JPH0329319A - Focus adjustment method - Google Patents

Focus adjustment method

Info

Publication number
JPH0329319A
JPH0329319A JP1160889A JP16088989A JPH0329319A JP H0329319 A JPH0329319 A JP H0329319A JP 1160889 A JP1160889 A JP 1160889A JP 16088989 A JP16088989 A JP 16088989A JP H0329319 A JPH0329319 A JP H0329319A
Authority
JP
Japan
Prior art keywords
ion beam
focus
focused ion
sample
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1160889A
Other languages
Japanese (ja)
Other versions
JP2706986B2 (en
Inventor
Yoshio Hirayama
祥郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1160889A priority Critical patent/JP2706986B2/en
Publication of JPH0329319A publication Critical patent/JPH0329319A/en
Application granted granted Critical
Publication of JP2706986B2 publication Critical patent/JP2706986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/21Focus adjustment
    • H01J2237/216Automatic focusing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To adjust a focus more simply and easily irrespective of kinds of specimens or the like by a method wherein a change with the passage of time in an intensity of secondary electrons emitted from the surface of a plane specimen when the specimen is irradiated with a focused ion beam is measured and the focus is adjusted on the basis of this data. CONSTITUTION:A sputtering operation is caused in a part of the surface of a specimen 2 which is irradiated with a focused ion beam 1; for a short while after this irradiation, an intensity of secondary electrons is increased because the surface of the specimen is roughened by this sputtering operation and a surface area is increased. After that, when a hole 3 by the sputtering operation becomes deep, the secondary electrons cannot go out to the outside of the specimen 2 from the hole 3, and the intensity of the secondary electrons is reduced. A voltage applied to an objective arranged and installed on the surface of the specimen is changed and a change with the passage of time in the intensity of the secondary electrons is measured; a focus is adjusted on the basis of this data. Thereby, a focus of the focused ion beam can be adjusted simply and so as to be adapted to automation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集束イオンビーム注入装置において試料表面
にイオンビームの焦点を合わせるための調整方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an adjustment method for focusing an ion beam on a sample surface in a focused ion beam implanter.

〔従来の技術〕[Conventional technology]

従来、集束イオンビーム注入装置にシいてそのイオンビ
ームの焦点を調整する方法として用いられてきたのは、
例えば第5図のようにGaAs基板11に反応性イオン
エッチング等で幅10μm1深さ2μm程度のパターン
溝12を形成しておき、集束イオンビームでこのパター
ン溝12をスキャンした時のイメージ(像)をもとにそ
のビームの比点ならびに焦点を基板表面に調整する方法
が取られてきた。第5図中13は集中イオンビームのス
キャン方向を示し、同図(.)は基板上の平面図、同図
(b)はその断面図、同図(c)はスキャン距離に対す
る溝部分の二次電子強度を示す図である。なお、集束イ
オンビーム注入装置は一般に周知であシ、例えば次の文
献(J.MELNGAILLIS. ,ジャーナル オ
ブ バキューム サイエンス アンド テクノロジー,
Vol.B5,P.469,(1987年))に開示さ
れている。
Conventionally, the method used to adjust the focus of the ion beam in a focused ion beam implanter is as follows:
For example, as shown in FIG. 5, a pattern groove 12 with a width of about 10 μm and a depth of about 2 μm is formed on a GaAs substrate 11 by reactive ion etching, etc., and this pattern groove 12 is scanned with a focused ion beam (image). Based on this, methods have been taken to adjust the beam ratio and focus to the substrate surface. In Fig. 5, 13 indicates the scanning direction of the concentrated ion beam, Fig. 5 (.) is a plan view on the substrate, Fig. 5 (b) is a cross-sectional view thereof, and Fig. 5 (c) is the doublet of the groove portion with respect to the scanning distance. FIG. 3 is a diagram showing secondary electron intensity. Note that the focused ion beam implantation device is generally well known; for example, the following literature (J. MELNGAILLIS., Journal of Vacuum Science and Technology,
Vol. B5, P. 469, (1987)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる従来の方法は、ビームの形状まで調整できる利点
があるものの、 1)前もって試料表面にパターンを作る必要があう、シ
かも、このエッチングパターンの断面形状を正確に垂直
に(θ〜90°)に近くしなければ、きちんと焦点がv
4整できない。
Although such conventional methods have the advantage of being able to adjust the shape of the beam, 1) it is necessary to create a pattern on the sample surface in advance; If you don't get it close to
I can't do 4.

2)集束イオンビーム注入の前プロセスとして結晶成長
ならびに化学エッチング等を行うと、パターンの形状が
ゆがんでし1う。
2) If crystal growth, chemical etching, etc. are performed as a process before focused ion beam implantation, the shape of the pattern will be distorted.

3)本質的に二次電子イメージを見ているので、集束イ
オンビームのビーム電流が20pA以下に小さ〈なると
イメージが暗くなシ、焦点調整が困難になる。
3) Since we are essentially looking at a secondary electron image, if the beam current of the focused ion beam is less than 20 pA, the image becomes dark and focus adjustment becomes difficult.

等の問題があった。There were other problems.

本発明は以上の点に鑑みてなされたものであシ、その目
的は、上述した従来の方法よシ簡便で、試料の種類等に
よらず容易に応用ができ、しかも、二次電子イメージが
ほとんど見えないような微小な電流領域にも応用可能な
集束イオンビーム注入装置における焦点の調整方法を提
供することにある。
The present invention has been made in view of the above points, and its purpose is to be simpler than the above-mentioned conventional method, to be easily applicable regardless of the type of sample, and to provide a secondary electron image. It is an object of the present invention to provide a method for adjusting a focal point in a focused ion beam implantation device that can be applied even to a minute current region that is almost invisible.

〔課題を解決するための手段〕 このような目的を達成するため、本発明の焦点調整方法
は、集束イオンビームを平面試料に照射した場合に試料
表面から放出される二次電子強度の時間変化を測定し、
このデータをもとに焦点を調整することを主要な特徴と
するものである。
[Means for Solving the Problems] In order to achieve such an object, the focus adjustment method of the present invention is based on the method of adjusting the focus of the present invention by adjusting the temporal change in the intensity of secondary electrons emitted from the surface of the sample when a focused ion beam is irradiated onto the plane sample. measure,
The main feature is that the focus is adjusted based on this data.

〔作用〕[Effect]

したがって、本発明においては、試料に前もってパター
ンを作製する必要がなく、平面性が保たれる限シエッチ
ングした表面や結晶成長した表にも問題なく適用できる
とともに、平面試料であれば材質を問わず適用できる。
Therefore, in the present invention, there is no need to prepare a pattern on the sample in advance, and it can be applied to etched surfaces or crystal-grown surfaces as long as flatness is maintained, and can be applied to any material as long as the sample is flat. It can be applied without any problem.

壕た、従来技術のように二次電子を像として観察するの
でなく、二次電子強度の変化を微小電流計を用いて測定
できるので、1pA以下の微小イオン電流に対してもき
ちんと焦点を調整できる。さらに、大面積の試料つまシ
ウエハの何点かに対し本発明方法を適用すれば、ウエハ
全面にわたシ焦点が合うように制御することも容易であ
る。
In addition, instead of observing secondary electrons as images as in conventional technology, changes in secondary electron intensity can be measured using a microcurrent meter, so the focus can be precisely adjusted even for microionic currents of 1 pA or less. can. Furthermore, by applying the method of the present invention to several points on a large-area sample wafer, it is easy to control the entire surface of the wafer to be in focus.

〔実施例〕〔Example〕

以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

まず初めに本発明方法の原理について第1区を用いて説
明する。ここで、本発明は基本的には従来例と同様な集
束イオンビーム注入装置を用いるものであb1第1図(
a)に示すように、集束されたイオンビーム1が試料2
の表面に照射されるとこの部分でスパッタリングが生じ
る。この照射後しばらくはスパッタリングによシ試料表
面が荒れ表面積が増加するため二次電子強度が増大する
。その後、スパツタによる穴3(同図(b))が深くな
ると逆に二次電子は当該穴3から試料2の外に出られな
くなシ、二次電子強度は減少する。従って、平面試料2
に集束イオンビーム1を照射した場合、二次電子量は第
1図(C)に示すように、照射後そのピーク値に達する
時間(表面荒れ時間ともいう)1.1では増大し(同図
(.) ’) 、その後減少することがわかる(同図(
b))。この減少の時定数は、ピーク値と長時間照射後
に安定する値の間のそれぞれ90%および10幅の値を
横切る時間の差(表面穴あけ時間ともいう)tbによシ
表わすことができる。またこの変化は、電流値が一定で
あれば焦点が合い、ビームが細径にiるほど電流密度が
増大して速くなる。従って、焦点が合うにつれて上記t
,, tbO値が減少する。このため、試料表面上に配
設される対物レンズ(図示せず)に印加する電圧を変化
させてこれらの値t@! tbが最小になる電圧を求め
ることによう、焦点を自動的に調整することができる。
First, the principle of the method of the present invention will be explained using the first section. Here, the present invention basically uses a focused ion beam implantation device similar to the conventional example.
As shown in a), the focused ion beam 1 hits the sample 2.
When the surface of the surface is irradiated, sputtering occurs in this area. For a while after this irradiation, the sample surface becomes rough due to sputtering and the surface area increases, so the secondary electron intensity increases. Thereafter, as the hole 3 (FIG. 2(b)) formed by the spatter becomes deeper, the secondary electrons cannot escape from the hole 3 to the outside of the sample 2, and the secondary electron intensity decreases. Therefore, flat sample 2
When the focused ion beam 1 is irradiated to (.) '), and then decreases (the same figure (
b)). The time constant of this decrease can be expressed as the difference in time to cross the 90% and 10 width values, respectively, between the peak value and the value that stabilizes after long irradiation (also referred to as surface drilling time) tb. Further, this change is focused if the current value is constant, and as the beam becomes smaller in diameter, the current density increases and becomes faster. Therefore, as the focus increases, the above t
,, tbO value decreases. Therefore, by changing the voltage applied to an objective lens (not shown) disposed on the sample surface, these values t@! The focus can be automatically adjusted to find the voltage that minimizes tb.

すなわち、集束イオンビーム1を試料2の表面に照射し
た際に放出される二次電子強度の時間変化からそのイオ
ンビーム1の集束状態を評価し、このデータを対物レン
ズにフィードバックしてその印加電圧を変化させること
により、試料表面上に集束イオンビームの焦点を合わせ
ることができる。
That is, when the focused ion beam 1 is irradiated onto the surface of the sample 2, the focused state of the ion beam 1 is evaluated from the temporal change in the intensity of the secondary electrons emitted, and this data is fed back to the objective lens to determine the applied voltage. By changing , the focused ion beam can be focused onto the sample surface.

この時、実際には二次電子強度を測定してもよいが、 (試料電流)=(イオン電流)+(二次電子放出量)な
る関係が存在するので、二次電子強度を測定するかわシ
に試料電流を測定しても良い。現実には試料電流を測定
する方が簡単な場合が多いので、以下の例では試料電流
で測定した実施例を示す。
At this time, it is actually possible to measure the secondary electron intensity, but since the following relationship exists: (sample current) = (ion current) + (secondary electron emission amount), it is better to measure the secondary electron intensity. The sample current may also be measured separately. In reality, it is often easier to measure the sample current, so the following examples will show examples in which measurements were made using the sample current.

第2図は実際にGa集束イオンピームをGaAa基板に
照射して試料電流を測定したときの一例を示すものであ
る。同図において、曲線Iはビーム径R=70nmφで
の試料電流の変化を示し、曲線■及び■はそれぞれR 
= 12011rflφ.R=230nmφでの試料電
流の変化を示す。1た、ビームは1msecインターバ
ルのくシ返しで1つのスポットを照射している。この例
では合計した照射時間は20秒である。試料電流として
は照射時とインターバル時のザ均電流を測定しているこ
とになる。第1図で予想した試料電流の変化が明確に表
われ、壕たt,+ tbはビーム径Rが小さくなるほど
短くiることかわかる。また、本実験はイオン電流5p
Aという低電流で行なったが、雑音状況等から考えlp
Atでは応用が可能なことがわかる。なお、第2図中t
oは10秒のスケールを示し、矢印はイオンビーム照射
時(″”on″)を示している。
FIG. 2 shows an example in which a GaAa substrate is actually irradiated with a Ga focused ion beam and a sample current is measured. In the same figure, curve I shows the change in sample current when the beam diameter R = 70 nmφ, and curves ■ and ■ indicate R
= 12011rflφ. It shows the change in sample current when R=230 nmφ. 1, the beam irradiates one spot with repetitions at 1 msec intervals. In this example, the total irradiation time is 20 seconds. As the sample current, the average current during irradiation and during intervals is measured. The expected change in the sample current in Figure 1 is clearly visible, and it can be seen that the trench t, +tb becomes shorter as the beam diameter R becomes smaller. In addition, in this experiment, the ion current was 5p.
It was carried out at a low current of A, but considering the noise situation etc.
It can be seen that application is possible in At. In addition, t in Figure 2
o indicates a scale of 10 seconds, and the arrow indicates the time of ion beam irradiation (“on”).

次に、前記対物レンズへの印加電圧(ジャスト・フォー
カスからのずれ)Voを徐々に変化させて求められたt
@. tbを第3図に示す。ただし、同図において符号
イで示す実線は対物レンズ印加電圧Voに対するt1の
特性を表わし、同じく符号口で示す点線はtbの特性を
表わす。この第3図から明らかなように、t.〜0秒と
なる所から大体焦点が合うvoが求1シ、さらにVoを
細かく変化させてtbが最小になるvoを求めることに
よシ、焦点を自動的に合わせることができる。
Next, t is determined by gradually changing the voltage Vo applied to the objective lens (deviation from just focus).
@. tb is shown in FIG. However, in the figure, the solid line indicated by the symbol A represents the characteristic of t1 with respect to the voltage Vo applied to the objective lens, and the dotted line also indicated by the symbol A represents the characteristic of tb. As is clear from FIG. 3, t. The focus can be automatically adjusted by first finding vo that is in focus from a point where the distance is ~0 seconds, and then by finely changing Vo to find vo that minimizes tb.

これらの作業はすべてコンピュータによう自動的に行う
ことができ、焦点合わせが容易に行える。
All of these tasks can be performed automatically by a computer, making focusing easy.

以上の実施例では試料表面上に集束イオンビームの焦点
を合わせる方法について述べたが、本発明は、この方法
を用いて広い面積にわたシ焦点を合わせることもできる
。すなわち、パターンを全く形成していない平坦なウエ
ハに対し、上記実施例で述べた手法を適用してウエノ・
全面に対し集束イオンビームの焦点が合うように自動調
整することができ、その概要を第4図を参照して説明す
る。
Although the above embodiments have described a method for focusing a focused ion beam on a sample surface, the present invention can also be used to focus a focused ion beam over a large area using this method. In other words, the method described in the above example is applied to a flat wafer on which no pattern is formed.
Automatic adjustment can be made so that the focused ion beam is focused over the entire surface, and the outline thereof will be explained with reference to FIG. 4.

第4図(.)及び(b)は集束イオンビームが照射され
るウエハ保持機構部におけるウエノ・の平面図及びその
側面図であb1同図中5は平坦なウエノ・、6はそのウ
エハ5を保持するホルダー、71172及びT3はウエ
ハ5上の各11 + b r e点付近の高さつ壕シz
方向の微動調整を行うためのマニピュレータである。こ
こで、筐ずウエノS5上のa点でマニピュレータT1を
適度な値に設定し、上記実施例の手法を用いて焦点が合
うように対物レンズの電圧を調整する。次にb点にウエ
ノ・5を移動し、マニピュレータ72を変化させながら
b点付近で数回ビームを照射し、その時間変化から最も
焦点の合う位置に該マニピュレータ7!を決定する。
Figures 4 (.) and (b) are a plan view and a side view of the wafer in the wafer holding mechanism section to which the focused ion beam is irradiated. Holders 71172 and T3 hold the height trenches near each 11 + b r e point on the wafer 5.
This is a manipulator for making fine adjustments in direction. Here, the manipulator T1 is set to an appropriate value at the point a on the S5, and the voltage of the objective lens is adjusted using the method of the above embodiment so that the object is in focus. Next, move the Ueno 5 to point b, irradiate the beam several times near point b while changing the manipulator 72, and from the time change, the manipulator 7! Determine.

次にウエハ5をC点に移動しC点付近で同様の作業を行
いマニピュレータT3を合わせる。この動作をa点→b
点→C点とさらに繰b返しウエノ1全体での平坦性を出
す。この方法は何のパターンもない平坦なウエハに対し
適応することができ、すべてコンピュータで制御するこ
とができる。また、ビーム照射は2μmもスポットをず
らせば充分であシ、例えばa点で100回照射を行なっ
たとしても、このために必要な面積はたかだか20μm
口である。従って、ウエノ・上の極めて小さい面積を使
うことによシウエハを集束イオンビームに対しフラット
に合わせることができる。この手法は、ほぼ焦点の合っ
ている集束イオンビームを用いて、結晶成長,イオン注
入の繰b返し等を行う時に結晶成長後の面に対してコン
ピュータを用いて自動的に焦点をウエハ全面に合わせる
用途などに有用でおる。
Next, the wafer 5 is moved to point C, and the same operation is performed near point C to align the manipulator T3. This movement is from point a → b
The process from point to point C is repeated to obtain flatness of the entire Ueno 1. This method can be applied to flat wafers without any patterns and can be completely controlled by a computer. In addition, it is sufficient for beam irradiation to shift the spot by 2 μm. For example, even if irradiation is performed 100 times at point a, the area required for this is at most 20 μm.
It is the mouth. Therefore, by using an extremely small area on the wafer, the wafer can be flatly aligned with the focused ion beam. This method uses a focused ion beam that is almost in focus, and when performing crystal growth, repeated ion implantation, etc., a computer automatically focuses the entire surface of the wafer on the surface after crystal growth. It is useful for matching purposes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、集束イオンビームを平面
試料に照射したときに試料表面から放出される二次電子
強度の時間変化を測定し、そのデータをもとに焦点を調
整することによb1簡便でかつ自動化に適した集束イオ
ンビームの焦点調整法を提供できる。筐た、平坦な結晶
に適用できるのみならず微小なビーム電流の場合にもき
ちんと焦点を調整できる利点がある。
As explained above, the present invention measures the temporal change in the intensity of secondary electrons emitted from the sample surface when a focused ion beam is irradiated onto a flat sample, and adjusts the focus based on the data. b1 A method for adjusting the focus of a focused ion beam that is simple and suitable for automation can be provided. It not only can be applied to flat crystals, but also has the advantage of being able to precisely adjust the focus even when using a minute beam current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の原理説明図、第2図は本発明の一
実施例の説明に供するビーム径の変化による試料電流変
化の実,咳例を示す図、第3図は同じく本発明の一実施
例の説明に供する対物レンズ電圧をジャストフォーカス
からずらした時のt,tbの変化の実験例を示す図、第
4図は本発明の他の実施例の説明に供する概略図、第5
図は従来の焦点調整法の一例を示す説明図である。 1 ●集束イオンビーム、 2 ・試料、
Fig. 1 is a diagram explaining the principle of the method of the present invention, Fig. 2 is a diagram showing an example of sample current change due to a change in beam diameter, which is used to explain an embodiment of the present invention, and Fig. 3 is a diagram illustrating an example of the change in sample current due to a change in beam diameter. FIG. 4 is a diagram showing an experimental example of changes in t and tb when the objective lens voltage is shifted from just focus to explain one embodiment. FIG. 4 is a schematic diagram to explain another embodiment of the present invention. 5
The figure is an explanatory diagram showing an example of a conventional focus adjustment method. 1 ● Focused ion beam, 2 ・Sample,

Claims (1)

【特許請求の範囲】[Claims] 集束イオンビーム注入装置において、イオンビームを平
面試料に照射した場合に放出される二次電子強度の時間
変化からイオンビームの集束状態を評価し、この結果に
基づき対物レンズに印加する電圧を変化させることによ
り、試料表面上にイオンビームの焦点を合わせることを
特徴とする焦点調整方法。
In a focused ion beam implanter, the focused state of the ion beam is evaluated from the temporal change in the intensity of the secondary electrons emitted when the ion beam is irradiated onto a flat sample, and the voltage applied to the objective lens is changed based on this result. A focusing method characterized by focusing an ion beam on a sample surface by:
JP1160889A 1989-06-26 1989-06-26 Focus adjustment method Expired - Fee Related JP2706986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160889A JP2706986B2 (en) 1989-06-26 1989-06-26 Focus adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160889A JP2706986B2 (en) 1989-06-26 1989-06-26 Focus adjustment method

Publications (2)

Publication Number Publication Date
JPH0329319A true JPH0329319A (en) 1991-02-07
JP2706986B2 JP2706986B2 (en) 1998-01-28

Family

ID=15724557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160889A Expired - Fee Related JP2706986B2 (en) 1989-06-26 1989-06-26 Focus adjustment method

Country Status (1)

Country Link
JP (1) JP2706986B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503067A (en) * 2004-06-10 2008-01-31 アクセリス テクノロジーズ インコーポレーテッド Ion beam scanning system and method for improved ion implantation homogenization
JP2015095397A (en) * 2013-11-13 2015-05-18 日本電子株式会社 Focused ion beam device and focus adjustment method of ion beam
EP4216255A1 (en) * 2022-01-20 2023-07-26 Jeol Ltd. Focused ion beam system and method of correcting deviation of field of view of ion beam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503067A (en) * 2004-06-10 2008-01-31 アクセリス テクノロジーズ インコーポレーテッド Ion beam scanning system and method for improved ion implantation homogenization
JP2015095397A (en) * 2013-11-13 2015-05-18 日本電子株式会社 Focused ion beam device and focus adjustment method of ion beam
EP2874176A1 (en) * 2013-11-13 2015-05-20 JEOL Ltd. Focused ion beam system and method of making focal adjustment of ion beam
EP4216255A1 (en) * 2022-01-20 2023-07-26 Jeol Ltd. Focused ion beam system and method of correcting deviation of field of view of ion beam

Also Published As

Publication number Publication date
JP2706986B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US10410828B2 (en) Charged particle beam system and methods
US4874947A (en) Focused ion beam imaging and process control
JPH0328017B2 (en)
JPH01136327A (en) Manufacture of element having super lattice structure
US20070158303A1 (en) Structural modification using electron beam activated chemical etch
Komuro et al. Measurement of virtual crossover in liquid gallium ion source
WO2001054163A9 (en) Shaped and low density focused ion beams
JPH0329319A (en) Focus adjustment method
US3986025A (en) Ion microanalyzer
KR100313326B1 (en) Electron-Beam Cell Projection Aperture Formation Method
JPS63305358A (en) Method for working pattern film
US20030042417A1 (en) Electron beam apparatus and device manufacturing method using same
JP3396980B2 (en) Analysis method of concentration distribution
JPH1177333A (en) Focusing ion beam machining device and its method
JP3155570B2 (en) Focused ion beam mass analysis method and combined ion beam mass spectrometry device
JP2001118537A (en) Beam-scanning inspection apparatus
JP4574293B2 (en) Crystallinity evaluation method
JP2003166918A (en) Method of preparing sample for observing crystal defect in semiconductor single crystal
JPH09293652A (en) Charged particle beam exposure device and method thereof
JP2007139633A (en) Method of preparing sample for scanning electron microscope
JPS60135882A (en) Measurement of diameter of ion beam
JP2838177B2 (en) Ion milling method and apparatus
JPH04247636A (en) Method of detecting cross section observation place
JPS6030130A (en) Substrate having alignment mark
JP2004286638A (en) Analysis method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees