JPS60135849A - Qualitative analysis by electron probe microanalyzer - Google Patents

Qualitative analysis by electron probe microanalyzer

Info

Publication number
JPS60135849A
JPS60135849A JP58248823A JP24882383A JPS60135849A JP S60135849 A JPS60135849 A JP S60135849A JP 58248823 A JP58248823 A JP 58248823A JP 24882383 A JP24882383 A JP 24882383A JP S60135849 A JPS60135849 A JP S60135849A
Authority
JP
Japan
Prior art keywords
intensity
peak
qualitative analysis
profile
wavelength profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58248823A
Other languages
Japanese (ja)
Other versions
JPH0678998B2 (en
Inventor
Naomasa Niwa
丹羽 直昌
Masao Kawai
河合 政夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP58248823A priority Critical patent/JPH0678998B2/en
Publication of JPS60135849A publication Critical patent/JPS60135849A/en
Publication of JPH0678998B2 publication Critical patent/JPH0678998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To elevate the detection accuracy and the reliability in the qualitative analysis of a trace of elements contained by a method wherein the intensity of characteristic X ray of a sample is measured to identify an element with the highest peak in a wavelength profile and then, judgement is made on the presence of peak in the intensity data of higher order rays obtained sequentially. CONSTITUTION:The highest peak PA1 in the wavelength profile of a characteristic X rays of a sample point analyzed with an EPMA1 is detected with a peak detector section 12 of a qualitative analyzer 2 to identify an element A. In this profile which indicates the intensity of the primary ray of the element A, the intensity data PA2-PA4 of higher order rays are calculated with an arithmetic processing section 14 from the ratio of intensity PA1 of the primary ray and the intensity data of the element A is subtracted from the waveform profile to determine the intensity data PB1-PB5 of identified elements B. This operation is repeated until no peak exists in the remaining profiles PC1-PC4. This prevents the overlapping of peaks in two elements to eliminate misrecognition of peak thereby improving the accuracy of the qualitative analysis free from the presence of a trace element.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は主としてエレクトロンプローブマイクロアナラ
イザ(KPMA)を適凪して得られた測定データを定性
分析する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention mainly relates to a method for qualitatively analyzing measurement data obtained by using an electron probe microanalyzer (KPMA).

(ロ)従来技術 一般に、FiPMAを適用して試料中に含有される元素
の定性分析を行なうには特性X線の強度を測定して波長
プロフィールをめる。この場合、従来では試料中に微量
元素が含まれているときでも、それが他の強い強度を示
す元素の高次線ピークなのか本来の微量元素の示すピー
クなのかどうか明確化することができなかったので、ピ
ーク認定の判断を誤り、定性分析の信頼性が損なわれる
場合があった。
(b) Prior Art Generally, when applying FiPMA to perform qualitative analysis of elements contained in a sample, the intensity of characteristic X-rays is measured to determine the wavelength profile. In this case, conventionally, even when a trace element is contained in a sample, it is not possible to clarify whether it is a higher-order line peak of another element that exhibits strong intensity or whether it is the original peak of the trace element. As a result, the reliability of qualitative analysis could be compromised due to incorrect judgment of peak recognition.

(ハ) 目的 本発明は従来の問題点を解消し、微量含有元素について
も充分に定性分析できるようにして分析の信頼度を向上
させることを目的とする。
(c) Purpose The present invention aims to solve the conventional problems and improve the reliability of the analysis by making it possible to sufficiently qualitatively analyze even trace amounts of elements.

に)構成 本発明はこのような目的を達成するため、エレクトロン
プローブマイクロアナライザ(KPMA)を適用し、試
料の特性X線強度を測定して波長プロフィールをめ、こ
の波長プロフィール内に含まれる最大ピーク波長を基に
元素を同定し、同定元素の一次線強度から順次高次線の
強度をめ、求めた同定元素の強度データを前記波長プロ
フィールより差し引き、差し引かれた波長プロフィ呼ル
について残余のピークの有無を判定して順次試料の含有
元素を分析するようにしている。
In order to achieve this purpose, the present invention applies an electron probe microanalyzer (KPMA) to measure the characteristic X-ray intensity of the sample to determine the wavelength profile, and calculates the maximum peak contained within this wavelength profile. The element is identified based on the wavelength, the intensity of the higher-order line is determined sequentially from the primary line intensity of the identified element, the intensity data of the identified element is subtracted from the wavelength profile, and the remaining peak is calculated based on the subtracted wavelength profile. The presence or absence of such elements is determined and the elements contained in the sample are sequentially analyzed.

(ホ)実施例 以下、本発明を実施例について図面に基づいて詳細に説
明する。
(e) Examples Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明を実施するために適用される定性分析装
置とFiPMAとを含むブロック構成図である。同図に
お吟て符号1はF!、PMA、2は定性分析装置、4は
EPMAlと定性分析装置2とを接続するインタフェイ
スである。この定性分析装置2は各種制御処理を行なう
中央制御部6、特性Xligj1波長データファイルや
各種プログラムデータが記憶された第1記憶部、EPM
Aiで測定された特性X線強度データや中央制御部6で
処理したデータを一時記憶する第2記憶部、特性X線の
波長プロフィール中に含まれるピークの有無を検出する
ピーク検出部12、特性X線の強度データの引き算など
の演算処理を行なう演算処理部14、演算結果を表示す
る表示部16とを備えて構成される。
FIG. 1 is a block configuration diagram including a qualitative analysis device and FiPMA applied to carry out the present invention. Looking at the same figure, code 1 is F! , PMA, 2 is a qualitative analysis device, and 4 is an interface connecting EPMAl and the qualitative analysis device 2. This qualitative analysis device 2 includes a central control unit 6 that performs various control processes, a first storage unit that stores characteristic Xligj1 wavelength data files and various program data, and an EPM.
A second storage unit that temporarily stores characteristic X-ray intensity data measured by Ai and data processed by the central control unit 6, a peak detection unit 12 that detects the presence or absence of a peak included in the wavelength profile of the characteristic X-rays, and a characteristic It is comprised of a calculation processing section 14 that performs calculation processing such as subtraction of X-ray intensity data, and a display section 16 that displays the calculation results.

次に本装置を用いた定性分析方法について第2図のフロ
ーチャートを参照して説明する。
Next, a qualitative analysis method using this apparatus will be explained with reference to the flowchart of FIG.

まず]lD、PMAIで、分析試料について点分析を行
ない、EPMA lのX線分光器を回して試料から放出
される特性X線の強度を測定し、得られる波長プロフィ
ールのデータをインタフェイス4を介して定性分析装置
2に送出する(ステップn、)。
First, perform point analysis on the sample to be analyzed using PMAI, measure the intensity of characteristic X-rays emitted from the sample by turning EPMA I's X-ray spectrometer, and send the obtained wavelength profile data to interface 4. The data is sent to the qualitative analysis device 2 via the host computer (step n,).

定性分析装置2の中央制御部6に入力された波長プロフ
ィールのデータはピーク検出部12に転送される。ピー
ク検出部12は得られた波長プロフィールについてピー
クが存在するか否かを検出する(ステップILi)。波
長プロフィールにたとえば第3図(a)に示すようなピ
ークが存在する場合、測定対象区間X内の最大ピーク(
第3図(a)中のFA□)が一つの元素Aの一次線強度
を示すので、中央制御部6はピーク検出部12のピーク
検出信号に基づき当該ピークP A1を示す元素を第1
記憶部8に記憶された特性X線波長データファイルを参
照して同定する(ステップna)。続いて、中央制御部
6は第1記憶部8から゛読み出した同定元素への強度デ
ータを演算処理$14に転送するので、演算処理部14
は同定元素Aのこの測定条件のもとての二法線以上の高
次線のX線強度データPA2〜P A、を−法線の強度
P A、割合から算出する。そして、中央制御部6は演
算処理部14で算出されたこの同定元素Aとこれが示す
強度データPA1〜PA4を第2肥憶部10に転送して
ここにメモリする(ステップn、)。さらに、中央制御
部6は先に測定して得られた波長プロフィール(第2図
(a))と同定光素人の強度データpA□〜P A4と
を第2記憶部10より読み出し、これを再び演算処理部
14に送出するので、演算処理部14により先の波長プ
ロフィールより同定光素人の強度データP A、〜P 
A4を差し引く (ステップへ)。次いで、中央制御部
6は演算処理部14で差し引かれた残りの波長プロフィ
ールのデータをピーク検出部12に転送するのでピーク
検出部12はピークが存在するか否かを判定する(ステ
ップn6)。第3図(1))に示すようにピークが依然
存在する場合にはステップ)に戻り、前述と同様にして
測定対象区間X内の最大ピーク(第3図(1))のjs
、)が一つの元素Bの一次線強度を示すので中央制御部
6は、これを基に当該ピークPB1を示す元素を第1記
憶部8に記憶された特性X線波長データファイルを参照
して同定する。そして、演算処理部14で同定元素Bの
強度データPB1〜P B5を算出し、メモリした後す
でに差引いた波゛長プロフィール(第3図(b))より
さらに同定元素Bの強度データF B1〜P B5を差
引く。そうすると残余の波長プロフィチルは第3図(C
)のようになる。このようにして残余のピークがなくな
るまで順次ステップ−からステップへまでの操作を繰返
す。そして処理が終了した結果は表示器16に表示され
る。従って、一つの元素のピークと他の元素のピークと
が重なっている可能性のあるときでも各元素ごとにピー
クが明確化されるので、ピーク認定を誤ることはない。
The wavelength profile data input to the central control unit 6 of the qualitative analysis device 2 is transferred to the peak detection unit 12. The peak detection unit 12 detects whether a peak exists in the obtained wavelength profile (step ILi). If the wavelength profile has a peak as shown in FIG. 3(a), the maximum peak (
Since FA□) in FIG. 3(a) indicates the primary line intensity of one element A, the central control unit 6 selects the element showing the peak P A1 based on the peak detection signal of the peak detection unit 12.
Identification is performed with reference to the characteristic X-ray wavelength data file stored in the storage unit 8 (step na). Subsequently, the central control unit 6 transfers the read intensity data for the identified element from the first storage unit 8 to the calculation processing unit $14.
is calculated from the X-ray intensity data PA2 to PA of higher-order lines higher than the two normal lines of the identified element A under this measurement condition from the intensity PA of the -normal line and the ratio. Then, the central control unit 6 transfers the identified element A calculated by the arithmetic processing unit 14 and the intensity data PA1 to PA4 indicated by the identified element A to the second storage unit 10 and stores it therein (step n). Furthermore, the central control unit 6 reads out the previously measured wavelength profile (FIG. 2(a)) and the intensity data pA□-PA4 of the identified light amateurs from the second storage unit 10, and reads them again. Since it is sent to the arithmetic processing unit 14, the arithmetic processing unit 14 calculates the intensity data of the identified light amateur from the previous wavelength profile P A, ~P
Subtract A4 (to step). Next, the central control unit 6 transfers the remaining wavelength profile data subtracted by the arithmetic processing unit 14 to the peak detection unit 12, so the peak detection unit 12 determines whether or not a peak exists (step n6). If the peak still exists as shown in FIG. 3 (1)), return to step ) and calculate js of the maximum peak within the measurement target section X (FIG. 3 (1)) in the same manner as described above.
, ) indicates the primary line intensity of one element B. Based on this, the central control unit 6 selects the element exhibiting the peak PB1 by referring to the characteristic X-ray wavelength data file stored in the first storage unit 8. identify Then, the arithmetic processing unit 14 calculates the intensity data PB1 to PB5 of the identified element B, stores it in memory, and further calculates the intensity data PB1 to PB5 of the identified element B from the already subtracted wavelength profile (FIG. 3(b)). P Subtract B5. Then, the remaining wavelength profile is shown in Figure 3 (C
)become that way. In this way, the operations from step - to step are repeated in sequence until there are no remaining peaks. The results of the completed processing are then displayed on the display 16. Therefore, even when there is a possibility that the peak of one element overlaps with the peak of another element, the peak is clarified for each element, so there will be no error in identifying the peak.

(へ)効果 以上のようr本発明によれば、同定元素ごとにその元素
の示す強度データを差し引いていくので微量含有元素が
存在する場合はこれが明確化されることになり定性分析
の信頼度が向上する々いう優れた効果が得られる。
(F) Effects As described above, according to the present invention, the intensity data shown by each identified element is subtracted, so if there are trace amounts of elements present, this becomes clear and increases the reliability of qualitative analysis. Excellent effects such as improved performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は本発明を実施
するために適用される装置のブロック構成図、第2図は
定性分析の手順を説明するだめのフローチャート、第3
図は波長プロフィールを示す線図である。 出 願 人 株式会社島津製作所 代 理 人 弁理士岡田和秀 第1図
The drawings show one embodiment of the present invention, and FIG. 1 is a block diagram of an apparatus applied to carry out the present invention, FIG. 2 is a flowchart for explaining the procedure of qualitative analysis, and FIG.
The figure is a diagram showing a wavelength profile. Applicant: Shimadzu Corporation Representative: Patent Attorney Kazuhide Okada Figure 1

Claims (1)

【特許請求の範囲】[Claims] il+ エレクトロンプローブマイクロアナライザ(K
PMA)を適用し、試料の特性X線強度を測定して波長
プロフィールをめ、この波長プロフィール内に含まれる
最大ピーク波長を基に元素を同定し、同定元素の一次線
強度から順次高次線の強度をめ請求めた同定元素の強度
データを前記波長プロフ7?I−ルより差し引き、差し
引かれた波長プロフン寸ルについて残余のピークの有無
を判定して順次試料の含有元素を分析することを特徴と
するエレクトロンプローブマイクロアナライザによる定
性分析方法。
il+ Electron Probe Micro Analyzer (K
PMA) is applied to measure the characteristic X-ray intensity of the sample to determine the wavelength profile, identify the element based on the maximum peak wavelength included in this wavelength profile, and sequentially identify the higher-order line intensity from the primary line intensity of the identified element. The intensity data of the identified element for which the intensity of the identified element was determined is obtained from the wavelength profile 7? 1. A qualitative analysis method using an electron probe microanalyzer, characterized in that elements contained in a sample are sequentially analyzed by subtracting the wavelength profile from I-L and determining the presence or absence of a residual peak with respect to the subtracted wavelength profile.
JP58248823A 1983-12-26 1983-12-26 Qualitative analyzer Expired - Fee Related JPH0678998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248823A JPH0678998B2 (en) 1983-12-26 1983-12-26 Qualitative analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248823A JPH0678998B2 (en) 1983-12-26 1983-12-26 Qualitative analyzer

Publications (2)

Publication Number Publication Date
JPS60135849A true JPS60135849A (en) 1985-07-19
JPH0678998B2 JPH0678998B2 (en) 1994-10-05

Family

ID=17183944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248823A Expired - Fee Related JPH0678998B2 (en) 1983-12-26 1983-12-26 Qualitative analyzer

Country Status (1)

Country Link
JP (1) JPH0678998B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358240A (en) * 1986-08-29 1988-03-14 Jeol Ltd Method for identifying element by characteristic x-ray spectrum
JPH01314956A (en) * 1988-06-16 1989-12-20 Shimadzu Corp Data processing method in x-ray spectrum analysis
JPH01319239A (en) * 1988-06-20 1989-12-25 Jeol Ltd Characteristic x-ray identification system for x-ray microanalyzer
JPH04343052A (en) * 1991-05-17 1992-11-30 Shimadzu Corp Qualitative analysis method by fluorescent x-ray analysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210556A (en) * 1982-05-31 1983-12-07 Shimadzu Corp Apparatus of x-ray spectrochemical analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210556A (en) * 1982-05-31 1983-12-07 Shimadzu Corp Apparatus of x-ray spectrochemical analysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358240A (en) * 1986-08-29 1988-03-14 Jeol Ltd Method for identifying element by characteristic x-ray spectrum
JPH01314956A (en) * 1988-06-16 1989-12-20 Shimadzu Corp Data processing method in x-ray spectrum analysis
JPH01319239A (en) * 1988-06-20 1989-12-25 Jeol Ltd Characteristic x-ray identification system for x-ray microanalyzer
JPH04343052A (en) * 1991-05-17 1992-11-30 Shimadzu Corp Qualitative analysis method by fluorescent x-ray analysis

Also Published As

Publication number Publication date
JPH0678998B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
Cruz-Marcelo et al. Comparison of algorithms for pre-processing of SELDI-TOF mass spectrometry data
JP7187029B2 (en) Chromatography equipment
JPS60135849A (en) Qualitative analysis by electron probe microanalyzer
CN117330882B (en) Automatic test method and system for filter
US6787361B1 (en) Clinical assay calibration adjustment method
CN113711031A (en) Analysis device
JPH0696138A (en) Automatic disease condition judging method
JP2001133419A (en) X-ray elemental analyzer
JPH09269319A (en) Data processor for quantitative analysis
JP3052272B2 (en) X-ray fluorescence qualitative analysis method using spectral processing
JPH0678997B2 (en) Qualitative analysis method by electron probe microanalyzer
JPH11271246A (en) Electron probe microanalyzer
JP3517593B2 (en) Chromatographic data processing apparatus and data processing method
JP3146195B2 (en) X-ray mapping device
JPH04169849A (en) Threshold setting method for discriminating data
JP2926857B2 (en) X-ray qualitative analyzer
JP2920687B2 (en) X-ray mapping device
JP3477499B2 (en) X-ray analyzer with storage function for device maintenance information
JPH0954072A (en) Chromatograph data processing device
US20230298503A1 (en) Method for Gray Scale Measurement, Non-transitory Storage Medium, and Processor
US20240087188A1 (en) Analyzer and display method
JPH04130270A (en) Data processor for chromatograph
JPS62103553A (en) Peak inspection for x-ray spectroscope
JPH0518951A (en) Data processing device
JP2022090737A (en) Hemoglobin analyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees