JPS6013137B2 - Defect detection method - Google Patents

Defect detection method

Info

Publication number
JPS6013137B2
JPS6013137B2 JP52032417A JP3241777A JPS6013137B2 JP S6013137 B2 JPS6013137 B2 JP S6013137B2 JP 52032417 A JP52032417 A JP 52032417A JP 3241777 A JP3241777 A JP 3241777A JP S6013137 B2 JPS6013137 B2 JP S6013137B2
Authority
JP
Japan
Prior art keywords
light
width direction
inspected
optical filter
defect detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52032417A
Other languages
Japanese (ja)
Other versions
JPS53118089A (en
Inventor
正明 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP52032417A priority Critical patent/JPS6013137B2/en
Publication of JPS53118089A publication Critical patent/JPS53118089A/en
Publication of JPS6013137B2 publication Critical patent/JPS6013137B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 本発明は、飛像走査または飛点走査により、走行中のフ
ィルム、紙、鋼板等の長尺物体を幅方向に走査して傷、
汚れろ、厚みムラ等の欠陥を検出する欠陥検出方法に関
するものでる。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses flying image scanning or flying spot scanning to scan a running elongated object such as film, paper, or steel plate in the width direction to remove scratches and remove scratches.
This article relates to a defect detection method for detecting defects such as stains and uneven thickness.

走査型の欠陥検出方法としては、光源からの光を被検査
物体の幅方向に照射し、この反射光または透過光を回転
多面鏡、振動鏡、回転スリット等で走査し、この走査光
を受光器で電気信号に変換して欠陥を検出する飛像走査
方法と、光源からのビーム光を回転多面鏡等で被検査物
体の幅方向に走査し、その反射光またはは透過光を凹面
鏡で集光して受光器に導くようにした飛点走査方法とが
知られている。
A scanning defect detection method is to irradiate light from a light source in the width direction of the object to be inspected, scan the reflected or transmitted light with a rotating polygon mirror, vibrating mirror, rotating slit, etc., and then receive this scanning light. One is the flying image scanning method, in which defects are detected by converting the beam into an electrical signal using a device, and the other is the scanning method in which the beam light from a light source is scanned in the width direction of the object to be inspected using a rotating polygon mirror, and the reflected or transmitted light is collected by a concave mirror. A flying spot scanning method is known in which light is emitted and guided to a light receiver.

これらの走査型の欠陥検出方法は、被検査物体に隣、汚
れ等があると、その反射光、または透過光が変化するこ
とに着目して光学的に欠陥検出を行なうものである。と
ころでこれらの走査型の欠陥検出方法は、受光器に入射
する光量が幅方向の全域に亘つて一定していないことが
普通である。
These scanning-type defect detection methods optically detect defects by focusing on the fact that when an object to be inspected has dirt or the like next to it, reflected light or transmitted light changes. However, in these scanning-type defect detection methods, the amount of light incident on the light receiver is usually not constant over the entire width direction.

一般的には、被検挙物体の幅方向各点から回転鏡までの
距離の相違、光源の位置等の影響によって受光器の出力
信号が凸型の曲線を示す。なお走査光学系の種類および
その調節によっては、2つ山型、凹型の出力曲線を示す
ことがある。このように幅方向に光量の不均一性がある
と、同一程度の傷が被検査物体の中央と、端付近にあっ
た場合に、受光器から出力される欠陥信号は、入射光量
が高い中央部の傷が大きいものとなって現われ、端付近
の隊が4・さし、ものとなって現われる。
Generally, the output signal of the light receiver shows a convex curve due to the influence of the difference in distance from each point in the width direction of the object to be inspected to the rotating mirror, the position of the light source, etc. Note that depending on the type of scanning optical system and its adjustment, the output curve may exhibit a double-crested or concave shape. If there is non-uniformity in the amount of light in the width direction, if there are flaws of the same degree in the center and near the edges of the object to be inspected, the defect signal output from the receiver will be in the center where the amount of incident light is higher. The wound on the part appears as a large one, and the part near the edge appears as a 4-inch mark.

その結果、欠陥検出レベルがこれらの間に設定されてい
る場合には、中央の傷が欠陥として検出されるが、端付
近の陽は欠陥検出レベル以上になるため「欠陥として検
出されないことが起こる。そこでト受光器の入射する光
量を被検査物体の幅方向の全域に亘つて一定にするため
に従釆は、多面鏡の}面による走査角をなるべく4・さ
くして幅方向の光量変化を極小にする方法「被検査物体
の幅方向の両端に相当する部分にスポット光源を1個ず
つ配置して両端部分の光量を予め高めにしておき、これ
を相殺して補正する方法(袴関昭50−34882号)
「円錐面鏡を用いて円弧状に走査することにより、幅方
向の各点に対する光学長を一定に保って幅方向の光量変
化を少なくする方法〜および光量変化に応じて幅方向の
欠陥検出レベルを調節する処理回路を設けて補正する方
法等が提案されている。しかし多面鏡の走査角を小さく
する方法は「検査幅が狭くなるという欠点があり、また
両端に光源を配置する方法では、両端と中央にピークが
現われ易いため、光源の大きさ、光度等の調節が極めて
面倒であるとし・難点がある。
As a result, if the defect detection level is set between these, the flaw in the center will be detected as a defect, but the positive near the edge will be higher than the defect detection level, so it may not be detected as a defect. Therefore, in order to make the amount of light incident on the photoreceiver constant over the entire width of the object to be inspected, the scanning angle of the } planes of the polygon mirror is made as small as possible by 4 degrees to prevent changes in the amount of light in the width direction. How to make it as small as possible: ``A method of placing one spot light source at each end of the object to be inspected in the width direction, increasing the light intensity at both ends in advance, and compensating by canceling this out (Sekiaki Hakama) No. 50-34882)
``A method of scanning in an arc using a conical mirror to keep the optical length constant for each point in the width direction and reducing changes in the amount of light in the width direction ~ and the defect detection level in the width direction depending on the change in light amount. A method of correcting this by installing a processing circuit to adjust the angle has been proposed. However, the method of reducing the scanning angle of the polygon mirror has the disadvantage of narrowing the inspection width, and the method of placing light sources at both ends has the disadvantage that Since peaks tend to appear at both ends and the center, it is extremely troublesome to adjust the size, luminous intensity, etc. of the light source.

円錐鏡を用いる方法はト円錐鏡の製作がむずかしいため
「高価になるとともに、大きなものを作ることができな
いから走査幅が400〜500肋に限定されるという難
点がある。また処理回路によって欠陥検出レベルを変え
る方法は、処理回路が複雑になり、費用がかかるという
欠点がある。本発明は、上記欠点に鑑み、簡単かつ確実
に幅方向の光量変化を補正することができるようにした
欠陥検出方法を提供することを目的とするものである。
The method of using a conical mirror has the disadvantage that it is difficult to manufacture a conical mirror, so it is expensive, and the scanning width is limited to 400 to 500 ribs because large mirrors cannot be manufactured. The method of changing the level has the disadvantage that the processing circuit becomes complicated and is expensive.In view of the above disadvantages, the present invention provides a defect detection method that can easily and reliably correct changes in the amount of light in the width direction. The purpose is to provide a method.

また本発明は、安価でしかも走査幅が制限されることが
ない欠陥検出方法を提供することを目的とするものであ
る。
Another object of the present invention is to provide a defect detection method that is inexpensive and does not limit the scanning width.

本発明は、被検査物体の欠陥を光学的に検出する飛像走
査系、または飛点走査系に、受光器の幅方向の全域に亘
ってその受光量が一定となるように調節する光学フィル
ターを挿入したことを特徴とするものである。
The present invention provides a flying image scanning system or a flying spot scanning system that optically detects defects in an object to be inspected, and an optical filter that adjusts the amount of light received to be constant over the entire widthwise area of a light receiver. It is characterized by the insertion of.

この光学フィルターは幅方向の光透過率が受光器の受光
量に対して逆になっているため、受光器からの出力信号
が補正され、横方向の全域に亘って同一の値となる。し
たがって予め受光器の幅方向の出力信号を測定し、これ
が一定レベルとなるような光学フィルターを作って走査
系の光路に配すればよいから、幅方向の受光量の不均一
性が簡単かつ確実に補正することができる。
Since this optical filter has a light transmittance in the width direction that is opposite to the amount of light received by the light receiver, the output signal from the light receiver is corrected to have the same value over the entire width direction. Therefore, all you have to do is measure the output signal in the width direction of the photoreceiver in advance, create an optical filter that keeps this at a constant level, and place it in the optical path of the scanning system, so you can easily and reliably eliminate non-uniformity in the amount of light received in the width direction. It can be corrected to

また、光学フィルターはNDフィルター等を重ね合わせ
ることによって各点の濃度が異なったものを簡単に作る
ことができるから、安価である。さらに光学フィルター
は1仇程度の長いもの作ることができるから「走査幅が
制限されることがない。以下図面を参照して本発明の実
施例について詳細に説明する。
Further, optical filters are inexpensive because filters with different densities at each point can be easily made by overlapping ND filters and the like. Furthermore, since the optical filter can be made as long as about 1 inch, the scanning width is not limited.Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は帯状の被検査物体を飛像走査系で走査して欠陥
を検出する実施例を示すものである。
FIG. 1 shows an embodiment in which a belt-shaped object to be inspected is scanned by a flying image scanning system to detect defects.

被検査物体軍‘まその長手方向に連続的に移送されてい
る。この被検査物体1の上方に、その幅方向に延びた光
源2が配されており、この光源2からの光によって被検
査物体1が幅方向に一様に照射される。この被検査物体
1からの反射光は、光学フィル夕−3を透過して回転ミ
ラー4に入射する。この回転ミラ−…こより、被検査物
体1が幅方向に延びた走査線!に沿って走査される。回
転ミラー4で反射された光は受光器5に入り、電気信号
に変換され、例えばブラウン管等に表示される。前記光
学フィルター3が設けられていない場合は「幅方向の受
光量が不均一となり、受光器5の出力信号が例えば第2
図に示すような凸型の曲線となる。そこでこの受光器3
の出力信号を一定のレベルにするために光学フィル夕−
3が光路上に挿入されている。第3図に示すように、光
学フィルター3は、その幅方向の光透過率の変化を示す
曲線が、第2図の受光器の出力信号を示す曲線と逆にな
っている。
The object to be inspected is continuously transported in its longitudinal direction. A light source 2 extending in the width direction of the object to be inspected 1 is disposed above the object to be inspected 1, and the object to be inspected 1 is uniformly illuminated in the width direction by light from this light source 2. This reflected light from the object to be inspected 1 passes through an optical filter 3 and enters a rotating mirror 4. From this rotating mirror...the scanning line of the object 1 to be inspected extends in the width direction! scanned along. The light reflected by the rotating mirror 4 enters the light receiver 5, where it is converted into an electrical signal and displayed on, for example, a cathode ray tube. If the optical filter 3 is not provided, the amount of light received in the width direction will be non-uniform, and the output signal of the light receiver 5 will be
The result is a convex curve as shown in the figure. So this receiver 3
An optical filter is used to maintain the output signal at a constant level.
3 is inserted on the optical path. As shown in FIG. 3, the optical filter 3 has a curve showing the change in light transmittance in the width direction, which is opposite to the curve showing the output signal of the light receiver shown in FIG.

したがって光学フィルター3の中央部は「光透過率が低
く、その両端部が高くなっているため、受光器5の受光
量が補正され、第4図に示すように幅方向の全域におい
て一定の出力信号が得られる。前記光学フィルター3は
「被検査物体1の幅方向の出力信号を測定し、幅方向の
位置に関係なく一定になるように作られている。
Therefore, since the central part of the optical filter 3 has a low light transmittance and the both ends have a high light transmittance, the amount of light received by the light receiver 5 is corrected, and the output is constant throughout the width direction as shown in Fig. 4. A signal is obtained. The optical filter 3 measures the output signal in the width direction of the object to be inspected 1, and is made to be constant regardless of the position in the width direction.

第5図は光学フィルターの実施例を示すものである。こ
の光学フィルター3は、厚さ10奴程度のNDフィルタ
ーを重ねて用いられている。また光透過率の異なったN
Dフィルターを幅方向に継ぎ合わせて光学フィルターを
作ることもできる。あるいはガラス板に不透明粒子を蒸
着して作ったフィルターを使用してもよい。この場合は
蒸着濃度を幅方向に連続的に変化させることによって1
枚のフィルターとすることもできる。なおNDフィルタ
ーの代わりに、一般の色フィルターを使用してもよいこ
とは勿論である。つぎに上記構成の装置の作用について
説明する。
FIG. 5 shows an embodiment of the optical filter. This optical filter 3 is made by stacking ND filters with a thickness of about 10 mm. Also, N with different light transmittance
Optical filters can also be made by joining D filters in the width direction. Alternatively, a filter made by depositing opaque particles on a glass plate may be used. In this case, by continuously changing the deposition concentration in the width direction,
It is also possible to use multiple filters. It goes without saying that a general color filter may be used instead of the ND filter. Next, the operation of the apparatus having the above configuration will be explained.

光源2からの光によって走行中の被検査物体1が走査線
1に沿って一様に照射される。この被検査物体1からの
反射光は、光学フィルター3を透過して幅方向の光量が
一定になるように補正された後、回転ミラー4に入射す
る。この回転ミラー4で被検査物体1の反射光が幅方向
に走査され、受光器5に送られる。この受光器5で被検
査物体亀からの反射光が電気信号に変換され、この電気
信号の出力レベルの変化から傷、汚れ等の欠陥が検出さ
れる。第6図は飛点走査系によって欠陥を検出する実施
例を示すものである。この実施例では、光源10からの
光が回転鏡11で振られて被検査物体1の幅方向に延び
た走査線1に沿って走査される。この回転鏡11と被検
査物体1の間に光学フィルター12が挿入されている。
被検査物体1からの反射光は、凹面鏡13によって反射
され受光器5に入射する。なお、前記光学フィルター1
2は凹面鏡に貼着しておくと便利である。前記各実施例
は反射光を測定するものであるが、本発明は透過光を測
定するものにも利用するこができる。
A moving object 1 to be inspected is uniformly irradiated with light from a light source 2 along a scanning line 1 . The reflected light from the object to be inspected 1 is transmitted through an optical filter 3 and corrected so that the amount of light in the width direction is constant, and then enters a rotating mirror 4. The light reflected from the object to be inspected 1 is scanned in the width direction by the rotating mirror 4 and sent to the light receiver 5 . The light receiver 5 converts the light reflected from the object to be inspected into an electrical signal, and defects such as scratches and dirt are detected from changes in the output level of this electrical signal. FIG. 6 shows an embodiment in which defects are detected by a flying point scanning system. In this embodiment, light from a light source 10 is swung by a rotating mirror 11 and scanned along a scanning line 1 extending in the width direction of the object 1 to be inspected. An optical filter 12 is inserted between the rotating mirror 11 and the object 1 to be inspected.
The reflected light from the object to be inspected 1 is reflected by the concave mirror 13 and enters the light receiver 5 . Note that the optical filter 1
It is convenient to attach 2 to the concave mirror. Although each of the above embodiments measures reflected light, the present invention can also be used to measure transmitted light.

上記横成を有する本発明によれば、光学フィルターを走
査系に挿入して受光器の受光量を補正するものであるか
ら、幅方向の受光量がどのように変化しているものであ
っても簡単にしかも適正に補正することができる。
According to the present invention having the above configuration, since the optical filter is inserted into the scanning system to correct the amount of light received by the light receiver, it does not matter how the amount of received light changes in the width direction. can be easily and appropriately corrected.

また光学フィルターは例えば安価なNDフィルター等を
組み合わせるだけで簡単に作ることができるから、安価
に作ることができる。さらに光学フィルターの長さはl
m以上のものも容易に作れるから、被検査物体の幅が1
の以上になってもその幅方向の光量変化を補正すること
ができる。さらにまた回転鏡を被検査物体に近づけて、
その間の距離を従釆よりも短か〈して幅方向の光量変化
を大きくしても、これを簡単に補正することができるた
め、装置を小型にすることが可能である。
Further, since the optical filter can be easily made by combining inexpensive ND filters, for example, it can be made at low cost. Furthermore, the length of the optical filter is l
Since it is easy to make objects larger than m, the width of the object to be inspected can be 1
Even if the width exceeds , it is possible to correct the change in the amount of light in the width direction. Furthermore, the rotating mirror is brought closer to the object to be inspected,
Even if the distance between them is made shorter than that of the subordinates to increase the change in the amount of light in the width direction, this can be easily corrected, making it possible to downsize the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の斜視図、第2図
は光学フィルターを除去した場合の受光器の幅方向の出
力信号を示すグラフ、第3図は光学フィルターの光透過
率を示すグラフ、第4図は補正後の受光器の出力信号を
示すグラフ、第5図は光学フィルターの平面図、第6図
は別の装置の実施例を示す斜視図である。 1・・・・・・被検査物体、2・・…・光源、3…・・
・光学フィルター、4・・・・・・回転鏡、5…・・・
受光器、1・・・・・・走査線、10…・・・光源、1
1・・・・・・回転鏡、13……凹面鏡。 第ー図 第2図 第4図 第5図 第3図 第6図
Fig. 1 is a perspective view of an apparatus for carrying out the method of the present invention, Fig. 2 is a graph showing the output signal in the width direction of the light receiver when the optical filter is removed, and Fig. 3 is a graph showing the light transmittance of the optical filter. 4 is a graph showing the output signal of the light receiver after correction, FIG. 5 is a plan view of the optical filter, and FIG. 6 is a perspective view showing another embodiment of the device. 1...Object to be inspected, 2...Light source, 3...
・Optical filter, 4...Rotating mirror, 5...
Light receiver, 1...Scanning line, 10...Light source, 1
1... Rotating mirror, 13... Concave mirror. Figure - Figure 2 Figure 4 Figure 5 Figure 3 Figure 6

Claims (1)

【特許請求の範囲】 1 照明光源からの光を被検査物体の幅方向に照射し、
この被検査物体の幅方向の各点の反射または透過による
走査光を幅方向に連続的に測定して被検査物体の欠陥を
検出する方法において、前記照明光源から被検査物体に
至る光路上、または被検査物体から受光器に至る光路上
に、受光器が受ける幅方向の光量の不均一性を補正する
光学フイルターを配置したことを特徴とする欠陥検出方
法。 2 前記光学フイルターが、幅方向の光量変化に応じて
NDフイルター等を複数枚重ね合せたものであることを
特徴とする特許請求の範囲第1項記載の欠陥検出方法。 3 前記光学フイルターが、幅方向の光量変化に応じて
光透過率の異なったフイルターが幅方向に継ぎ合わされ
たものであることを特徴とする特許請求の範囲第1項記
載の欠陥検出方法。4 前記光学フイルターが飛点走査
系の凹面鏡に貼着されていることを特徴とする特許請求
の範囲第1項ないし第3項記載の欠陥検出方法。
[Claims] 1. Irradiating light from an illumination light source in the width direction of the object to be inspected;
In this method of detecting defects in the object to be inspected by continuously measuring scanning light reflected or transmitted through each point in the width direction of the object to be inspected, the optical path from the illumination light source to the object to be inspected, Alternatively, a defect detection method characterized in that an optical filter is arranged on the optical path from the object to be inspected to the light receiver to correct non-uniformity in the amount of light received by the light receiver in the width direction. 2. The defect detection method according to claim 1, wherein the optical filter is a plurality of ND filters stacked one on top of the other in response to changes in light intensity in the width direction. 3. The defect detection method according to claim 1, wherein the optical filter is a combination of filters having different light transmittances in the width direction according to changes in the amount of light in the width direction. 4. The defect detection method according to claim 1, wherein the optical filter is attached to a concave mirror of a flying spot scanning system.
JP52032417A 1977-03-24 1977-03-24 Defect detection method Expired JPS6013137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52032417A JPS6013137B2 (en) 1977-03-24 1977-03-24 Defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52032417A JPS6013137B2 (en) 1977-03-24 1977-03-24 Defect detection method

Publications (2)

Publication Number Publication Date
JPS53118089A JPS53118089A (en) 1978-10-16
JPS6013137B2 true JPS6013137B2 (en) 1985-04-05

Family

ID=12358363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52032417A Expired JPS6013137B2 (en) 1977-03-24 1977-03-24 Defect detection method

Country Status (1)

Country Link
JP (1) JPS6013137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412984Y2 (en) * 1989-09-11 1992-03-27

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155540U (en) * 1983-04-05 1984-10-18 三菱電機株式会社 Defect inspection equipment
US6714296B2 (en) 2001-10-25 2004-03-30 Fuji Photo Film. Co., Ltd. Method and apparatus for inspecting photosensitive material for surface defects
JP2017011246A (en) * 2015-06-26 2017-01-12 リンテック株式会社 Light irradiation device and light irradiation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149367A (en) * 1974-05-09 1975-11-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149367A (en) * 1974-05-09 1975-11-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412984Y2 (en) * 1989-09-11 1992-03-27

Also Published As

Publication number Publication date
JPS53118089A (en) 1978-10-16

Similar Documents

Publication Publication Date Title
US4966457A (en) Inspecting apparatus for determining presence and location of foreign particles on reticles or pellicles
TW376637B (en) Dust and scratch correction for a film scanner
US6424414B1 (en) Method and apparatus for detecting refractive defects in transparent containers
JP3494807B2 (en) Method and apparatus for correcting output signals of a plurality of photodetectors
US5932888A (en) Web or sheet edge position measurement process and device
JP3329233B2 (en) Defect inspection method and apparatus for plate-shaped transparent body
US3589817A (en) Photoelectric web defect-detecting apparatus which provides for overcoming the ray-diverging effect of roller curvature
JPH07225434A (en) Image reader
JPS6013137B2 (en) Defect detection method
EP0006648B1 (en) Method and device for inspecting a moving sheet material for streaklike defects
JP2873450B2 (en) Defect inspection device using light
US6201623B1 (en) Surface topography enhancement
JPS61176838A (en) Inspection of defect of transparent or semi-transparent plate-shaped body
JPH0434348A (en) Inspecting apparatus for sheet-shaped substance
US20020101583A1 (en) Light source for inspection of planographic printing plate and inspection system using the same
JPH10132758A (en) Device and method for detecting defect in plate glass
JP2006258662A (en) Surface inspection method
US7423738B2 (en) Inspecting system for security documents
JP2003240726A (en) Defect detector for sheet
JP2000289358A (en) Inspecting device for planographic printing plate
JP2000065752A (en) Quality inspection apparatus using vertical illumination
JPH06207910A (en) Surface inspection apparatus
JP2698696B2 (en) Surface flaw inspection method
JPH11183151A (en) Transparent sheet inspecting equipment
US20070109539A1 (en) Method and apparatus for detecting defects using focus compensation