JP4574293B2 - Crystallinity evaluation method - Google Patents

Crystallinity evaluation method Download PDF

Info

Publication number
JP4574293B2
JP4574293B2 JP2004260702A JP2004260702A JP4574293B2 JP 4574293 B2 JP4574293 B2 JP 4574293B2 JP 2004260702 A JP2004260702 A JP 2004260702A JP 2004260702 A JP2004260702 A JP 2004260702A JP 4574293 B2 JP4574293 B2 JP 4574293B2
Authority
JP
Japan
Prior art keywords
change
crystallinity
offset voltage
insulator
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004260702A
Other languages
Japanese (ja)
Other versions
JP2006078247A (en
Inventor
祐治 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004260702A priority Critical patent/JP4574293B2/en
Publication of JP2006078247A publication Critical patent/JP2006078247A/en
Application granted granted Critical
Publication of JP4574293B2 publication Critical patent/JP4574293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、イオンビーム照射に依って発生するスパッタエッチングを利用し固体中に含まれる元素の深さ方向分布を測定する深さ方向元素分布測定法を応用して基板或いは薄膜の結晶性評価を行う方法の改良に関する。   The present invention evaluates the crystallinity of a substrate or thin film by applying a depth direction element distribution measurement method that measures the depth direction distribution of an element contained in a solid using sputter etching generated by ion beam irradiation. It relates to the improvement of the method of performing.

一般に、結晶の深さ方向に於ける結晶性変化を把握するには、透過型電子顕微鏡(TEM:transmission electron microscopy)やラザフォード後方散乱(RBS:Rutherford back scattering)法を用いている。   Generally, in order to grasp the crystallinity change in the depth direction of a crystal, a transmission electron microscope (TEM) or Rutherford back scattering (RBS) method is used.

然しながら、TEM観察を行うには、試料の作製に莫大な時間と手間が掛かり、また、RBS法を実施するには、後方散乱に用いる高エネルギーのイオンビームを生成する特殊な設備が必要であり、簡便性や迅速性の面で実用的とは言い難い手段である。   However, in order to perform TEM observation, it takes a lot of time and labor to prepare a sample, and in order to carry out the RBS method, special equipment for generating a high-energy ion beam used for backscattering is necessary. It is a means that is hardly practical in terms of simplicity and speed.

本発明では、TEMやRBSに比較し、簡便且つ迅速に例えばイオン注入に起因する損傷の深さを測定できるようにする。   In the present invention, the depth of damage caused by, for example, ion implantation can be measured easily and quickly as compared with TEM and RBS.

一般に、イオンビーム照射(一次イオン)に依るスパッタエッチングを行って固体表面から放出される二次イオンを検出することで、固体中に含まれる元素の深さ方向に於ける分布を測定する分析法は、二次イオン質量分析(SIMS:secondary ion mass spectrometry)法として知られている。   Generally, an analytical method that measures the distribution in the depth direction of elements contained in a solid by detecting secondary ions emitted from the surface of the solid by performing sputter etching by ion beam irradiation (primary ions). Is known as a secondary ion mass spectrometry (SIMS) method.

SIMS法は、半導体材料分野及び半導体デバイス分野を中心に広く用いられ、基板或いは薄膜中に存在する元素の深さ方向分布を測定する際、最も多く利用される物理的分析法である。   The SIMS method is widely used mainly in the field of semiconductor materials and semiconductor devices, and is the most frequently used physical analysis method when measuring the depth distribution of elements existing in a substrate or thin film.

そこで、SIMS法に依る分析を行って、元素の分布のみでなく、結晶性の変化を同時に知得することができれば、極めて簡単且つ迅速に基板或いは薄膜にかかわるプロセス評価を行うことが可能である。   Therefore, if an analysis based on the SIMS method is performed and not only the distribution of elements but also the change in crystallinity can be known at the same time, it is possible to perform a process evaluation relating to a substrate or a thin film very easily and quickly.

例えば、イオン注入プロセスを評価するとした場合、注入元素の深さ方向に於ける濃度分布と同時にイオン注入に依って非晶質化した基板或いは薄膜の情報も取得することができ、簡単且つ迅速にプロセスの是非を評価することが可能である。   For example, when evaluating an ion implantation process, information on the substrate or thin film made amorphous by ion implantation can be acquired simultaneously with the concentration distribution in the depth direction of the implanted element. It is possible to evaluate the pros and cons of the process.

本発明に依る結晶評価方法に於いては、固体表面にイオンビームを照射し、その固体表面に絶縁物或いは半絶縁物を生成させつつスパッタエッチングを継続し、その際、固体表面から放出される二次イオンのエッチング時間に対する強度変化を計測して固体試料の単結晶或いは非質の結晶性を評価する方法に於いて、特定のオフセット電圧を固体試料に印加して深さ方向の結晶性変化に伴う二次イオンの強度変化を測定することが含まれて成ることを特徴とする。 In crystalline evaluation method according to the present invention, the solid surface is irradiated with ion beams, while generating an insulator or a semi-insulating material on the solid surface continues to sputter etching, this time, are released from the solid surface in an intensity change with respect to the etching time of the secondary ions are measured in a method of assessing the crystallinity of the single crystal or amorphous solid sample that, in the depth direction by applying a certain offset voltage to the solid sample It is characterized in that it comprises measuring the intensity change of secondary ions accompanying the crystallinity change.

前記手段を採ることに依り、例えばイオン注入した元素の深さ方向分布の測定とイオン注入に起因する損傷領域の測定を同時に行うことができ、従来、多用されてきたTEMやRBSに依る評価と比較すると簡便且つ迅速に損傷領域評価まで実施することが可能であり、従って、その結果を直ちにフィードバックして例えばプロセス条件の補正を行い、良質の半導体装置を製造するのに寄与することができる。   By adopting the above means, for example, the measurement of the distribution in the depth direction of the ion-implanted element and the measurement of the damaged region caused by the ion implantation can be performed at the same time. In comparison, it is possible to carry out the damage area evaluation simply and quickly, and therefore, the results can be immediately fed back to correct the process conditions, for example, and contribute to the manufacture of a high-quality semiconductor device.

一実施の形態として、シリコン(Si)中にボロン(B)を高濃度に低エネルギーでイオン注入した試料に対し、本発明を適用した例について説明する。   As an embodiment, an example in which the present invention is applied to a sample in which boron (B) is ion-implanted at high concentration and low energy into silicon (Si) will be described.

図1はB+ をイオン注入したSi基板の透過型電子顕微鏡像(TEM像)を表す写真であり、この場合のB+ のイオン注入条件は、加速電圧1〔keV〕、B+ 濃度1×1015cm-2である。 FIG. 1 is a photograph showing a transmission electron microscope image (TEM image) of a Si substrate into which B + ions are implanted. In this case, B + ion implantation conditions are an acceleration voltage of 1 [keV] and a B + concentration of 1 ×. 10 15 cm −2 .

図1に見られるSi基板には、最表面からイオン注入したことに依る損傷領域が明確に示されていて、この損傷領域では、Si単結晶が非晶質な状態になっていると考えられ、そして、損傷領域は、損傷の度合いを異にする二つの領域、即ち、領域A及び領域Bからなっていることが看取できよう。   In the Si substrate shown in FIG. 1, a damaged region due to ion implantation from the outermost surface is clearly shown, and it is considered that the Si single crystal is in an amorphous state in this damaged region. It can be seen that the damaged area is composed of two areas having different degrees of damage, that is, an area A and an area B.

図2は図1に見られる領域A、B、C(Cは単結晶領域)に於けるオフセット電圧と二次イオン(30Si+ )強度との関係を表す線図であり、図に依れば、オフセット電圧に依って、各領域A、B、Cに二次イオン強度の相違を生じ、−20V付近で最も顕著に相違していることが看取される。尚、このデータを得るに際しては、0.5keVのO2 + を試料表面に垂直に照射した。 FIG. 2 is a diagram showing the relationship between the offset voltage and the secondary ion ( 30 Si + ) intensity in the regions A, B and C (C is a single crystal region) seen in FIG. For example, depending on the offset voltage, a difference in secondary ion intensity occurs in each of the regions A, B, and C, and it is observed that the difference is most noticeable in the vicinity of −20V. In order to obtain this data, 0.5 keV O 2 + was irradiated perpendicularly to the sample surface.

図3は図1について説明した試料と同じ試料に於けるオフセット電圧の変化と二次イオン(30Si+ )強度の変化との関係を表す線図であり、このデータは、試料に対して図1の場合と同じ条件でイオンビームを照射し、エッチングを継続させながら30Si+ を検出した結果であって、検出の際、オフセット電圧を0、−5、−10、−20Vと変化させた。 FIG. 3 is a diagram showing the relationship between the change in offset voltage and the change in secondary ion ( 30 Si + ) intensity in the same sample as described with reference to FIG. This is a result of detecting 30 Si + while irradiating an ion beam under the same conditions as in the case of 1 and continuing etching, and the offset voltage was changed to 0, −5, −10, −20 V at the time of detection. .

図3では、エッチング時間を既知のエッチング速度を用いて深さに換算して示してあるが、オフセット電圧が低くなるにつれて、深さ約30nmまでに30Si+ 強度の変化が顕著になり、オフセット電圧を図1の測定に於いて特定した−20Vにすることで、明確に結晶性の変化を知得することができる。この30Si+ 強度の変化領域は、イオン注入に依る損傷領域と考えられ、これは図1として示したTEM像と一致している。 In FIG. 3, the etching time is shown converted into depth using a known etching rate, but as the offset voltage decreases, the change in 30 Si + intensity becomes noticeable up to a depth of about 30 nm. By changing the voltage to −20 V specified in the measurement of FIG. 1, it is possible to clearly know the change in crystallinity. This changed region of 30 Si + intensity is considered to be a damaged region due to ion implantation, which is consistent with the TEM image shown in FIG.

図4は図1乃至3で使用した試料と同じ試料を用い、イオン注入元素であるBの深さ方向分布を測定した得た線図であり、11+ 検出時には−5V、30Si+ 検出時には−20Vの各オフセット電圧を印加している。 FIG. 4 is a diagram obtained by measuring the depth direction distribution of B, which is an ion-implanted element, using the same sample as that used in FIGS. 1 to 3, and at the time of 11 B + detection, −5 V, 30 Si + detection Sometimes, an offset voltage of -20V is applied.

図2及び3から明らかであるが、−5Vのオフセット電圧は、二次イオン強度に余り大きな影響は与えないが、−20Vのオフセット電圧は、二次イオン強度に大きな影響を与える。従って、イオン注入した元素の二次イオンと母材元素の二次イオンとで異なるオフセット電圧を印加することで、所望のイオン注入元素の深さ方向分布と損傷領域の測定とを同時に行うことができる。   As is apparent from FIGS. 2 and 3, the offset voltage of −5 V does not significantly affect the secondary ion intensity, but the offset voltage of −20 V has a great influence on the secondary ion intensity. Therefore, by applying different offset voltages for the secondary ions of the ion-implanted element and the secondary ions of the base material element, the depth distribution of the desired ion-implanted element and the measurement of the damaged region can be performed simultaneously. it can.

前記測定を行う場合、試料表面を絶縁物或いは半絶縁物にすることが重要であって、絶縁性表面がもつ帯電効果で、図2に見られるように、オフセット電圧の変化に伴って二次イオン強度に変化が現れている。   When performing the measurement, it is important that the surface of the sample be an insulator or a semi-insulator. The charging effect of the insulating surface is a secondary effect as the offset voltage changes as shown in FIG. There is a change in ionic strength.

試料表面に絶縁物或いは半絶縁物を形成するには、試料表面を酸化するか、或いは、窒化することが最も容易であり、その方法としては、酸素或いは窒素のイオンビームを試料表面に直接照射すると簡単である。また、酸素或いは窒素のイオンビームを用いることなく、試料表面に酸素ガス或いは窒素ガスを導入しながらスパッタエッチングを行う方法を採っても良い。   In order to form an insulator or semi-insulator on the sample surface, it is easiest to oxidize or nitride the sample surface. As a method for this, an ion beam of oxygen or nitrogen is directly irradiated on the sample surface. It is easy. Alternatively, a method of performing sputter etching while introducing oxygen gas or nitrogen gas into the sample surface without using an ion beam of oxygen or nitrogen may be employed.

何れの方法に於いても、試料表面を酸化或いは窒化する為には、スパッタリングの定常状態に於いて、酸素や窒素の注入量或いは吸着量が酸化膜や窒化膜を生成するのに充分でなければならず、それには、照射イオンの加速エネルギー、試料表面への入射角度を制御することが不可欠である。   In either method, in order to oxidize or nitride the sample surface, the amount of oxygen or nitrogen injected or adsorbed must be sufficient to produce an oxide film or nitride film in the steady state of sputtering. In order to do this, it is essential to control the acceleration energy of the irradiated ions and the incident angle on the sample surface.

+ をイオン注入したSi基板の透過型電子顕微鏡像(TEM像)を表す写真である。It is a photograph showing the transmission electron microscope image (TEM image) of the Si substrate which ion-implanted B <+> . オフセット電圧と二次イオン強度との関係を表す線図である。It is a diagram showing the relationship between an offset voltage and secondary ion intensity. オフセット電圧の変化と二次イオン強度の変化との関係を表す線図である。It is a diagram showing the relationship between the change of an offset voltage and the change of secondary ion intensity. Si中のBの深さ方向分布と損傷領域とを表す線図である。It is a diagram showing the depth direction distribution of B in Si, and a damage area | region.

Claims (5)

固体表面にイオンビームを照射し、その固体表面に絶縁物或いは半絶縁物を生成させつつスパッタエッチングを継続し、その際、固体表面から放出される二次イオンのエッチング時間に対する強度変化を計測して固体試料の単結晶或いは非質の結晶性を評価する方法に於いて、特定のオフセット電圧を固体試料に印加して深さ方向の結晶性変化に伴う二次イオンの強度変化を測定すること
が含まれてなることを特徴とする結晶性評価方法。
Sputter etching is continued while irradiating the solid surface with an ion beam and generating an insulator or semi-insulator on the solid surface. At that time, the intensity change with respect to the etching time of the secondary ions released from the solid surface is measured. Te in the method of evaluating the crystallinity of the single crystal or amorphous solid sample, a certain offset voltage measuring changes in the intensity of the secondary ions with the crystalline changes in the depth direction is applied to the solid sample A method for evaluating crystallinity, comprising:
オフセット電圧を印加する際、予めオフセット電圧変化と二次イオン強度変化との関係を求め、結晶性変化に伴う二次イオン強度変化が顕著に現れるオフセット電圧を特定のオフセット電圧とすること
が含まれてなることを特徴とする請求項1記載の結晶性評価方法。
When applying the offset voltage, the relationship between the offset voltage change and the secondary ion intensity change is obtained in advance, and the offset voltage at which the change in the secondary ion intensity due to the crystallinity change becomes noticeable is included as the specific offset voltage. The crystallinity evaluation method according to claim 1, wherein:
オフセット電圧を特定する際、結晶性変化に伴う二次イオン強度変化が顕著に現れないオフセット電圧も特定し、請求項1記載の結晶性評価の測定と共に前記特定したオフセット電圧を印加して得られる二次イオン強度変化の測定も実施して結晶性と同時に元素濃度分布の変化も測定すること
が含まれてなることを特徴とする結晶性評価方法。
2. When specifying an offset voltage, an offset voltage at which a change in secondary ion intensity accompanying a change in crystallinity does not appear significantly is also specified, and obtained by applying the specified offset voltage together with the measurement of crystallinity evaluation according to claim 1. A method for evaluating crystallinity, comprising measuring a change in element concentration distribution simultaneously with crystallinity by measuring a change in secondary ion intensity.
絶縁物或いは半絶縁物の形成に際し、酸素或いは窒素のイオンビームを用い、イオンの加速エネルギー及び試料表面への入射角度を制御すること
が含まれてなることを特徴とする請求項1記載の結晶性評価方法。
2. The crystal according to claim 1, wherein the formation of the insulator or semi-insulator includes using an ion beam of oxygen or nitrogen to control the acceleration energy of ions and the incident angle to the sample surface. Sex assessment method.
絶縁物或いは半絶縁物の形成に際し、酸素と窒素を含まないイオンビームを用い、イオンビームの照射時に酸素ガス或いは窒素ガスを固体表面に吹き付けると共に照射するイオンの加速エネルギー及び試料表面への入射角度を制御すること
が含まれてなることを特徴とする請求項1記載の結晶性評価方法。
When forming an insulator or semi-insulator, an ion beam that does not contain oxygen and nitrogen is used. When ion beam irradiation is performed, oxygen gas or nitrogen gas is blown onto the solid surface, and the acceleration energy of the irradiated ions and the incident angle on the sample surface 2. The crystallinity evaluation method according to claim 1, further comprising controlling
JP2004260702A 2004-09-08 2004-09-08 Crystallinity evaluation method Expired - Fee Related JP4574293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260702A JP4574293B2 (en) 2004-09-08 2004-09-08 Crystallinity evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260702A JP4574293B2 (en) 2004-09-08 2004-09-08 Crystallinity evaluation method

Publications (2)

Publication Number Publication Date
JP2006078247A JP2006078247A (en) 2006-03-23
JP4574293B2 true JP4574293B2 (en) 2010-11-04

Family

ID=36157842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260702A Expired - Fee Related JP4574293B2 (en) 2004-09-08 2004-09-08 Crystallinity evaluation method

Country Status (1)

Country Link
JP (1) JP4574293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739815A (en) * 2020-08-21 2020-10-02 西安奕斯伟硅片技术有限公司 Method and system for measuring wafer damage depth and computer storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389152A (en) * 1989-08-31 1991-04-15 Sony Corp Measuring of concentration of impurities
JPH05188020A (en) * 1991-09-17 1993-07-27 Sony Corp Quantitative analysis method by secondary ion mass spectrometry and secondary ion mass spectrometry device
JPH07294462A (en) * 1994-04-21 1995-11-10 Fujitsu Ltd Secondary ion mass spectrometry for oxygen in silicon
JP2001091482A (en) * 1999-09-27 2001-04-06 Nec Corp Contained element analyzing method
JP2001221755A (en) * 2000-02-08 2001-08-17 Matsushita Electric Ind Co Ltd Secondary ion mass spectrometry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389152A (en) * 1989-08-31 1991-04-15 Sony Corp Measuring of concentration of impurities
JPH05188020A (en) * 1991-09-17 1993-07-27 Sony Corp Quantitative analysis method by secondary ion mass spectrometry and secondary ion mass spectrometry device
JPH07294462A (en) * 1994-04-21 1995-11-10 Fujitsu Ltd Secondary ion mass spectrometry for oxygen in silicon
JP2001091482A (en) * 1999-09-27 2001-04-06 Nec Corp Contained element analyzing method
JP2001221755A (en) * 2000-02-08 2001-08-17 Matsushita Electric Ind Co Ltd Secondary ion mass spectrometry

Also Published As

Publication number Publication date
JP2006078247A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
Tu et al. Influence of laser power on atom probe tomographic analysis of boron distribution in silicon
US20170170020A1 (en) Ion implantation method and ion implantation apparatus
Pryds et al. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition
KR20150047427A (en) Section processing method, section processing apparatus
JP4574293B2 (en) Crystallinity evaluation method
US7192789B2 (en) Method for monitoring an ion implanter
Perego et al. Time of flight secondary ion mass spectrometry study of silicon nanoclusters embedded in thin silicon oxide layers
EP3139400B1 (en) Position correction sample, mass spectrometry device, and mass spectrometry method
LEE et al. Post‐thinning using Ar ion‐milling system for transmission electron microscopy specimens prepared by focused ion beam system
JP5050568B2 (en) Depth direction impurity element concentration analysis method
JPH04344443A (en) Measurement of carbon and oxygen density in silicon
JP5807442B2 (en) Secondary ion mass spectrometry method
JP5391942B2 (en) Primary ion energy correction method in secondary ion mass spectrometry
JP2005005151A (en) Charged particle beam device
JP2016001578A (en) Secondary ion mass spectrometer and secondary ion mass spectrometry method
JP6740736B2 (en) Element distribution measuring method and element distribution measuring device
JP5045310B2 (en) High-precision depth direction analysis method and analyzer using secondary ion mass spectrometry technology
JP2004226229A (en) Method of analyzing distribution in depth direction of group v element in group iv semiconductor
JP2014006124A (en) Secondary ion mass analysis method and standard sample
JP2008215989A (en) Concentration analyzing method of element in depth direction
Qian et al. Accurate detection of interface between SiO2 film and Si substrate
JPH0329319A (en) Focus adjustment method
JP5130894B2 (en) Management method of ion implantation conditions
JP2008215847A (en) Sample for secondary ion mass analysis, method of manufacturing the same, and secondary ion mass analyzing method
JP2013040835A (en) Sample analytical method and sample analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees