JPS6138829B2 - - Google Patents

Info

Publication number
JPS6138829B2
JPS6138829B2 JP55138469A JP13846980A JPS6138829B2 JP S6138829 B2 JPS6138829 B2 JP S6138829B2 JP 55138469 A JP55138469 A JP 55138469A JP 13846980 A JP13846980 A JP 13846980A JP S6138829 B2 JPS6138829 B2 JP S6138829B2
Authority
JP
Japan
Prior art keywords
electron beam
measuring
electron
current
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55138469A
Other languages
Japanese (ja)
Other versions
JPS5763463A (en
Inventor
Bunro Komatsu
Yasuo Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13846980A priority Critical patent/JPS5763463A/en
Publication of JPS5763463A publication Critical patent/JPS5763463A/en
Publication of JPS6138829B2 publication Critical patent/JPS6138829B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電子ビーム露光装置等に使用する電
子ビームのビーム径及びビーム電流の測定装置に
関する。 従来、電子ビーム露光装置等に使用する電子ビ
ームのビーム径は、線走査された電子ビームがシ
リコンなどで作られたナイフエツジの先端部に接
触してその際に生じる反射電子の信号から測定し
ている。また、ビーム電流は、電子ビームをその
走査モードをスポツトにしてフアラデイカツプ
(Faraday cup)中に照射し、フアラデイカツプ
から得られる電流から測定している。 しかしながら、ナイフエツジとフアラデイカツ
プを用いてビーム径とビーム電流を測定するもの
では操作も煩雑である欠点があつた。 本発明は、かかる点に鑑みてなされたもので、
簡単な操作でしかも高い精度で電子ビームのビー
ム径及びビーム電流の安定した測定をすることが
できるビーム径及びビーム電流の測定用ウエハを
提供するものである。 以下、本発明の実施例を図面を参照して説明す
る。 第1図は、本発明の一実施例の要部の平面図、
第2図は、同実施例の要部を示す断面図である。
この電子ビームのビーム径及びビーム電流の測定
装置は、P導電型の半導体層1上にN導電型の
半導体層2を積層して形成されたP−N接合基板
3の表面に、ビーム検知領域4を正方形状に残し
て絶縁層5を被着している。P−N接合基板3に
は、P−N接合間の起電流を測定するための電流
計20が接続されるようになつている。また、ビ
ーム検知領域4から絶縁層5間に亘つて照射され
た電子ビームEによる二次電子の信号変化幅を測
定する手段が設けられるようになつている。 ここで、P−N接合の接合深さは、測定する電
子ビームの加速電圧に応じて例えば下記表の如く
設定するのが望ましい。
The present invention relates to an apparatus for measuring the beam diameter and beam current of an electron beam used in an electron beam exposure apparatus or the like. Conventionally, the beam diameter of the electron beam used in electron beam exposure equipment is measured from the signal of reflected electrons generated when the line-scanned electron beam contacts the tip of a knife edge made of silicon or the like. There is. The beam current is measured by irradiating an electron beam into a Faraday cup with its scanning mode set to spot, and from the current obtained from the Faraday cup. However, the method that uses a knife edge and Faraday cup to measure the beam diameter and beam current has the disadvantage that the operation is complicated. The present invention has been made in view of these points,
The object of the present invention is to provide a wafer for measuring beam diameter and beam current, which allows stable measurement of the beam diameter and beam current of an electron beam with simple operation and high precision. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of essential parts of an embodiment of the present invention;
FIG. 2 is a sectional view showing the main parts of the same embodiment.
The beam diameter and beam current measurement device 6 of this electron beam detects the beam on the surface of a P-N junction substrate 3 formed by stacking an N conductivity type semiconductor layer 2 on a P conductivity type semiconductor layer 1. The insulating layer 5 is deposited leaving the region 4 in a square shape. An ammeter 20 for measuring the electromotive current between the P-N junctions is connected to the P-N junction substrate 3. Further, means is provided for measuring the signal change width of secondary electrons caused by the electron beam E irradiated from the beam detection region 4 to the insulating layer 5. Here, it is desirable that the junction depth of the PN junction be set, for example, as shown in the table below, depending on the acceleration voltage of the electron beam to be measured.

【表】 半導体1,2は、無欠陥の単結晶シリコンで形
成するのが望ましい。絶縁層5は、測定する電子
ビームによつて発生する二次電子の平均自由行程
がP−N接合基板3と大きく異なるものであれば
例えば二酸化ケイ素(SiO2)からなるものなど如
何なるものでも良い。絶縁層5の厚さは3000〜
1000Åの範囲で適宜設定するのが望ましい。絶縁
層5は、熱酸化法やC.V.D.(Chemical Vapor
Deposition)法により容易に形成することができ
る。ビーム検知領域4の大きさは、〔(電子ビーム
の自由行程が)例えば20keVの加速電圧の場合第
3図に示す通り少なくとも6000Åの広がりを有す
るので〕30〜20μmの範囲で適宜設定するのが望
ましい。ビーム検知領域4の境界を決定する絶縁
層5の一辺21は、第2図に示す如く、半導体層
2の表面と直交するよう形成するのが好ましい。 また、本発明の電子ビームの径及びビーム電流
の測定装置を適用する電子ビーム発生装置とし
ては、例えば第4図に示す如き電子ビーム露光装
15を用いる。この電子ビーム露光装置15
は、電子ビームの径及びビーム電流の測定用ウエ
ハ6と電子ビーム被照射体であるマスク7を固定
するX−Yステージ8を有している。X−Yステ
ージ8は駆動機構14によつて所定速度で縦方向
及び横方向に移動できるようになつている。X−
Yステージ8の上方には、ステージ面に対向して
電子銃9が設けられている。電子銃9とX−Yス
テージ8間には、電子銃9から放出された電子ビ
ームを集束するコンデンサーレンズ10、電子ビ
ームの照射(ON)、照射解除(OFF)を制御す
るブランキング電極11、電子ビームの走査を制
御する偏向電極12が順次設けられている。ブラ
ンキング電極11、偏向電極12、及びX−Yス
テージ8は、図示しないコンピユータに接続され
ており、これらの動作はコンピユータに入力され
たデータに従つて制御されるようになつている。
尚、図中13は反射電子検出器である。この反射
電子検出器13と偏向電極12及びX−Yステー
ジ8の駆動制御機構によつて二次電子の信号変化
幅の測定手段が構成される。 而して、電子ビームのビーム径及びビーム電流
の測定装置6(以下、単に測定装置6と記す。)
を電子ビーム露光装置15に設けられたX−Yス
テージ8の所定位置に固定する。次いで、二次電
子像(SEI)によつて測定用ウエハ6の像が見え
る位置にX−Yステージ8を移動させる。ビーム
検知領域4と絶縁層5との境界では、絶縁層5の
方が明るく見える。これは二次電子の平均自由行
程はシリコンの単結晶内では10Å程度で、二酸化
ケイ素からなる絶縁層5内では100Å程度であ
り、絶縁層5の表面からの方が二次電子の放出量
が多いからである。従つて、ビーム検知領域4と
絶縁層5の境界線のところで電子ビームの焦点を
合わせることができる。次いで、第1図及び第2
図に示す如く、電子ビームEを縦方向及び横方向
に線走査させる。この走査によつて測定用ウエハ
6の半導体層2内に発生した二次電子による信号
を振幅変調すると第6図に示す如く電子ビームE
のビーム径Dとビーム検知領域4での受光強度I
との関係を知ることができる。即ち、二次電子の
より多く飛出す絶縁層5側の方がビーム検知領域
4よりも変調強度が高くなるので、第6図の曲線
Oの立ち上がり部の例えば90%強度点と10%強度
点に対応する座標を求めてこれに倍率を考慮して
受光強度Iが変化する幅を(X−Yステージ8の
縦方向或は横方向の座標軸を)算出することによ
り電子ビームEのビーム径を測定することができ
る。同様に第1図に示す如く、電子ビームEの走
査方向を縦方向から横方向に変えることにより電
子ビームEの横方向のビーム径を測定することが
できる。従つて、電子ビームEの非点収差がある
かどうかも判断することができる。 また、ビーム電流を測定するには、先ず第7図
に示す如く電子ビームEの走査モードをスポツト
Aにする。このとき入射電子は、同図に示す如く
半導体層2内を散乱し、例えば加速電圧が20keV
の場合は、入射表面から4μm程度の深さまで進
入する。この入射電子の散乱過程で価電子帯の電
子は励起され充分なエネルギーを与えられた場合
には、電子・正孔対が形成される。(例えば、ケ
イ素(Si)では1対の電子・正孔あたり約
3.6eV)そして、小数キヤリアの拡散長の範囲内
にP−N接合が存在すると電子・正孔対は分離し
て所謂EBIC(Electron Beam Induced
Current)による起電流が流れる。この起電流
は、ビーム電流、加速電圧、基板濃度、接合深さ
等の関数で表わされるから、特定の測定装置6で
予め起電流と入射ビーム電流との検量線を作成し
ておくことにより、測定装置に取付けた計器2
0で起電流を測定することによつて電子ビームE
のビーム電流を容易に測定することができる。 尚、この電子ビームのビーム径及びビーム電流
の測定装置を構成するウエハは、一枚のシリコン
ウエハから容易に多数個得ることができるので、
測定の際に汚染して使用不能になれば、簡単に新
しいものと取り替えることができ、高い精度で安
定した測定を行うことができる。 以上説明した如く、本発明に係る電子ビームの
ビーム径及びビーム電流測定装置によれば、P−
N接合基板に形成されたビーム検知領域(シリコ
ン表面)と絶縁層間で電子ビームを走査すること
により、極めて高い精度で電子ビームのビーム径
及びビーム電流を容易に測定することができるも
のである。
[Table] Semiconductors 1 and 2 are preferably formed of defect-free single crystal silicon. The insulating layer 5 may be made of any material, such as silicon dioxide (SiO 2 ), as long as the mean free path of secondary electrons generated by the electron beam to be measured is significantly different from that of the P-N junction substrate 3. . The thickness of the insulating layer 5 is 3000~
It is desirable to set it appropriately within the range of 1000 Å. The insulating layer 5 is formed by thermal oxidation method or CVD (Chemical Vapor
It can be easily formed by the deposition method. The size of the beam detection region 4 is appropriately set in the range of 30 to 20 μm [because (the free path of the electron beam) has a spread of at least 6000 Å as shown in FIG. 3 at an accelerating voltage of 20 keV, for example]. desirable. One side 21 of the insulating layer 5, which determines the boundary of the beam detection region 4, is preferably formed to be perpendicular to the surface of the semiconductor layer 2, as shown in FIG. Further, as an electron beam generating apparatus to which the electron beam diameter and beam current measuring apparatus 6 of the present invention is applied, for example, an electron beam exposure apparatus 15 as shown in FIG. 4 is used. This electron beam exposure device 15
has an X-Y stage 8 for fixing a wafer 6 for measuring the electron beam diameter and beam current and a mask 7 which is an object to be irradiated with the electron beam. The XY stage 8 can be moved in the vertical and horizontal directions at a predetermined speed by a drive mechanism 14. X-
An electron gun 9 is provided above the Y stage 8 so as to face the stage surface. Between the electron gun 9 and the X-Y stage 8, there is a condenser lens 10 that focuses the electron beam emitted from the electron gun 9, a blanking electrode 11 that controls irradiation (ON) and cancellation of irradiation (OFF) of the electron beam, Deflection electrodes 12 are sequentially provided to control scanning of the electron beam. The blanking electrode 11, the deflection electrode 12, and the XY stage 8 are connected to a computer (not shown), and their operations are controlled according to data input to the computer.
Note that 13 in the figure is a backscattered electron detector. The backscattered electron detector 13, the deflection electrode 12, and the drive control mechanism for the X-Y stage 8 constitute means for measuring the signal change width of secondary electrons. Therefore, a measuring device 6 (hereinafter simply referred to as measuring device 6) for measuring the beam diameter and beam current of the electron beam is provided.
is fixed at a predetermined position on the XY stage 8 provided in the electron beam exposure device 15 . Next, the XY stage 8 is moved to a position where the image of the measurement wafer 6 can be seen by a secondary electron image (SEI). At the boundary between the beam detection region 4 and the insulating layer 5, the insulating layer 5 appears brighter. This is because the mean free path of secondary electrons is about 10 Å in a silicon single crystal, and about 100 Å in the insulating layer 5 made of silicon dioxide, and the amount of secondary electrons emitted from the surface of the insulating layer 5 is smaller. This is because there are many. Therefore, the electron beam can be focused at the boundary between the beam detection region 4 and the insulating layer 5. Next, Figures 1 and 2
As shown in the figure, the electron beam E is scanned in a line in the vertical and horizontal directions. When the signal by the secondary electrons generated in the semiconductor layer 2 of the measurement wafer 6 is amplitude-modulated by this scanning, an electron beam E is generated as shown in FIG.
Beam diameter D and received light intensity I in beam detection area 4
You can know the relationship between In other words, the modulation intensity is higher on the insulating layer 5 side, where more secondary electrons fly out, than on the beam detection area 4, so for example, the 90% intensity point and 10% intensity point of the rising part of the curve O in FIG. The beam diameter of the electron beam E can be determined by finding the coordinates corresponding to the coordinates, taking into account the magnification, and calculating the width in which the received light intensity I changes (vertical or horizontal coordinate axes of the X-Y stage 8). can be measured. Similarly, as shown in FIG. 1, the beam diameter in the lateral direction of the electron beam E can be measured by changing the scanning direction of the electron beam E from the vertical direction to the lateral direction. Therefore, it is also possible to determine whether the electron beam E has astigmatism. To measure the beam current, first the scanning mode of the electron beam E is set to spot A as shown in FIG. At this time, the incident electrons are scattered within the semiconductor layer 2 as shown in the figure, and the accelerating voltage is 20 keV.
In this case, the beam penetrates to a depth of about 4 μm from the incident surface. During this scattering process of incident electrons, electrons in the valence band are excited and, if sufficient energy is given, electron-hole pairs are formed. (For example, in silicon (Si), approximately
3.6eV) If a P-N junction exists within the diffusion length of the fractional carrier, the electron-hole pair is separated and the so-called EBIC (Electron Beam Induced
Current) flows. Since this electromotive current is expressed as a function of beam current, accelerating voltage, substrate concentration, junction depth, etc., by creating a calibration curve of electromotive current and incident beam current in advance using a specific measuring device 6, Instrument 2 attached to measuring device 6
By measuring the electromotive current at 0, the electron beam E
beam current can be easily measured. Incidentally, since a large number of wafers constituting the device for measuring the beam diameter and beam current of this electron beam can be easily obtained from a single silicon wafer,
If it becomes unusable due to contamination during measurement, it can be easily replaced with a new one, making it possible to perform stable measurements with high accuracy. As explained above, according to the electron beam beam diameter and beam current measuring device according to the present invention, P-
By scanning an electron beam between a beam detection region (silicon surface) formed on an N-junction substrate and an insulating layer, the beam diameter and beam current of the electron beam can be easily measured with extremely high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の平面図、第2図
は、同実施例の要部を示す断面図、第3図は二次
電子の飛程を示す説明図、第4図は電子ビーム露
光装置の説明図、第5図は、同電子ビーム露光装
置のX−Yステージの平面図、第6図は受光強度
とビーム径の関係を示す特性図、第7図は本発明
の一実施例の作用を示す説明図である。 1,2……半導体層、3……P−N接合基板、
4……ビーム検知領域、5……絶縁層、……電
子ビームのビーム径及びビーム電流測定装置、8
……マスク、9……電子銃、15……電子ビーム
露光装置。
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2 is a sectional view showing the main parts of the same embodiment, FIG. 3 is an explanatory diagram showing the range of secondary electrons, and FIG. An explanatory diagram of the electron beam exposure apparatus, FIG. 5 is a plan view of the X-Y stage of the electron beam exposure apparatus, FIG. 6 is a characteristic diagram showing the relationship between received light intensity and beam diameter, and FIG. FIG. 3 is an explanatory diagram showing the operation of one embodiment. 1, 2... Semiconductor layer, 3... P-N junction substrate,
4... Beam detection area, 5... Insulating layer, 6 ... Beam diameter and beam current measuring device for electron beam, 8
...Mask, 9...Electron gun, 15...Electron beam exposure device.

Claims (1)

【特許請求の範囲】[Claims] 1 導電型の半導体層上に逆導電型の半導体層を
積層してなるP−N接合基板と、該P−N接合基
板の表面のビーム検知領域を残して該表面に被着
された絶縁層と、前記P−N接合間の起電流を測
定する電流計と、前記ビーム検知領域から前記絶
縁層間に亘つて照射された電子ビームによる二次
電子の信号変化幅を測定する手段とを具備するこ
とを特徴とする電子ビームのビーム径及びビーム
電流の測定装置。
1 A P-N junction substrate formed by stacking a semiconductor layer of the opposite conductivity type on a semiconductor layer of the conductivity type, and an insulating layer deposited on the surface of the P-N junction substrate leaving a beam detection area on the surface. and an ammeter for measuring an electromotive current between the P-N junction, and a means for measuring a signal change width of secondary electrons caused by an electron beam irradiated from the beam detection region to between the insulating layers. An apparatus for measuring beam diameter and beam current of an electron beam, characterized in that:
JP13846980A 1980-10-03 1980-10-03 Wafer for measuring diameter of electron beam and beam current Granted JPS5763463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13846980A JPS5763463A (en) 1980-10-03 1980-10-03 Wafer for measuring diameter of electron beam and beam current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13846980A JPS5763463A (en) 1980-10-03 1980-10-03 Wafer for measuring diameter of electron beam and beam current

Publications (2)

Publication Number Publication Date
JPS5763463A JPS5763463A (en) 1982-04-16
JPS6138829B2 true JPS6138829B2 (en) 1986-09-01

Family

ID=15222769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13846980A Granted JPS5763463A (en) 1980-10-03 1980-10-03 Wafer for measuring diameter of electron beam and beam current

Country Status (1)

Country Link
JP (1) JPS5763463A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW464947B (en) * 1999-11-29 2001-11-21 Ushio Electric Inc Measuring apparatus of electron beam quantity and processing apparatus of electron beam irradiation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130762A (en) * 1974-09-09 1976-03-16 Nippon Telegraph & Telephone DENSHIBIIMUROKONIOKERU BIIMUKEISOKUTEIHOHO
JPS5321952A (en) * 1976-08-11 1978-02-28 Fujitsu Ltd Measurement of electron beam diameter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130762A (en) * 1974-09-09 1976-03-16 Nippon Telegraph & Telephone DENSHIBIIMUROKONIOKERU BIIMUKEISOKUTEIHOHO
JPS5321952A (en) * 1976-08-11 1978-02-28 Fujitsu Ltd Measurement of electron beam diameter

Also Published As

Publication number Publication date
JPS5763463A (en) 1982-04-16

Similar Documents

Publication Publication Date Title
JPH09507331A (en) Detection system for high aspect ratio measurement
US4464627A (en) Device for measuring semiconductor characteristics
CN101137889A (en) Method and apparatus of measuring thin film sample and method and apparatus of fabricating thin film sample
JP2831421B2 (en) Sample inspection method for particle beam equipment
US7218126B2 (en) Inspection method and apparatus for circuit pattern
JPH0312772B2 (en)
JP2000048758A (en) Reflected electron detecting device
JP2001185593A (en) Apparatus and method for evaluating semiconductor device, and method of manufacturing semiconductor device
WO1982003126A1 (en) Reregistration system for a charged particle beam exposure system
JPH0794562A (en) Measuring equipment for fine pattern
JP3493312B2 (en) Circuit pattern inspection apparatus and inspection method
JPS6138829B2 (en)
US5703373A (en) Alignment fiducial for improving patterning placement accuracy in e-beam masks for x-ray lithography
JP2006024921A (en) Inspection method and device by charged particle beam
JPS59155941A (en) Electron-beam inspection device
US7205539B1 (en) Sample charging control in charged-particle systems
JP2701764B2 (en) Apparatus and method for measuring size of charged particle beam
US3783228A (en) Method of manufacturing integrated circuits
KR20010053095A (en) Method of measuring film thickness
JPS62159423A (en) Method for measuring dimensions of ion implanted region
JP2635015B2 (en) Method and apparatus for observing insulating film
JP2807668B2 (en) Electron beam defect inspection method and apparatus
JPS61140811A (en) Electron beam length measuring instrument
JP2005354085A (en) Inspection method and inspection device by means of electrically-charged particle beam
JPS60135882A (en) Measurement of diameter of ion beam