JPH07294462A - Secondary ion mass spectrometry for oxygen in silicon - Google Patents

Secondary ion mass spectrometry for oxygen in silicon

Info

Publication number
JPH07294462A
JPH07294462A JP6082833A JP8283394A JPH07294462A JP H07294462 A JPH07294462 A JP H07294462A JP 6082833 A JP6082833 A JP 6082833A JP 8283394 A JP8283394 A JP 8283394A JP H07294462 A JPH07294462 A JP H07294462A
Authority
JP
Japan
Prior art keywords
oxygen
silicon
sample
cssi
csosi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6082833A
Other languages
Japanese (ja)
Other versions
JP3295867B2 (en
Inventor
Yuji Kataoka
祐治 片岡
Yoko Toda
陽子 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP08283394A priority Critical patent/JP3295867B2/en
Publication of JPH07294462A publication Critical patent/JPH07294462A/en
Application granted granted Critical
Publication of JP3295867B2 publication Critical patent/JP3295867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide a means which can accurately evaluate the concentration distribution in the depth direction or the surface direction of oxygen existing in a silicon and oxygen-containing sample used in an electronic device or the like in secondary ion mass spectrometry for oxygen in silicon. CONSTITUTION:A (s<+> ion is radiate to a sample containing silicon and oxygen, and a quantity of a three-atom composite ion CsOSi<+> composed of Cs, O and Si and a two-atom composite ion CsSi<+> composed of Cs and Si sputtered from this sample is detected, and an analytical curve to show the relationship between a ratio of CsOSi<+>/CsSi<+> and the oxygen concentration is created, and the concentration distribution in the depth direction and the surface direction of oxygen in the sample containing silicon and oxygen is quantitatively determined by using this analytical curve. When the analytical curve is created, a silicon oxide film having a thickness of 10nm or more is used as a high concentration sample, and the ratio of CsOSi<+>/CsSi<+> is found from a part separated in the surface direction by 10nm or more from an interface with backing of the silicon oxide film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MOS IC等の電子
装置に用いられる単結晶シリコン、多結晶シリコン、ア
モルファスシリコンあるいは酸化シリコン等のシリコン
と酸素を含む試料中に含まれる酸素の濃度を定量評価す
るシリコン中の酸素の二次イオン質量分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention quantifies the concentration of oxygen contained in a sample containing silicon and oxygen such as single crystal silicon, polycrystalline silicon, amorphous silicon or silicon oxide used in electronic devices such as MOS ICs. It relates to secondary ion mass spectrometry of oxygen in silicon to be evaluated.

【0002】[0002]

【従来の技術】従来から、MOS ICにおいては、ゲ
ート酸化膜として極めて薄い酸化シリコン膜を用いてい
るが、熱処理による酸化膜機能の低下やブレークスルー
等酸化膜に関する装置の製造上の問題が数多く存在し、
酸化膜中の酸素濃度についての情報は極めて重要であ
る。また、シリコン中の微量の酸素はドナー化等により
キャリア濃度に悪影響を与えることも知られている。
2. Description of the Related Art Conventionally, in a MOS IC, an extremely thin silicon oxide film has been used as a gate oxide film, but there are many problems in the manufacture of devices related to the oxide film such as deterioration of the oxide film function due to heat treatment and breakthrough. Exists,
Information about the oxygen concentration in the oxide film is extremely important. It is also known that a slight amount of oxygen in silicon adversely affects the carrier concentration due to the formation of a donor or the like.

【0003】従来、二次イオン質量分析法(Secon
dary Ion Mass Spectrometr
y:SIMS)における酸素の定量方法は、一次イオン
にCs+ を用いて試料からスパッタされるO- およびS
- の量を検出し、O- /Si- 比を用いる手法であっ
た。
Conventionally, secondary ion mass spectrometry (Secon)
darry Ion Mass Spectrometer
y: SIMS) is a method for quantifying oxygen, in which O and S sputtered from a sample using Cs + as primary ions.
This was a method of detecting the amount of i and using the O / Si ratio.

【0004】[0004]

【発明が解決しようとする課題】しかし、この手法によ
ると、O- の検出感度はマトリクス効果の影響を激しく
受け、ppmレベルの定量分析には利用可能でも、%オ
ーダの定量分析には利用することができない。また、近
年、酸化シリコン膜中の酸素の定量分析法としてCsO
+ /CsSi + 比を用いる手法が提案されているが、こ
の手法においてはppmオーダから%オーダにわたる範
囲では著しくCsO+ /CsSi+ 比が異なるため、p
pmオーダから%オーダにわたる範囲の定量分析を一様
に行うことはできない。
However, according to this method,
Then O-The detection sensitivity of is severely affected by the matrix effect
However, even if it can be used for quantitative analysis at the ppm level,
It cannot be used for quantitative analysis of data. In addition,
, CsO as a quantitative analysis method of oxygen in silicon oxide film
+/ CsSi +A method that uses a ratio has been proposed.
In the method of, the range from ppm order to% order
Markedly CsO+/ CsSi+Since the ratio is different, p
Uniform quantitative analysis ranging from pm order to% order
Can't be done.

【0005】本発明は、電子装置に用いられるシリコン
と酸素を含む試料中に存在する酸素の深さ方向あるいは
面方向の濃度分布を正確に評価し、また、酸素濃度分布
によって電子装置の特性を評価することを特徴とするシ
リコン中の酸素の二次イオン質量分析法を提供すること
を目的とする。
The present invention accurately evaluates the concentration distribution of oxygen existing in a sample containing silicon and oxygen used in an electronic device in the depth direction or in the plane direction, and determines the characteristics of the electronic device by the oxygen concentration distribution. It is an object of the present invention to provide a secondary ion mass spectrometry method for oxygen in silicon characterized by evaluation.

【0006】[0006]

【課題を解決するための手段】本発明にかかるシリコン
中の酸素の二次イオン質量分析法においては、前記の課
題を解決するために、Cs+ イオンをシリコンと酸素を
含む試料に照射し、該試料からスパッタされるCs,
O,Siから形成される三原子複合イオンCsOSi+
およびCs,Siから形成される二原子複合イオンCs
Si+ の量を検出し、CsOSi+ /CsSi+ 比と酸
素濃度の関係を示す検量線を作成し、該検量線を用いて
シリコンと酸素を含む試料中の酸素の深さ方向および面
方向濃度分布を定量する過程を採用した。
In the secondary ion mass spectrometry of oxygen in silicon according to the present invention, in order to solve the above problems, a sample containing silicon and oxygen is irradiated with Cs + ions, Cs sputtered from the sample,
Triatomic compound ion CsOSi + formed from O and Si
And a diatomic compound ion Cs formed from Cs and Si
A calibration curve showing the relationship between the CsOSi + / CsSi + ratio and the oxygen concentration is created by detecting the amount of Si + , and the concentration curve of oxygen in a sample containing silicon and oxygen in the depth direction and the plane direction is prepared using the calibration curve. The process of quantifying the distribution was adopted.

【0007】この場合、検量線を作成する際、高濃度試
料として厚さ10nm以上の酸化シリコン膜を用い、ま
たこの場合、酸化シリコン膜と下地との界面から10n
m以上表面方向に離れた部分からCsOSi+ /CsS
+ 比を求めることによってCsOSi+ /CsSi+
比を正確に求めることができる。
In this case, when preparing the calibration curve, a silicon oxide film having a thickness of 10 nm or more is used as the high-concentration sample, and in this case, 10 n from the interface between the silicon oxide film and the base.
CsOSi + / CsS from the part more than m away from the surface
By obtaining the i + ratio, CsOSi + / CsSi +
The ratio can be accurately determined.

【0008】また、これらの場合、Cs+ イオンをシリ
コンと酸素を含む試料に、その法線方向に対して55〜
70度の範囲で照射することによって、試料の表面に溜
まるCsの量を低減して、CsOSi+ シグナルを安定
化することができる。
Further, in these cases, Cs + ions are applied to a sample containing silicon and oxygen in an amount of 55 to 55 with respect to the normal direction.
By irradiating in the range of 70 degrees, the amount of Cs accumulated on the surface of the sample can be reduced and the CsOSi + signal can be stabilized.

【0009】[0009]

【作用】本発明のように、Cs+ イオンをシリコンと酸
素を含む試料に照射し、この試料からスパッタされるC
s,O,Siから形成される三原子複合イオンCsOS
+ およびCs,Siから形成される二原子複合イオン
CsSi+ の量を検出して、CsOSi+ /CsSi+
比と酸素濃度の関係を示す検量線を作成し、この検量線
を用いてシリコンと酸素を含む試料中の酸素の深さ方向
および面方向濃度分布を定量すると、従来の二次イオン
質量分析法において問題になっていたマトリクス効果に
よる影響を取り除くことができ、ppmオーダから%オ
ーダにわたる範囲のシリコン中の酸素の量を一様に定量
することができる。
As in the present invention, a sample containing silicon and oxygen is irradiated with Cs + ions, and C sputtered from this sample is irradiated.
Triatomic compound ion CsOS formed from s, O and Si
The amount of diatomic compound ion CsSi + formed from i + and Cs, Si is detected to obtain CsOSi + / CsSi +
A calibration curve showing the relationship between the ratio and the oxygen concentration was created, and using this calibration curve, the concentration profiles of oxygen in the depth direction and the plane direction in a sample containing silicon and oxygen were quantified. The effect due to the matrix effect, which has been a problem in (3), can be eliminated, and the amount of oxygen in silicon in the range of ppm order to% order can be uniformly quantified.

【0010】[0010]

【実施例】以下、本発明の一実施例を説明する。この実
施例においては、フローティングゾーン法によって形成
されたSi基板中にドーズ量を変えてイオン注入した試
料、およびチョクラルスキ法によって引き上げられたC
Z−Si基板上に熱酸化によって厚さ50nmの酸化シ
リコン膜を形成した試料を用いて検量線を作成し、この
検量線を用いてシリコン中の酸素の量を定量した。
EXAMPLE An example of the present invention will be described below. In this example, a sample obtained by ion-implanting a Si substrate formed by the floating zone method with a different dose amount, and C pulled by the Czochralski method.
A calibration curve was prepared using a sample in which a silicon oxide film having a thickness of 50 nm was formed on a Z-Si substrate by thermal oxidation, and the amount of oxygen in silicon was quantified using this calibration curve.

【0011】この実施例において、ドーズ量を変えて酸
素(16+ )をイオン注入したFZ−Si基板の酸素イ
オン注入条件は下記のとおりである。
In this embodiment, the oxygen ion implantation conditions for the FZ-Si substrate in which oxygen ( 16 O + ) was ion-implanted with the dose amount changed are as follows.

【0012】図1は、本発明の一実施例の検量線の説明
図である。この図において、横軸は酸素濃度を示し、縦
軸はCsOSi+ /CsSi+ 強度比を示している。こ
の図によると、二次イオン強度比(○)は酸素濃度に対
して1×1017〜5×1022cm-3まで直線性を示して
いる。この場合、1×1017cm-3は2ppmに値し、
5×1022cm-3は酸化シリコン中の酸素濃度に対応す
る。
FIG. 1 is an explanatory diagram of a calibration curve according to an embodiment of the present invention. In this figure, the horizontal axis represents oxygen concentration and the vertical axis represents CsOSi + / CsSi + intensity ratio. According to this figure, the secondary ion intensity ratio (◯) shows linearity with respect to the oxygen concentration up to 1 × 10 17 to 5 × 10 22 cm −3 . In this case, 1 × 10 17 cm -3 is equivalent to 2 ppm,
5 × 10 22 cm −3 corresponds to the oxygen concentration in silicon oxide.

【0013】したがって、この実施例によると、ppm
オーダから%オーダまでの検量線を作ることができ、一
様にppmオーダから%オーダの範囲にわたって酸素定
量分析を行うことができる。一方、この図に書き込まれ
た従来法によるCsO+ /CsSi+ 強度比(□)は酸
素濃度が5×1021cm-3を越えると急激に増大し、低
濃度領域における直線から大きく外れている。したがっ
て、従来法では、一様にppmオーダから%オーダまで
の範囲の酸素定量分析を行うことが不可能である。
Therefore, according to this embodiment, ppm
A calibration curve from order to% order can be created, and quantitative oxygen analysis can be performed uniformly over the range of ppm order to% order. On the other hand, the CsO + / CsSi + intensity ratio (□) according to the conventional method written in this figure sharply increases when the oxygen concentration exceeds 5 × 10 21 cm −3 , and deviates greatly from the straight line in the low concentration region. . Therefore, with the conventional method, it is impossible to uniformly perform quantitative oxygen analysis in the range of ppm order to% order.

【0014】図2は、一次イオンの入射角が60度のと
きの酸化シリコン膜の深さ方向の酸素量の分析結果説明
図である。この図において、横軸は酸化シリコン膜の深
さを示し、縦軸は強度(イオン個数)を示している。こ
の図は、シリコン基板の上に厚さ50nmの酸化シリコ
ン膜を形成した試料の深さ方向の酸素量を分析した結果
を示しているが、酸化シリコン膜中の、酸化シリコン膜
とシリコン基板の界面近傍の10nmの領域ではCsO
Si+ のシグナルに異常が見られる。これは、界面近傍
で表面一次イオン濃度が変化するためと考えられる。し
たがって、酸素の定量分析の検量線を作成する場合はシ
リコン基板の上に厚さ10nm以上の酸化シリコン膜を
用い、さらに、シリコン基板と酸化シリコン膜の界面1
0nm領域を外れた領域でのシグナルを用いることが望
ましい。
FIG. 2 is an explanatory diagram of the analysis result of the oxygen amount in the depth direction of the silicon oxide film when the incident angle of the primary ions is 60 degrees. In this figure, the horizontal axis represents the depth of the silicon oxide film, and the vertical axis represents the intensity (number of ions). This figure shows the results of analyzing the oxygen amount in the depth direction of a sample in which a silicon oxide film having a thickness of 50 nm was formed on a silicon substrate. In the 10 nm region near the interface, CsO
Abnormality is seen in the signal of Si + . It is considered that this is because the surface primary ion concentration changes near the interface. Therefore, when preparing a calibration curve for quantitative analysis of oxygen, a silicon oxide film having a thickness of 10 nm or more is used on the silicon substrate, and further, the interface 1 between the silicon substrate and the silicon oxide film is used.
It is desirable to use the signal in the region outside the 0 nm region.

【0015】図3は、一次イオンの入射角が50度のと
きの酸化シリコン膜の深さ方向の酸素量の分析結果説明
図である。この図において、横軸は酸化シリコン膜の深
さを示し、縦軸は強度(イオン個数)を示している。こ
の図によると、CsSi+ のシグナルに比べてCsOS
+ のシグナルが不安定であることがわかる。
FIG. 3 is an explanatory diagram of the analysis result of the oxygen amount in the depth direction of the silicon oxide film when the incident angle of the primary ions is 50 degrees. In this figure, the horizontal axis represents the depth of the silicon oxide film, and the vertical axis represents the intensity (number of ions). According to this figure, compared to the signal of CsSi + , CsOS
It can be seen that the i + signal is unstable.

【0016】また、CsOSi+ のシグナルはCs+
シグナルに影響を受け、Cs+ のシグナルとは正反対の
挙動を示している。絶縁体中でのアルカリ金属は動きや
すく、必要以上に試料表面にCsを溜めることはCsO
Si+ のシグナルを不安定状態に導くと考えられる。
[0016] In addition, CsOSi + of the signal is affected by the Cs + of the signal, the Cs + signal shows the opposite behavior. Alkali metal in the insulator is easy to move, and it is impossible to accumulate Cs on the sample surface more than necessary.
It is considered to lead the signal of Si + to an unstable state.

【0017】図4は、Cs+ イオンの法線に対する入射
角とスパッタリングイールドの関係説明図である。この
図に示されるように、一次イオンの法線に対する入射角
が55〜70度であるとき、スパッタリングイールドが
大きくなっている。したがって、Cs+ 一次イオン入射
角をスパッタリングイールドが大きい55〜70度に保
ち、表面Cs濃度を最小限に抑えることが望ましい。
FIG. 4 is a diagram for explaining the relationship between the incident angle with respect to the normal line of Cs + ions and the sputtering yield. As shown in this figure, when the incident angle of the primary ion with respect to the normal line is 55 to 70 degrees, the sputtering yield is large. Therefore, it is desirable to keep the Cs + primary ion incident angle at 55 to 70 degrees, which has a large sputtering yield, and minimize the surface Cs concentration.

【0018】なお、この実施例においては、酸素をイオ
ン注入したシリコン基板およびシリコン基板の上に酸化
シリコン膜を形成した試料を用いた例を説明したが、S
iを添加したAl−Cu合金からなる配線中の酸素を定
量する場合等、シリコンと酸素を含む試料中の酸素を定
量する場合に適用することができる。
In this embodiment, an example using a silicon substrate into which oxygen is ion-implanted and a sample in which a silicon oxide film is formed on the silicon substrate has been described.
It can be applied to the case of quantifying oxygen in a sample containing silicon and oxygen, such as the case of quantifying oxygen in a wiring made of an Al-Cu alloy to which i is added.

【0019】[0019]

【発明の効果】以上説明したように、本発明によるシリ
コンと酸素を含む試料中の酸素の定量分析方法は、pp
m〜%オーダまで酸素を一様に定量することができ、電
子装置の特性の評価技術の向上に寄与するところが大き
い。
As described above, the method for quantitative analysis of oxygen in a sample containing silicon and oxygen according to the present invention is pp.
Oxygen can be uniformly quantified in the order of m to%, which greatly contributes to the improvement of the evaluation technology for the characteristics of electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の検量線の説明図である。FIG. 1 is an explanatory diagram of a calibration curve according to an example of the present invention.

【図2】一次イオンの入射角が60度のときの酸化シリ
コン膜の深さ方向の酸素量の分析結果説明図である。
FIG. 2 is an explanatory diagram of an analysis result of an oxygen amount in a depth direction of a silicon oxide film when an incident angle of primary ions is 60 degrees.

【図3】一次イオンの入射角が50度のときの酸化シリ
コン膜の深さ方向の酸素量の分析結果説明図である。
FIG. 3 is an explanatory diagram of an analysis result of an oxygen amount in a depth direction of a silicon oxide film when an incident angle of primary ions is 50 degrees.

【図4】Cs+ イオンの法線に対する入射角とスパッタ
リングイールドの関係説明図である。
FIG. 4 is an explanatory diagram of a relationship between an incident angle with respect to a normal line of Cs + ions and a sputtering yield.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Cs+ イオンをシリコンと酸素を含む試
料に照射し、該試料からスパッタされるCs,O,Si
から形成される三原子複合イオンCsOSi + およびC
s,Siから形成される二原子複合イオンCsSi+
量を検出し、CsOSi+ /CsSi+ 比と酸素濃度の
関係を示す検量線を作成し、該検量線を用いてシリコン
と酸素を含む試料中の酸素の深さ方向および面方向濃度
分布を定量することを特徴とするシリコン中の酸素の二
次イオン質量分析法。
1. Cs+Ions containing silicon and oxygen
Cs, O, Si sputtered from the sample by irradiating the sample
Triatomic compound ion CsOSi formed from +And C
diatomic compound ion CsSi formed from s and Si+of
Amount of CsOSi+/ CsSi+Ratio of oxygen concentration
Create a calibration curve that shows the relationship, and use the calibration curve to
And Oxygen Concentrations in Samples Containing Oxygen and Oxygen
The distribution of oxygen in silicon characterized by quantifying the distribution.
Secondary ion mass spectrometry.
【請求項2】 検量線を作成する際、高濃度試料として
厚さ10nm以上の酸化シリコン膜を用いることを特徴
とする請求項1に記載されたシリコン中の酸素の二次イ
オン質量分析法。
2. The secondary ion mass spectrometry method for oxygen in silicon according to claim 1, wherein a silicon oxide film having a thickness of 10 nm or more is used as the high-concentration sample when the calibration curve is prepared.
【請求項3】 酸化シリコン膜を用いて検量線を作成す
る際、酸化シリコン膜と下地との界面から10nm以上
表面方向に離れた部分からCsOSi+ /CsSi+
を求めることを特徴とする請求項1または請求項2に記
載されたシリコン中の酸素の二次イオン質量分析法。
3. A CsOSi + / CsSi + ratio is obtained from a portion distant by 10 nm or more from the interface between the silicon oxide film and the base in the surface direction when the calibration curve is formed using the silicon oxide film. Item 2. The secondary ion mass spectrometry method for oxygen in silicon according to item 1 or 2.
【請求項4】 Cs+ イオンをシリコンと酸素を含む試
料に、その法線方向に対して55〜70度の範囲で照射
しCsOSi+ 、CsSi+ の量を求めることを特徴と
する請求項1、請求項2または請求項3に記載されたシ
リコン中の酸素の二次イオン質量分析法。
4. The amount of CsOSi + and CsSi + is determined by irradiating a sample containing silicon and oxygen with Cs + ions in the range of 55 to 70 degrees with respect to the normal direction. The secondary ion mass spectrometry method for oxygen in silicon according to claim 2 or 3.
JP08283394A 1994-04-21 1994-04-21 Secondary ion mass spectrometry of oxygen in silicon. Expired - Fee Related JP3295867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08283394A JP3295867B2 (en) 1994-04-21 1994-04-21 Secondary ion mass spectrometry of oxygen in silicon.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08283394A JP3295867B2 (en) 1994-04-21 1994-04-21 Secondary ion mass spectrometry of oxygen in silicon.

Publications (2)

Publication Number Publication Date
JPH07294462A true JPH07294462A (en) 1995-11-10
JP3295867B2 JP3295867B2 (en) 2002-06-24

Family

ID=13785415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08283394A Expired - Fee Related JP3295867B2 (en) 1994-04-21 1994-04-21 Secondary ion mass spectrometry of oxygen in silicon.

Country Status (1)

Country Link
JP (1) JP3295867B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078247A (en) * 2004-09-08 2006-03-23 Fujitsu Ltd Crystallinity evaluation method
KR20180092811A (en) * 2017-02-10 2018-08-20 글로벌웨어퍼스 재팬 가부시키가이샤 Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116181B (en) * 2018-10-31 2022-04-15 南京梅山冶金发展有限公司 Refractory material lining of torpedo car and construction process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078247A (en) * 2004-09-08 2006-03-23 Fujitsu Ltd Crystallinity evaluation method
JP4574293B2 (en) * 2004-09-08 2010-11-04 富士通株式会社 Crystallinity evaluation method
KR20180092811A (en) * 2017-02-10 2018-08-20 글로벌웨어퍼스 재팬 가부시키가이샤 Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method

Also Published As

Publication number Publication date
JP3295867B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
US4393311A (en) Method and apparatus for surface characterization and process control utilizing radiation from desorbed particles
CN112763527B (en) Method for directly obtaining material interface oxygen potential and structure
Langfischer et al. Evolution of tungsten film deposition induced by focused ion beam
Patkin et al. Secondary ion mass spectrometric image depth profiling for three-dimensional elemental analysis
Klenk et al. X-ray fluorescence measurements of thin film chalcopyrite solar cells
JPH07294462A (en) Secondary ion mass spectrometry for oxygen in silicon
JP2008298770A (en) Method for laser ionization mass spectrometry and sample-supporting substrate for use in laser ionization mass spectrometry
US5350919A (en) Quantitative analyzing method by a secondary ion mass spectrometric method and a secondary ion mass spectrometer
JP2676120B2 (en) Beam adjustment method for charged particle beam analyzer
JP3690484B2 (en) Method for analyzing metal impurities on silicon substrate surface
JP3368732B2 (en) Method for analyzing impurities in silicon
Oikawa et al. Fading characteristic of imaging plate for a transmission electron microscope
Pantano et al. Surface studies of multicomponent silicate glasses: quantitative analysis, sputtering effects and the atomic arrangement
Medvedev et al. A Thin Layer Method for the LA-ICP-MS Analysis of Trace Element Concentrates
JP2962073B2 (en) Measurement method of concentration distribution of trace elements
Robertson Jr et al. Analysis of Al in silicon on sapphire films and bulk silicon
SU1100525A1 (en) Method of preparing sample for electron-probe microanalysis of non-luminiscent substances
Grasserbauer Quantitative secondary ion mass spectrometry
JPH07280752A (en) Highly sensitive surface multi-element simultaneous mass spectrometry
Van Der Heide The caesium enhancement effect observed during SIMS ultra shallow depth profile analysis of SiO2 on Si
Mullin et al. Analysis of cadmium mercury telluride and related materials
JP2002310961A (en) Depthwise element distribution measuring method
Gnaser et al. Hydrogen analysis by secondary ion mass spectrometry using HCs+ ions
JPH06347427A (en) Secondary ion mass spectrometry method
Soria et al. Quantification of secondary ion mass spectrometry measurements by using ion‐implanted metallic standards

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees