JPS60133994A - Mechanism for irradiating beam - Google Patents

Mechanism for irradiating beam

Info

Publication number
JPS60133994A
JPS60133994A JP58241958A JP24195883A JPS60133994A JP S60133994 A JPS60133994 A JP S60133994A JP 58241958 A JP58241958 A JP 58241958A JP 24195883 A JP24195883 A JP 24195883A JP S60133994 A JPS60133994 A JP S60133994A
Authority
JP
Japan
Prior art keywords
light
shutter
transmission type
type beam
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58241958A
Other languages
Japanese (ja)
Inventor
Mitsukiyo Tani
光清 谷
Yoshiro Sasaki
佐々木 芳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58241958A priority Critical patent/JPS60133994A/en
Publication of JPS60133994A publication Critical patent/JPS60133994A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • B23K26/0846Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material

Abstract

PURPOSE:To obtain an excellent effect for local heating by turning on and off a shutter part thereby irradiating locally a large output light beam to an object under movement with good accuracy. CONSTITUTION:A mechanism for irradiating a beam irradiates a beam 10 and heats locally a moving object, for example, the lead part 4 of an electronic part 2. A shutter part 11 which turns on and off the beam light 10 as well as the 1st transmission type beam sensor consisting of a light emitting part 6 and a photodetecting part 7 and the 2nd transmission type beam sensor consisting of a light emitting part 8 and a photodetecting part 9 are provided apart from each other by the same distance on the side forward and backward of the axis of the light 10 in the moving direction of the part 2. A control part irradiates the light 10 by opening the shutter part 11 on condition that the 1st transmission type beam sensor detects the final end of the part 2. Said part shuts off the light 10 by closing the shutter part 11 when the 2nd transmission type beam sensor detects the front end of the part 2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、加熱源として光学的なビーム光を用いて加熱
するビーム照射機構に関し、特に散乱光の多いビーム光
を用いて局部加熱をするビーム加熱に好適なビーム照射
機構に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a beam irradiation mechanism that heats using an optical beam as a heating source, and particularly to a beam irradiation mechanism that performs local heating using a beam that has a lot of scattered light. This invention relates to a beam irradiation mechanism suitable for heating.

〔発明の背景〕[Background of the invention]

従来の光学的ビーム加熱装置は部品の種類に−係なく連
続的にビームを照射するものが主流であシ、間欠的照射
は皆無といってもいい過ぎて゛はなかった。いいかえれ
ば、前記のように連続的にビームを照射するビーム加熱
装置を用いて部品の局部を加熱する場合は、マスクによ
シ照射部外を遮蔽するか、または照射部品をビーム軸に
位置決め停止させて照射する心安があった。しかしなが
ら、前者の場合は部品側々にマスクを取付けるため部品
によっては自動化ができないという欠点があシ、また、
後者にあっては、部品の移動および停止に高精度が要求
されるため装置が高価となる欠点があった。
Conventional optical beam heating devices have mainly irradiated a beam continuously regardless of the type of component, and it is safe to say that there is no intermittent irradiation. In other words, when heating a local part of a part using a beam heating device that continuously irradiates a beam as described above, the outside of the irradiated part must be shielded with a mask, or the irradiated part must be positioned on the beam axis and stopped. I felt safe enough to do the irradiation. However, in the former case, masks are attached to each side of the parts, so some parts cannot be automated.
The latter has the disadvantage that the equipment is expensive because high precision is required for moving and stopping the parts.

さらに詳述すると、マスクで遮蔽する場合は、部品形状
が異なるとそれに対応して形状の異なるマスクを準備し
なければならず、また、部品の取付位置が各々異なる場
合も同様に異なるマスクを準備する必要があシ、膨大な
種類のマスクを作ることになりかねない。このように、
マスクの数が増加すると照射時のマスク選択作業、また
は自動化に際してのマスク取付作業等、種々の幣害が出
てくる。
To be more specific, when shielding with a mask, if the shape of the part is different, it is necessary to prepare a mask with a correspondingly different shape, and if the mounting position of each part is different, different masks must be prepared as well. If you have to do this, you could end up making a huge variety of masks. in this way,
As the number of masks increases, various costs arise, such as mask selection work during irradiation and mask mounting work during automation.

また、照射部品を固定して局部照射する場合は、照射ビ
ーム側を照射したい所まで移動させて照射シャッター1
1を開にするため、照射ビームの移動機能および高精度
な位置決め機能が必要となシ、おのずと装置が高価とな
る欠点があった。
In addition, when fixing the irradiation part and irradiating a local area, move the irradiation beam side to the area you want to irradiate and use the irradiation shutter 1.
1, a function of moving the irradiation beam and a function of highly accurate positioning are required, which naturally has the drawback of making the apparatus expensive.

これら問題の全ては、大出力ビームを開閉する性能の優
れたシャッタ機構がないのに帰因し、特にシャッタの開
閉スピード(総合スピード) ヲ50mzac以下に押
えなければならない。シャッタの開閉スピードを50m
J?ec 以下に押えるためには、精度のよいセンシン
グが必要であるが、現在ある機構的センシングでは精度
が悪く、光学的なセンシングでは感度を良くすると大出
力ビームの散乱光ノイズによる誤動作が起る等の問題が
あり、シャッタの開閉スピードを5Qrnsec以下に
押えるこ〔発明の目的〕 本発明は、上述の点にかんがみてなされたもので、大出
力ビーム光を部品の形状に左右されないで局部的に照射
が可能なビーム照射機構を提供することを目的とする。
All of these problems are due to the lack of a shutter mechanism with excellent performance for opening and closing a high-output beam, and in particular, the shutter opening and closing speed (total speed) must be kept below 50 mzac. Shutter opening/closing speed 50m
J? In order to keep it below ec, highly accurate sensing is necessary, but the current mechanical sensing has poor accuracy, and with optical sensing, increasing the sensitivity can cause malfunctions due to scattered light noise of high output beams, etc. [Objective of the Invention] The present invention has been made in view of the above-mentioned problems, and is capable of locally transmitting a high-output beam light without being affected by the shape of the component. The purpose is to provide a beam irradiation mechanism that can perform irradiation.

〔発明の概要〕[Summary of the invention]

本発明の要点は、ビーム光の軸よシ被照射物体の移動方
向の後方と前方に同一の距離だけ離して配置した第1お
よび第2の透過型ビームセンサを設けると共に、第1の
透過型ビームセンサが被照射物体の終端を検知したこと
を条件にシャッタを開放して被照射物体にビーム光を照
射し、第2の透過型ビームセンサが被照射物体の先端を
検知したらシャッタを閉じてビーム光を遮断して、移動
する被照射物体の局部加熱を可能にした点にある。
The gist of the present invention is to provide first and second transmission type beam sensors arranged at the same distance apart from each other at the rear and front in the direction of movement of the irradiated object along the axis of the beam light. When the beam sensor detects the end of the object to be irradiated, the shutter is opened and the beam light is irradiated to the object to be irradiated, and when the second transmission type beam sensor detects the end of the object to be irradiated, the shutter is closed. The point is that the beam light is blocked and it is possible to locally heat a moving object to be irradiated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図〜第3図は、本発明に係るビーム照射機構を用い
て絶縁基板上に電子部品をノ・ンダ付した状態の一例を
示す図で、第1図は平面図、第2図は第1図のA−Am
上断面図、第3図は側面図でおる。図において、1は表
面および裏面に配線パターン3の施された絶縁基板であ
り、この絶縁基板1の端部に、電子部品2がそのリード
部4,4で前記絶縁基板10表面および裏面の配線パタ
ーン3を挟持する状態で載置され、ノ・ンダ付されてい
る。第4図、第5図はリード部4の拡大図で、第4図は
正面図、第5図は側面図である。図示するように、絶縁
基板1の表面および裏面の配線パターン3とリード部4
とがノ1ンダ5で溶着される。
1 to 3 are diagrams showing an example of a state in which electronic components are soldered onto an insulating substrate using the beam irradiation mechanism according to the present invention, and FIG. 1 is a plan view, and FIG. A-Am in Figure 1
The top sectional view and FIG. 3 are side views. In the figure, reference numeral 1 denotes an insulating substrate with a wiring pattern 3 on the front and back surfaces, and an electronic component 2 is attached to the end of the insulating substrate 1 with its lead portions 4, 4 for wiring on the front and back surfaces of the insulating substrate 10. It is placed with pattern 3 sandwiched therebetween and is soldered. 4 and 5 are enlarged views of the lead portion 4, with FIG. 4 being a front view and FIG. 5 being a side view. As shown in the figure, wiring patterns 3 and lead portions 4 on the front and back surfaces of the insulating substrate 1
and are welded by the solder 5.

第6図は、上記絶縁基板1の配線パターン3上にリード
部4をノ1ンダ付するのに用いるビーム照射機構を示す
正面図である。同図において、6゜8は発光部であり、
7,9は該発光部6.8の上部の対応する位置に設けら
れた受光部である。発光部6と受光部7で第1の透過型
ビームセンサを構成し、発光部8と受光部9で第2の透
過型ビームセンサを構成する。絶縁基板1および電子部
品2は、一体重に前記発光部6,8と受光部7,9との
間隙のほぼ中央部を矢印B方向に移動する。
FIG. 6 is a front view showing a beam irradiation mechanism used to attach the lead portion 4 to the wiring pattern 3 of the insulating substrate 1. In the figure, 6°8 is a light emitting part,
Reference numerals 7 and 9 indicate light receiving sections provided at corresponding positions above the light emitting section 6.8. The light emitting section 6 and the light receiving section 7 constitute a first transmission type beam sensor, and the light emitting section 8 and the light receiving section 9 constitute a second transmission type beam sensor. The insulating substrate 1 and the electronic component 2 move in the direction of arrow B approximately at the center of the gap between the light emitting sections 6, 8 and the light receiving sections 7, 9 as one body.

10はビーム光であシ、該ビーム光10は、受光部7,
9によって受光されないよう透過型ビームセンサのビー
ムC,Dの方向とは反対の方向、すなわち上部より照射
され、集光された状態で部品2のリード部4に照射され
る。ビーム光10と第1の透過型ビームセンサとの間隔
11、およびビーム光10と第2の透過型ビームセンサ
との間隔12の大きさは、大出力のビーム光10の散乱
光によシ、センサか誤動作したシ、劣化しないように十
分大きくとる。また、間@11と12の値は等しくして
いる。11はシャッタであり、該シャッタ11の開閉に
よりビーム光10をオン・オフする。シャッタ11の開
閉は、回転軸12を高速で回転させるロータリーソレノ
イドで行う。このシャッタ11の開閉を高速度で、かつ
精度良く行うことが、局部照射のポイントとなる。この
ロータリーソレノイドの制御は高速シーケンサにて行ら
ように構成される。発光部6と受光部7とで構成される
第1の透過型ビームセンサの信号が、シャッタ11の開
閉信号の開信号となり、発光部8と受光部9とで構成さ
れる第2の透過型ビームセンサ信号が閉信号となる。ビ
ーム光10の照射は、第1の透過型センサ電子部品2の
終端を検知したら開始し、第2の透過型センサが電子部
品2先端を検知したら終了する。
10 is a beam of light, and the beam of light 10 is transmitted to the light receiving section 7,
The light is irradiated from the opposite direction to the direction of the beams C and D of the transmission type beam sensor, that is, from above, so as not to be received by the beams 9, and is irradiated onto the lead portion 4 of the component 2 in a condensed state. The distance 11 between the light beam 10 and the first transmission type beam sensor and the distance 12 between the light beam 10 and the second transmission type beam sensor are determined by the scattered light of the high output beam 10. If the sensor malfunctions, make it large enough to prevent deterioration. Further, the values of the intervals @11 and 12 are made equal. 11 is a shutter, and the light beam 10 is turned on and off by opening and closing the shutter 11. The shutter 11 is opened and closed by a rotary solenoid that rotates a rotating shaft 12 at high speed. The key to local irradiation is to open and close the shutter 11 at high speed and with high precision. The rotary solenoid is controlled by a high-speed sequencer. A signal from a first transmission type beam sensor composed of a light emitting section 6 and a light receiving section 7 becomes an open/close signal for the shutter 11, and a signal from a second transmission type beam sensor composed of a light emitting section 8 and a light receiving section 9 is used as an open/close signal for the shutter 11. The beam sensor signal becomes a close signal. Irradiation of the beam light 10 starts when the end of the first transmission type sensor electronic component 2 is detected, and ends when the second transmission type sensor detects the tip of the electronic component 2.

発光部6.8および受光部7,9で構成される透過型ビ
ームセンサは、ビーム光1Oの散乱光の影響で誤動作す
ることがあシ、その対策として、受光部7,9を上部に
配置し、発光部6,8を下部に配置し、さらに、受光部
7.9の先端部には特殊な7−ド13を設は散乱光の影
響を少なくしている。
The transmission type beam sensor composed of the light emitting part 6.8 and the light receiving parts 7, 9 may malfunction due to the influence of scattered light of the beam light 1O.As a countermeasure, the light receiving parts 7, 9 are arranged at the top. However, the light emitting sections 6 and 8 are arranged at the bottom, and a special 7-door 13 is provided at the tip of the light receiving section 7.9 to reduce the influence of scattered light.

また、第7図に示すように電子部品2の存知を検知する
マイクロスイッチ14を第3のセンサーとして設け、誤
動作防止を図る。マイクロスイッチ14は、電子部品の
一端に接触しながら回転するローラ15を先端に設けた
レバー16の振動によりオン・オフする。また、Eはビ
ーム光10がリード部4上に照射された位置を示す。
Furthermore, as shown in FIG. 7, a microswitch 14 for detecting the presence of the electronic component 2 is provided as a third sensor to prevent malfunction. The microswitch 14 is turned on and off by the vibration of a lever 16 having a roller 15 at its tip that rotates while contacting one end of the electronic component. Further, E indicates the position where the lead portion 4 is irradiated with the beam light 10.

次に、第7図において、矢印F方向に絶縁基板1が移動
した場合の動作を、第8図のタイミングチャートに基づ
いて説明する。第8図において、Slはマイクロスイッ
チ14の出力信号、S2は前記マイクロスイッチ14の
出力信号よりT1だけ遅れて出力される信号、S3は受
光部7の出力信号、S4は前記受光部7の出力信号より
T2連れて出力される信号、5outはシャッタ11の
開閉信号、S5は受光部8の出力信号である。まず、ロ
ーラ15が電子部2に接触しレバー16を押すと、マイ
クロスイッチ14がオンとなり、出力信号S1が立上が
り(第8図口参照)、続いて発光部6、受光部7で構成
される第1の透過型ビームセンサのビームBが電子部品
2で遮断されると受光部7から出力信号S3が立上がる
(第8図口参照)。出力信号S1の高レベルが時間T1
だけ継続すると出力信号S2が立上り(第8図)\参照
)、同様に出力信号S3の高レベルが時間T2だけ継続
すると信号S4が立上がる(第8図口参照)。
Next, the operation when the insulating substrate 1 moves in the direction of arrow F in FIG. 7 will be explained based on the timing chart in FIG. 8. In FIG. 8, Sl is the output signal of the microswitch 14, S2 is a signal outputted with a delay of T1 from the output signal of the microswitch 14, S3 is the output signal of the light receiving section 7, and S4 is the output of the light receiving section 7. The signal 5out is the opening/closing signal of the shutter 11, and the signal S5 is the output signal of the light receiving section 8. First, when the roller 15 contacts the electronic section 2 and presses the lever 16, the microswitch 14 is turned on and the output signal S1 rises (see Figure 8). When the beam B of the first transmission type beam sensor is blocked by the electronic component 2, an output signal S3 rises from the light receiving section 7 (see the beginning of FIG. 8). The high level of the output signal S1 is at time T1
When the output signal S2 continues for a time T2, the output signal S2 rises (see FIG. 8), and similarly, when the high level of the output signal S3 continues for a time T2, the signal S4 rises (see the beginning of FIG. 8).

この状態で、次に発光部6と受光部7で構成される第1
の透過型ビームセンサが電子部品2の終端を検出すると
、出力信号S3は立下がる(第8図口参照)。この出力
信号S3の立下がシによシ、シャッタ11の開閉信号S
oμtは立上シ(第8図へ参照)、ロータリーソレノイ
ドを駆動して、シャッタ11を高速に開放する。次に発
光部8、受光部9で構成される第2の透過型ビームセン
サが、前記ビーム光10の照された電子部品2を検出す
ると出力信号S5は立上が9、シャッタ11の開閉信号
Sowlが立下って(第8図口参照)、シャッタ11を
閉じ、ビーム光10の照射は終了する。
In this state, next, the first
When the transmission type beam sensor detects the end of the electronic component 2, the output signal S3 falls (see FIG. 8). When the fall of this output signal S3 occurs, the opening/closing signal S of the shutter 11
oμt starts up (see FIG. 8), drives the rotary solenoid, and opens the shutter 11 at high speed. Next, when a second transmission type beam sensor composed of a light emitting section 8 and a light receiving section 9 detects the electronic component 2 illuminated by the beam light 10, an output signal S5 is generated at the rising edge of 9 and an opening/closing signal of the shutter 11. The SOwl falls (see the opening in FIG. 8), the shutter 11 is closed, and the irradiation of the beam light 10 is completed.

電子部品2には、大小様々のものかあシ、照射の必要な
もの、必要でないもの等がある。上記のように、出力信
号S1が時間T1だけ継続したことを検出して信号S2
を出すようにすれば、照射の必要な電子部品2のみを検
出することができる。
The electronic components 2 include those of various sizes, those that require irradiation, and those that do not. As described above, it is detected that the output signal S1 has continued for the time T1, and the signal S2 is
By emitting irradiation, it is possible to detect only the electronic components 2 that require irradiation.

さらに発光部6と受光部7で構成される第1の透過型ビ
ームセンサで、出力信号S3の高レベルが時間T2だけ
継続したことを検出することによ多信号S4出すことに
より、ビーム照射すべき電子部品2を2重に確認できる
。センサの誤動作により誤ったビーム光10の照射は極
力防ぐことができる。
Furthermore, by detecting that the high level of the output signal S3 continues for a time T2 in the first transmission type beam sensor composed of the light emitting part 6 and the light receiving part 7, the beam irradiation is performed by outputting a multi-signal S4. It is possible to double check the electronic component 2 that should be selected. Erroneous irradiation of the beam light 10 due to malfunction of the sensor can be prevented as much as possible.

以上説明したように、上記実施例によれば、ビーム光1
0を精度よく電子部品2のリード部4に照射できるので
、この技術を用いれば移動中の被照射物体を局部的に加
熱することが可能になる。
As explained above, according to the above embodiment, the beam light 1
Since the lead portion 4 of the electronic component 2 can be irradiated with 0 with high accuracy, using this technique it becomes possible to locally heat a moving object to be irradiated.

従って自動化ラインまたは自動装置へ直接このビーム照
射機構を組込んで使用することも可能となる。しかも透
過型ビームセンサーのビームの方向C,Dをビーム光1
0の方向と反対になるようにし、受光部7.9の先端に
特殊フード13を設けるのでビーム光100散札による
透過型ビームセンサの誤動作を極力防ぐことができる。
Therefore, it is also possible to directly incorporate this beam irradiation mechanism into an automated line or device. Moreover, the beam directions C and D of the transmission type beam sensor are the beam light 1.
Since the special hood 13 is provided at the tip of the light receiving section 7.9, malfunction of the transmission type beam sensor due to the beam light 100 can be prevented as much as possible.

さらに、照射を必要とする部品を確実にuHするために
、第3のセンサとしてマイクロスイッチ14を設け、誤
動作を防ぐために複数のチェック機構とするので、違っ
た部品に誤ってビーム光を照射したり、異常動作によシ
部品を焼損させることがなくなる。
Furthermore, in order to reliably uH the parts that require irradiation, a microswitch 14 is provided as a third sensor, and multiple check mechanisms are provided to prevent malfunctions, so that the beam light may not be irradiated on the wrong part by mistake. This prevents parts from burning out due to abnormal operation.

なお、上記英雄例においては、シャッタ11の回転軸1
2の駆動をロータリーソレノイドで行う場合を例に説明
したが、これに限定されるものではなくモータ等でもよ
い。またシャッタ11も水平の回転軸12の回わシを回
転する構造のものに限定されるものではなく、たとえば
、垂直軸の回わシにシャッタが水平回転する構造のもの
、あるいはスライド式シャッタでもよい。
In addition, in the above hero example, the rotation axis 1 of the shutter 11
Although the description has been made using an example in which the drive in step 2 is performed by a rotary solenoid, the present invention is not limited to this, and a motor or the like may be used. Further, the shutter 11 is not limited to one having a structure in which the horizontal rotary shaft 12 rotates, but may also be a structure in which the shutter horizontally rotates on a vertical shaft, or a sliding shutter. good.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、シャッタ部をオ
ン・オフすることKより、移動中の物体に局部に精度良
く大出力光ビームを照射できるので、移動中の物体の局
部加熱に優れた効果が得られる。
As explained above, according to the present invention, it is possible to irradiate a moving object with a high-output light beam locally with high precision by turning the shutter section on and off, which is excellent in local heating of a moving object. You can get the same effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第3′、図は、絶縁基板に電子部品をハンダ付に
した状態の一例を示す図で、第1図は平面図、第2図は
WI1図のA−A−上断面図、第3図は側面図、第4図
、第5図は電子部品のリード部のノ・ンダ付状態を示す
拡大図、第6図はビーム照射機構の概略構成を示す正面
図、第7図は電子部品とビーム光、透過型ビームセンサ
等の位置関係を示す図、第8図はビーム照射機構を説明
するためのタイミングチャートである。 1・・・絶縁基板、 2・・・電子部品、 3・・・配
線パターン、4・・・リード部、5・・・ハンダ、6.
8・・・発光部、 7.9・・・受光部、 10・・・
ビーム光、11・・・シャッタ、12・・・回転軸、1
3・・・特殊フード、14・・・マイクロスイッチ。 第1図 ぢ・2図 オ・ 3 図 第4図 オ・5図 オ6図
Figures 1 to 3' are diagrams showing an example of a state in which electronic components are soldered to an insulating board. Figure 3 is a side view, Figures 4 and 5 are enlarged views showing the soldered state of the leads of electronic components, Figure 6 is a front view showing the schematic configuration of the beam irradiation mechanism, and Figure 7 is FIG. 8 is a timing chart for explaining the beam irradiation mechanism. DESCRIPTION OF SYMBOLS 1... Insulating board, 2... Electronic component, 3... Wiring pattern, 4... Lead part, 5... Solder, 6.
8... Light emitting section, 7.9... Light receiving section, 10...
Beam light, 11... Shutter, 12... Rotation axis, 1
3...Special hood, 14...Micro switch. Figures 1, 2, O, 3, Figure 4, O, 5, and 6

Claims (1)

【特許請求の範囲】[Claims] (1) ビーム光を照射して、移動する物体を局部的に
加熱するビーム照射機構において、前記ビーム光をオン
・オフするシャッタ部と、前記ビーム光の軸よシ前記物
体の移動方向の後方と前方に同一の距離だけ離して配置
された第1および第2の透過型ビームセンサを設けると
共に、前記第1の透過型ビームセンサが前記物体の終端
を検知したことを条件に前記シャッタ部を開放してビー
ム光を照射し、前記第2のセンサが前記物体の先端部を
検知したら前記シャッタを閉じて前記ビームを遮断する
制御部を設けたことを特徴とするビーム照射機構。
(1) In a beam irradiation mechanism that locally heats a moving object by irradiating a beam of light, a shutter section that turns on and off the beam of light, and a rear part of the object in the direction of movement of the object from the axis of the beam of light. and a first and second transmission type beam sensor disposed in front of the object by the same distance, and the shutter section is opened on the condition that the first transmission type beam sensor detects the end of the object. A beam irradiation mechanism, comprising: a control section that opens the shutter to irradiate the beam light, and closes the shutter to cut off the beam when the second sensor detects the tip of the object.
JP58241958A 1983-12-23 1983-12-23 Mechanism for irradiating beam Pending JPS60133994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58241958A JPS60133994A (en) 1983-12-23 1983-12-23 Mechanism for irradiating beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58241958A JPS60133994A (en) 1983-12-23 1983-12-23 Mechanism for irradiating beam

Publications (1)

Publication Number Publication Date
JPS60133994A true JPS60133994A (en) 1985-07-17

Family

ID=17082103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58241958A Pending JPS60133994A (en) 1983-12-23 1983-12-23 Mechanism for irradiating beam

Country Status (1)

Country Link
JP (1) JPS60133994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202388A (en) * 1988-02-08 1989-08-15 Tokyo Electron Ltd Laser annealing device
JPH06142968A (en) * 1992-10-30 1994-05-24 Hitachi Constr Mach Co Ltd Pulse laser beam machine and pulse laser beam machining method
JP2008277438A (en) * 2007-04-26 2008-11-13 Ricoh Microelectronics Co Ltd Electronic component, substrate, and method of manufacturing electronic component and substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202388A (en) * 1988-02-08 1989-08-15 Tokyo Electron Ltd Laser annealing device
JPH06142968A (en) * 1992-10-30 1994-05-24 Hitachi Constr Mach Co Ltd Pulse laser beam machine and pulse laser beam machining method
JP2008277438A (en) * 2007-04-26 2008-11-13 Ricoh Microelectronics Co Ltd Electronic component, substrate, and method of manufacturing electronic component and substrate

Similar Documents

Publication Publication Date Title
US5128531A (en) Optical profile reader, particularly for key duplicating machine
JPS60133994A (en) Mechanism for irradiating beam
JP2915854B2 (en) Automatic insertion state inspection method and device for electronic components on printed circuit board
JP2000113483A (en) Optical head device and optical disk device
JP4428865B2 (en) Improved method and apparatus for controlling glint in a multi-nozzle alignment sensor
EP1046881B1 (en) Alignment and handover calibration with different hole shadows and ion implanter with e-chuck and gripper
JPH03255700A (en) Printed circuit board assembly device
JP2621154B2 (en) Laser device
JP2767975B2 (en) Appearance inspection equipment for electronic components
JP2011150844A (en) Dip switch setting reader
JP3722564B2 (en) Inspection device
JP3442106B2 (en) Pulse generator using endless belt
JP2603876Y2 (en) Laser mark device
JP3868012B2 (en) MOVING DEVICE WITH POSITION DETECTION FUNCTION AND POSITION ADJUSTMENT METHOD
JP2017227456A (en) Origin position detection method and origin position detection device of operation mechanism
JP3107434B2 (en) Signal generator
JPS5822285Y2 (en) Record player arm rotation position detection mechanism
KR100186747B1 (en) Apparatus of detecting input signal of elevator for using optical sensor
JPS5843086Y2 (en) Tone arm lowering position detection device
JP3868603B2 (en) Component recognition system for surface mounters
JP3208041B2 (en) Symbol display device
KR200322367Y1 (en) Optical disc apparatus by using non touch sensor
JPS6258107A (en) Optical encoder
JPH0317949A (en) Beam parallelism measuring device for use in ion implanting device
JPH05149714A (en) Position detecting mechanism using optical sensor