent/JPS60135882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To make it possible to accurately measure the diameter of ion beam condensed in a sub-micron order, by measuring the diameter of ion beam by utilizing a boundary present on the surface of a flat semiconductor crystal. CONSTITUTION:When ion beam is allowed to vertically irradiate the surface of a semiconductor 1, secondary electrons 4 are emitted from the semiconductor 1 and the intensity of the electrons 4 is measured by a secondary electron intensity measuring apparatus 5. When ion beam 3 is scanned in this state and irradiated so as to traverse the boundary of two regions 1a, 1b, the intensities of emitted secondary electrons are changed in the regions 1a, 1b. Therefore, the diameter of the ion beam is calculated by the product of a time required in changing the intensity of secondary electrons from etaa to etab and the scanning speed of the ion beam.

Description

【発明の詳細な説明】 この発明は加速エネルギーで半導体基板結晶へイオンを
注入するときのイオンビーム径の測定方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the diameter of an ion beam when implanting ions into a semiconductor substrate crystal using acceleration energy.

レーザ、発光ダイオード、光検知器などの光デバイスや
トランジスタ、ダイオードなどの電子デバイスを半導体
基板に形成するためには□イオンビームにより不純物、
イオンを所定の位置に注入する必要があシ、最近提案さ
れて−いる集束イオンビームを用いて半導体基板へ直接
不純物イオンのドーピングを行う、いわゆるマスクレス
イオン注入方法は煩雑なマスクの作成、位置合せなどの
デバイスを寸法通り形成させるためには、収束された不
純物のイオンビームの径を正確に把握することが不可欠
でおる。
In order to form optical devices such as lasers, light emitting diodes, and photodetectors, and electronic devices such as transistors and diodes on semiconductor substrates, impurities,
The recently proposed maskless ion implantation method, which uses a focused ion beam to directly dope impurity ions into a semiconductor substrate, requires complicated mask creation and positioning. In order to form a device according to dimensions, it is essential to accurately determine the diameter of the focused impurity ion beam.

これまでイオンビームの径を測定する方法としては、ナ
イフェツジに対して集束したビームを垂直にして走査し
、ナイフのエツジを横切る際のビーム電流変化をファラ
デーカップにより測定し、電流の立ち上9からビームの
径を測定していた。しかし、イオンビームはスパッタリ
ング収率が大きく、測定中にナイフェツジが削れて後退
するため、測定精度に信頼性がなかった。また、Si結
晶などの上に二次電子放出量の大きい金のラインパター
ンを設け、□集束したイオンビームをこのラインパター
ン(対して垂直に横切るように走査し、Siと金の境界
をビームが横切るときの二次電子の放出比の変化よりビ
−ムの径を測定する方法も知られている。しかしこの方
法5測定中にイオンビームによるス・くツタリングのた
め、金のラインパターンのエッ□ジが次第に損傷し、測
定精度を低下させていた。
The conventional method for measuring the diameter of an ion beam is to scan the focused beam perpendicularly to the knife edge, measure the change in beam current as it crosses the knife edge using a Faraday cup, and measure the beam current change from the current rise point 9. The diameter of the beam was being measured. However, the ion beam has a high sputtering yield, and the knife edge is scraped and retreats during measurement, making measurement accuracy unreliable. In addition, a line pattern of gold, which emits a large amount of secondary electrons, is placed on the Si crystal, etc., and the focused ion beam is scanned perpendicularly to this line pattern (to ensure that the beam crosses the boundary between the Si and gold). A method is also known in which the diameter of the beam is measured from the change in the emission ratio of secondary electrons as it traverses the ion beam.However, during this method 5 measurement, the edges of the gold line pattern may be affected due to scattering caused by the ion beam. □ was gradually damaged, reducing measurement accuracy.

この発明の目的はイオンビームの径を高精度で再現性良
く測定する方法を提供することにあるに の発明によるイオンビーム径の測定方法は接合された二
つの異った特性を有する半導体領域の境界に対してイオ
ンビームを垂直にして横切るように走査し、該イオンビ
ームの走査により放出される二つの領域の二次電子強度
をそれぞ詐検出し、得られた二つの領域の二次電子の強
度比よシイオンビームの径を測定することを特徴とする
An object of the present invention is to provide a method for measuring the diameter of an ion beam with high precision and good reproducibility. The ion beam is perpendicular to the boundary and scanned across the boundary, and the secondary electron intensities of the two regions emitted by the scanning of the ion beam are falsely detected. It is characterized by measuring the diameter of the ion beam by the intensity ratio of .

次にこの発明を第1図によシ説明すると、lは半導体で
あって、異った特性を有する二つの領域/lL+/6が
接合して構成されている。このような異った特性を有す
る領域を接合して構成された半導体lとしては、Gap
sとAlGaAs などの−異種接合構造の半導体、成
るいはp−n接合を有する半導体などが挙げられる。
Next, the present invention will be explained with reference to FIG. 1. l is a semiconductor and is constructed by joining two regions /lL+/6 having different characteristics. As a semiconductor l constructed by joining regions having such different characteristics, Gap
Semiconductors having a heterojunction structure such as S and AlGaAs, or semiconductors having a pn junction can be cited.

この半導体lの表面に対して、径を測定するイオンビー
ム3を垂直に照射すると、半導体よシニ次電子ダが放出
され、この放出さnた二次電子グの強さはエレクトロン
増倍管などの二次電子強度測定装置に3によシ測定する
When the surface of this semiconductor 1 is irradiated perpendicularly with the ion beam 3 whose diameter is to be measured, secondary electrons are emitted from the semiconductor, and the intensity of the emitted secondary electrons is greater than that of an electron multiplier. Measurement is performed using a secondary electron intensity measuring device according to step 3.

このような状態でイオンビーム3を走査し、二つの領域
/αe’bの境界λを横切って照射すると、イオンビー
ム3のエネルギーは変らないが、半導体の二次電子放射
面の特性が領域/αと領域/bでは異カるため、放出さ
れる二次電子の強さはそれに伴って変る。即ち、半導体
領域lαを走査したときには第2図に示すように、二次
電子強度測定手段Sにおいては、強度拓の信号を受信し
ていたが、半導体領域/bを走査すると、二次電子放出
強度が変シ、強度ηbの信号を受信することになる。従
って、二次電子の強度がηαよシηbに変化した時間と
イオンビームの走査速度の積によシ、イオンビームの径
をめることができる。実際には二つの半導体領域1a、
/bの接合する境界コは例えば、異種接合構造の場合で
10〜201程度の幅を持っており、p−”接合では3
0X以下の幅を持っている。
If the ion beam 3 is scanned in this state and irradiated across the boundary λ of the two regions /αe'b, the energy of the ion beam 3 will not change, but the characteristics of the secondary electron emitting surface of the semiconductor will change depending on the region /αe'b. Since α and region /b are different, the strength of the emitted secondary electrons changes accordingly. That is, when scanning the semiconductor region lα, as shown in FIG. A signal with varying strength and strength ηb will be received. Therefore, the diameter of the ion beam can be determined by the product of the time during which the intensity of the secondary electrons changes from ηα to ηb and the scanning speed of the ion beam. Actually, there are two semiconductor regions 1a,
For example, the width of the boundary where /b joins is about 10 to 201 in the case of a heterojunction structure, and 3 in the case of a p-" junction.
It has a width of 0X or less.

従って二次電子□強度がηαよりηbに変化する過程に
おいて、イオンビームの径の測定に関連する時間の基準
はイオンビームの電流強度分布の形状によシ異々るが、
通常イオンビームの強度分布はガウス型である場合が多
いので、この場合ηαよりηbまでの変化分を100と
して、16チ変化した点αよシ84チ変化した点すまで
の時間がイオンビームの径dに相当する時間となシ、サ
ブミクロンオーダのビーム径も正確に測定することがで
きる。
Therefore, in the process in which the secondary electron □ intensity changes from ηα to ηb, the time reference related to measuring the diameter of the ion beam varies depending on the shape of the current intensity distribution of the ion beam.
Normally, the intensity distribution of an ion beam is often Gaussian, so in this case, assuming that the change from ηα to ηb is 100, the time it takes for the ion beam to reach a point from a point α that has changed by 16 degrees to a point that has changed by 84 degrees is assumed to be 100. For a time corresponding to the diameter d, even beam diameters on the order of submicrons can be accurately measured.

カお、イオンビームの電流強度分布は第2図の曲線を微
分したものにまり、ガウス型分布の場合、曲線の点α−
す間の幅(16%−84%の変化幅)杖電流強度分布ピ
ークの1/g点の幅に対応する。
However, the current intensity distribution of the ion beam falls on the differential of the curve shown in Figure 2, and in the case of a Gaussian distribution, the point α-
The width between the gaps (variation width of 16%-84%) corresponds to the width of the 1/g point of the peak of the current intensity distribution.

イオンビームを走査する半導体表面は平滑でおシ、二つ
の領域lα、/bは同一平面上にあることを要する。こ
のような見地から、分子線結晶成長法(MBE法)にて
形成した異種接合の半導体の弁開面をイオンビームの走
査面に用いると平坦であり且つ異種接合境界の幅も20
X以下であるので、サブミクロンオーダのビーム径も誤
―数チ以内の範囲で正確に測定することができる。イオ
ンビームを走査する半導体表面が充分−々平坦を形成し
ていないときは、成るいは境界が段差を形成していると
イオンビームによるスパッタリングが生じるので、公知
の研磨法にて研磨の上平滑にして用いる。
The semiconductor surface on which the ion beam is scanned must be smooth, and the two regions lα and /b must be on the same plane. From this point of view, if the valve opening plane of a heterojunction semiconductor formed by the molecular beam crystal growth method (MBE method) is used as the scanning plane of the ion beam, it will be flat and the width of the heterojunction boundary will be 20 mm.
Since it is less than If the semiconductor surface to be scanned by the ion beam is not sufficiently flat, or if the boundary has a step, sputtering will occur due to the ion beam, so it may be necessary to polish and smooth it using a known polishing method. Use as a.

この発明は上述の如く、平坦な半導体結晶面上にある境
界を利用してイオンビームの径を測定しているため、イ
オンビームのスパッタリングにより境界は損傷されるこ
となく再現性良くビーム径を測定することができる。更
に境界の幅は^オーダで形成することができるので、サ
ブミクロンのオーダに収束されたビームについても正確
に径を測定することができる。
As mentioned above, this invention measures the diameter of the ion beam using the boundary on the flat semiconductor crystal surface, so the beam diameter is measured with good reproducibility without damaging the boundary due to ion beam sputtering. can do. Furthermore, since the width of the boundary can be formed on the order of ^, it is possible to accurately measure the diameter of a beam focused on the order of submicrons.

次にこの発明の実施例を述べる。Next, embodiments of this invention will be described.

GaAs基板上に分子線結晶成長法にて5μm厚のノン
ドーグGcLAs層を成長させ、その上に7μm厚のA
JGI0LAg層を成長させた。この積層体を襞間し、
このGaAtt−=AlGαA8境界を有する襞間面に
径の異なる大小二つのイオンビームをそnぞれ走査して
エレクトロン増倍管にて二次電子の強度を測定した。第
5図(W)は径の小さいイオンビームを走査したときの
二次電子の出力特性図であシ、第3図(b)は径の大き
いイオンビームを走査したときの二次電子の出力特性図
である。上記測定結果より、前者のイオンビームの径は
0.07μmでアリ、後者のイオンビームの径は0.2
6μmであった。
A 5 μm thick non-doped GcLAs layer is grown on a GaAs substrate by molecular beam crystal growth, and a 7 μm thick A layer is grown on top of it.
A JGI0LAg layer was grown. This laminate is folded,
Two ion beams of different diameters, large and small, were scanned over the interfold surface having this GaAtt-=AlGαA8 boundary, and the intensity of secondary electrons was measured using an electron multiplier. Figure 5 (W) shows the secondary electron output characteristics when scanning an ion beam with a small diameter, and Figure 3 (b) shows the output characteristics of secondary electrons when scanning an ion beam with a large diameter. It is a characteristic diagram. From the above measurement results, the diameter of the former ion beam is 0.07 μm, and the diameter of the latter ion beam is 0.2 μm.
It was 6 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は−この発明によるイオンビーム径の測定方法を
示す概略説明図、第2図はイオンビームの照射位置と二
次電子強度の変化状態を示すグラフ、第5図(8) 、
 (6)は半導体にイオンビームを走査したときの二次
電子の出力特性図である。 /パ・半導体、コ・・・境界、3・・・イオンビーム、
グ・・・二次電子、S・・・二次電子強度測定装置。 特許出願人 工業技術院長 用田#部 第4図 第2図 1 A九ンビーム照射イ立イ1 第3図 (a)(b) ト
Fig. 1 is a schematic explanatory diagram showing the method of measuring the ion beam diameter according to the present invention, Fig. 2 is a graph showing the irradiation position of the ion beam and the state of change in secondary electron intensity, and Fig. 5 (8).
(6) is an output characteristic diagram of secondary electrons when a semiconductor is scanned with an ion beam. /P/Semiconductor, Co...Boundary, 3...Ion beam,
G: Secondary electron, S: Secondary electron intensity measuring device. Patent applicant Director of the Agency of Industrial Science and Technology Yoda # Department Figure 4 Figure 2 1 A Nine beam irradiation A 1 Figure 3 (a) (b)

Claims (1)

【特許請求の範囲】[Claims] 接合された二つの異った特性を有する半導体領域の境界
に対してイオンビームを垂直にして横切るように走査し
、該イオンビームの照射により放出さ扛る二つの領域の
二次電子強度をそれぞれ検出し、得られた二つの領域の
二次電子の強度比よりイオンビームの径を測定すること
を特徴とするイオンビーム径の測定方法。
An ion beam is scanned perpendicularly across the boundary of two bonded semiconductor regions with different characteristics, and the intensity of secondary electrons emitted from the two regions by irradiation with the ion beam is measured. A method for measuring the diameter of an ion beam, characterized in that the diameter of the ion beam is measured from the intensity ratio of secondary electrons in two regions obtained.
JP24417083A 1983-12-26 1983-12-26 Measurement of diameter of ion beam Pending JPS60135882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24417083A JPS60135882A (en) 1983-12-26 1983-12-26 Measurement of diameter of ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24417083A JPS60135882A (en) 1983-12-26 1983-12-26 Measurement of diameter of ion beam

Publications (1)

Publication Number Publication Date
JPS60135882A true JPS60135882A (en) 1985-07-19

Family

ID=17114806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24417083A Pending JPS60135882A (en) 1983-12-26 1983-12-26 Measurement of diameter of ion beam

Country Status (1)

Country Link
JP (1) JPS60135882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114783A (en) * 1987-10-29 1989-05-08 Hitachi Ltd Measuring instrument for primary ion beam diameter of ion microanalyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819041A (en) * 1981-07-24 1983-02-03 Omron Tateisi Electronics Co Car communication controlling system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819041A (en) * 1981-07-24 1983-02-03 Omron Tateisi Electronics Co Car communication controlling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114783A (en) * 1987-10-29 1989-05-08 Hitachi Ltd Measuring instrument for primary ion beam diameter of ion microanalyzer

Similar Documents

Publication Publication Date Title
KR950010389B1 (en) Semidoncutor defects determining method
US6627903B1 (en) Methods and devices for calibrating a charged-particle-beam microlithography apparatus, and microelectronic-device fabrication methods comprising same
JPH0272646A (en) Method for measuring semiconductor characteristic on wafer surface
JPS61161644A (en) Apparatus for forming synthetic signal representing correct image of sample
KR19990078176A (en) Method for nondestructive measurement of minority carrier diffusion length and minority carrier lifetime in semiconductor devices
Rishton et al. Measurement of the profile of finely focused electron beams in a scanning electron microscope
JP2000048758A (en) Reflected electron detecting device
JPH0312772B2 (en)
US5451886A (en) Method of evaluating lifetime of semiconductor material and apparatus for the same
US10533841B2 (en) Measurement of surface topography of a work-piece
JPS60135882A (en) Measurement of diameter of ion beam
Shiojima et al. Mapping evaluation of damage effect on electrical properties of GaAs Schottky contacts
US3832560A (en) Method and apparatus for electron beam alignment with a member by detecting cathodoluminescence from oxide layers
US4238686A (en) Method of analyzing localized nonuniformities in luminescing materials
JP3522045B2 (en) Charged particle beam exposure apparatus and method
US3783228A (en) Method of manufacturing integrated circuits
JP2701764B2 (en) Apparatus and method for measuring size of charged particle beam
JP2706986B2 (en) Focus adjustment method
JPH026219B2 (en)
US20050112853A1 (en) System and method for non-destructive implantation characterization of quiescent material
JPS6138829B2 (en)
JPS62159423A (en) Method for measuring dimensions of ion implanted region
JPS60200529A (en) Process of ion-beam etching
JPH026218B2 (en)
JPH06310586A (en) Positioning method