JPS60129621A - Measurement of flow rate of powdery granule in solid/gas phase flow - Google Patents

Measurement of flow rate of powdery granule in solid/gas phase flow

Info

Publication number
JPS60129621A
JPS60129621A JP23864583A JP23864583A JPS60129621A JP S60129621 A JPS60129621 A JP S60129621A JP 23864583 A JP23864583 A JP 23864583A JP 23864583 A JP23864583 A JP 23864583A JP S60129621 A JPS60129621 A JP S60129621A
Authority
JP
Japan
Prior art keywords
powder
flow
flow rate
informations
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23864583A
Other languages
Japanese (ja)
Inventor
Kenji Tojo
健司 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23864583A priority Critical patent/JPS60129621A/en
Publication of JPS60129621A publication Critical patent/JPS60129621A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/66Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To realize higher reliability, by calculating existing informations of assumed correcting factors by comparing total sum of flow of a powdery granule in a branched tube and decrement of a storage container and by obtaining an actual flow rate of the powdery granule basing upon said informations, carrier gas informations and pressure informations, etc. CONSTITUTION:Flow meters 6a-6c and manometers 8a-8c installed in gas-flow sections 3a1-3c1, manometers 9a-9c and a computer 10 in double-flow sections 3a2-3c2 respectively are connected through flow rate transmitters 7a-7c, pressure transmitters 11a-11c, 12a-12c respectively. The computer 10 calculates the existing informations of assumed correcting factors by the total sum of flow rate of the powdery granule in the branched tubes 3a-3c and decrement of the storage container 1 and from the existing informations of correcting factors thus calculated, flow rate informations of carrier gas 4 and pressure information in process of transportation of the powdery granule, the existing flows of the powderous material in the individual branched tubes 3a-3c are obtained.

Description

【発明の詳細な説明】 本発明は1、各種粉粒体が気体中に分散されて流れてい
る状態即ち固気2相流(以下単に2相流ということがあ
る)(おける粉粒体の流量、特に分些供給用分岐管内の
粉粒体流量を正確に測定することのできる方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has the following features: 1. A state in which various powders and granules are dispersed in a gas and flowing, that is, a solid-gas two-phase flow (hereinafter sometimes simply referred to as two-phase flow). The present invention relates to a method that can accurately measure the flow rate, particularly the flow rate of powder and granular material in a branch pipe for dispensing.

粉粒体(以下単に粉体という)を貯蔵容器から他の場所
、へ輸送する方法として圧力気流による輸送方式が汎用
されている。この場合の粉体流量は、貯蔵容器に取、付
忙、た歪ゲージによって該容器内における一定時間当シ
の粉体の減量を測定し、単位時間当たルの平作流量を演
算してめているのが普通である。この様な気流輸送方式
は分配輸送手段としても非常に有効であるが、上記の粉
、体流量測牢方法では各、分配分岐管の輸送量の個別測
定を。
BACKGROUND ART As a method of transporting powder and granular materials (hereinafter simply referred to as powder) from a storage container to another location, a transportation method using pressurized air current is widely used. In this case, the powder flow rate can be estimated by measuring the weight loss of the powder over a certain period of time in the storage container using a strain gauge installed in the storage container, and calculating the average flow rate per unit time. It is normal to have Although this type of air flow transport method is very effective as a means of distribution transport, the above-mentioned method for measuring powder and body flow rates requires individual measurement of the transport volume of each distribution branch pipe.

行なうことはでき、ない。即ち例えば・高炉への微唆炭
吹込みの様に2,1個の貯蔵容器から2.5本前奪。
There is no way to do it. For example, when injecting coal into a blast furnace, 2.5 bottles are taken from 2.1 storage containers.

の握9へ各分岐管を通して微粉炭を分配輸送する慢合に
は、全体としての吹込量及、び各羽目への平。
In the process of distributing and transporting pulverized coal through each branch pipe to the handle 9, it is necessary to determine the overall injection amount and the level of each coal.

均吹込量は知ることができても個々の羽口から送給され
る実際の微粉炭量を把握す、ることはできず、一部の分
岐管で送給不良が生じてもその状況を把握することはで
きない。その為に個々の分岐管毎に粉体流量を測定する
ことのできる様な技術が開発されつつある。例えば分岐
管内にベンチュリーを設けてその前後の差圧を測定した
シ静電容量の測定から粉体流量を演算する方法、或は2
相流で輸送される粉粒体に超音波を投射して流速を測定
する超音波ドプラ一方式又は流れによる損失熱を温度測
定により検出し流量の測定となすサーマル流量計等が提
案されている。しかし外からこれら公知の方法は測定精
度の点で゛問題があυ、満足し得るものとは言い難す。
Although it is possible to know the uniform injection amount, it is not possible to know the actual amount of pulverized coal fed from each tuyere. I can't figure it out. For this reason, techniques are being developed that can measure the powder flow rate for each branch pipe. For example, a method of installing a venturi in a branch pipe and measuring the differential pressure before and after it and calculating the powder flow rate from the measurement of capacitance, or 2.
An ultrasonic Doppler type that measures the flow velocity by projecting ultrasonic waves onto powder particles transported in a phase flow, or a thermal flowmeter that measures the flow rate by detecting the heat loss due to the flow by temperature measurement, etc., have been proposed. . However, these known methods have problems in terms of measurement accuracy and cannot be said to be satisfactory.

これは2相流においては粒径、比重、固気比、ガス流速
、圧力などのパラメータが多い上、その流れの性状が複
雑に変化するため、流れを表す一つの物理量を単純に他
の物理量に変換して流量をめることが極めて困難である
といった固気2相流固有の事情に起因するからである。
In a two-phase flow, there are many parameters such as particle size, specific gravity, solid-gas ratio, gas flow rate, and pressure, and the properties of the flow change in a complex manner. This is due to the unique circumstances of solid-gas two-phase flow, such as the fact that it is extremely difficult to reduce the flow rate by converting into solid-gas flow.

又2相流の流路に流量検知部材、例えばコリオリ流量計
を直接配置する方法も提案されているが、この方法では
粉体の衝突による検知部材の摩耗を避けることができず
、しかも該検知部材によシ流れが阻害されて管詰りを生
じ易くなるという問題もある。
A method has also been proposed in which a flow rate detection member, such as a Coriolis flowmeter, is placed directly in the two-phase flow path, but this method cannot avoid wear of the detection member due to powder collisions, and furthermore, the detection There is also the problem that the flow is obstructed by the members, making it easy for pipe clogging to occur.

こうした状況下に、2相流の持つ6ゆらぎ”′という性
質に着目し、2点間で固有の信号(静電容量等)を測定
し、粉体が2点間を移動するのに必要外時間を相関法に
よってめることによシ粉体流速の測定を行ない、別途静
電容量測定によシ得られた粉体密度と掛算して粉体流量
を算出するい・わば相関検出法という新しい提案がなさ
れている。
Under these circumstances, we focused on the 6-fluctuation property of two-phase flow and measured unique signals (such as capacitance) between two points, which are unnecessary for powder to move between two points. This is a correlation detection method in which the powder flow velocity is measured by measuring time using a correlation method, and the powder flow rate is calculated by multiplying the powder density obtained by separate capacitance measurement. A new proposal has been made.

この相関積属方式を採用した流量計によれば、実用的な
信頼精度が得られ、脈動、外乱流などがあっても測定可
能なことから今後の有望な方法の一つになり得ると思わ
れるが、高度の演算回路を内蔵するため流量計の単価は
いきおい高くならざるを得ない。従ってこの様な高価な
流量計を上述の高炉微粉炭吹込みの様に25本前後の各
分岐管に取付けると、微粉炭吹込設備のコストが莫大と
なり、経済的に極めて不利となってしまう。
A flow meter that adopts this correlated product method has practical reliability accuracy and can be measured even in the presence of pulsation, external turbulence, etc., so it is thought that it can become a promising method in the future. However, the unit price of the flowmeter has to be significantly higher due to the sophisticated built-in calculation circuit. Therefore, if such an expensive flow meter is attached to each of about 25 branch pipes as in the above-mentioned blast furnace pulverized coal injection, the cost of the pulverized coal injection equipment will be enormous and it will be economically disadvantageous.

本発明者等はこの様な問題を全て解消し、即ち2相流の
流れを阻害せず且つ検知部材の摩耗等の問題も生じない
様な流量測定方法であって、2相流で分配輸送される各
分岐管内の粉体流量を十分実用的に信頼できる精度を丸
って且つ経済的に有利に測定できる方法を確立しようと
して種々研究を進めてきた。本発明はこうした研究の結
果完成されたものでおって、その構成は、貯蔵容器゛の
粉体減少量をめると共に、各分岐管について同一測定条
件下に得られたキャリヤガス流量情報、同圧力情報、粉
体輸送中の各与岐管内圧力情報及び”仮是の補正係数と
から夫々の分岐管内粉体流量をめ、次いでこれら分岐管
内粉体流量の総和と上記貯蔵容器の減少量との比較に゛
よシ上記仮定補正係数の現在情報を算出し、咳算出され
た補正係数現在情報と上記キャリヤガス流量情報、同圧
力情報及び粉体輸送中の圧力情報ど□かち各分岐管内に
おける現在の実際粉体流量□をめる点に要旨を有するも
のである。
The present inventors have solved all of these problems, that is, a flow measurement method that does not obstruct the flow of the two-phase flow and does not cause problems such as wear of the detection member, and is capable of distributing and transporting the two-phase flow. Various studies have been carried out in an attempt to establish a method that can measure the powder flow rate in each branch pipe with sufficient practical reliability and accuracy and in an economically advantageous manner. The present invention was completed as a result of such research, and its configuration not only measures the amount of powder reduced in the storage container, but also collects carrier gas flow rate information obtained under the same measurement conditions for each branch pipe. Calculate the powder flow rate in each branch pipe from the pressure information, the pressure information in each branch pipe during powder transportation, and the tentative correction coefficient, and then calculate the sum of these powder flow rates in the branch pipe and the amount of decrease in the storage container mentioned above. For comparison, the current information of the above assumed correction coefficient is calculated, and the current information of the calculated correction coefficient, the above carrier gas flow rate information, the same pressure information, and the pressure information during powder transportation in each branch pipe are calculated. The main point is to consider the current actual powder flow rate □.

以下実施例図面を参照しつつ本発明の構成及び作用効果
について説明する。
The configuration and effects of the present invention will be explained below with reference to the drawings.

第1図は本発明の概略説明図であシ、理解の便を考慮し
て1つの貯蔵容器1から3本の分岐管3a〜3cに分配
供給される粉体2を、各分岐管3a〜3cを流れるキャ
リヤガス4によって気流輸送する際の各分岐管3a〜3
C内における粉体′2の流量を測定する゛場合について
説明する。
FIG. 1 is a schematic explanatory diagram of the present invention, and for ease of understanding, the powder 2 distributed and supplied from one storage container 1 to three branch pipes 3a to 3c is divided into three branch pipes 3a to 3c. Each branch pipe 3a to 3 when airflow is transported by carrier gas 4 flowing through 3c
The case of measuring the flow rate of powder '2 in C will be explained.

貯蔵容器1は内部に粉体2が充填されると共にこの充填
された状態のままで重量計5によシその重量が測定でき
る□様になっておシ、測定値は信号として演算器10に
送られる。貯蔵容器1の下部に配設された粉体分配供給
用シュート1a〜1cには夫:^分岐管3−4cが連結
されておシ、粉体2及びキャリヤガス′4を供給するこ
とによって各分岐管3a〜3cは夫々気流部3al〜3
c1及び2相流部3ai〜3clが形成される。尚各分
岐管3a〜3cの管径は同一であシ、矢印は流れ方向を
表わしている。又6a〜6c及び8a〜8cは各気流部
3al〜3c、に設けられた流量計尺゛び圧力計、9a
〜9cは各2相流部3a、〜3clに設けられた圧力計
であシ、該圧力計9a〜9cは各粉体分配供給用シュー
)1a〜1cとの合流点(一般にミックスティと称す継
手が配管される)から等距離りの位置に設けられる。こ
れらの流量計6a〜6C2圧力計8a〜8C29a〜9
Cと演算器10は夫々流量伝送器7a〜7c+圧力伝送
器11a〜11C212a〜12Cを介して連結されて
いる。即ち各分岐管3a〜3cを流れるキャリヤガスの
流量F、〜F、及び圧力P1〜らは夫々流量伝送器78
〜7C及び圧力伝送器11a〜llcより信号として演
算器10に入力されると共に、測定条件一定下の粉体輸
送中の圧力Pal〜Ps、信号は圧力伝送器12a〜1
2cを通して演算器10に入力される。
The storage container 1 is filled with the powder 2, and its weight can be measured by the weighing scale 5 in this filled state.The measured value is sent to the calculator 10 as a signal. Sent. Branch pipes 3-4c are connected to the powder distribution and supply chutes 1a to 1c disposed at the lower part of the storage container 1, and each branch pipe 3-4c is connected to the powder 2 and carrier gas '4. The branch pipes 3a to 3c are airflow sections 3al to 3, respectively.
c1 and two-phase flow sections 3ai to 3cl are formed. The pipe diameters of the branch pipes 3a to 3c are the same, and the arrows indicate the flow direction. Further, 6a to 6c and 8a to 8c are flow gauges and pressure gauges provided in each of the air flow sections 3al to 3c, and 9a
~9c is a pressure gauge provided in each of the two-phase flow sections 3a and ~3cl, and the pressure gauges 9a~9c are at the confluence point (generally called a mix tea) with each powder distribution/supply shoe) 1a~1c. The fitting is located equidistant from the pipe to which it is connected. These flowmeters 6a-6C2 pressure gauges 8a-8C29a-9
C and the computing unit 10 are connected via flow rate transmitters 7a to 7c+pressure transmitters 11a to 11C and 212a to 12C, respectively. That is, the flow rates F, ~F, and pressures P1 ~ of the carrier gas flowing through each of the branch pipes 3a to 3c are determined by the flow rate transmitters 78, respectively.
7C and pressure transmitters 11a to 11c as signals to the computing unit 10, and the pressure Pal to Ps during powder transportation under constant measurement conditions, the signals are input to the pressure transmitters 12a to 12a to 12c.
The signal is input to the arithmetic unit 10 through 2c.

演算器10内では上記各種信号の入力によって以下の演
算が自動的に行なわれる。演算手順に沿って説明すると
、まず各分岐管3a〜3C内を流れる粉体の重量流量(
以下単に流量という)を夫夫Wl t W2 + Wa
 とすると、これらの流量の総和(W1+W2+W、)
は貯蔵容器1から流出するlり1 粉体の重量即ち重量計5によって検知される粉体入り貯
蔵容器1全体の減少重量dw/dtと等しくなるが、こ
の減少重量はその現在実測値が常時入力されているので
、(W 1+Wt +WB)の現在実測値が下記(1)
式より算出される。
In the arithmetic unit 10, the following calculations are automatically performed by inputting the various signals mentioned above. To explain along the calculation procedure, first, the weight flow rate (
(hereinafter simply referred to as flow rate) is Wlt W2 + Wa
Then, the sum of these flow rates (W1+W2+W,)
is equal to the weight of the powder flowing out from the storage container 1, that is, the reduced weight dw/dt of the entire powder-containing storage container 1 detected by the weighing scale 5, but the current actual measured value of this reduced weight is always equal to Since it has been input, the current actual measured value of (W 1 + Wt + WB) is shown below (1)
Calculated from the formula.

w、+w、 十W、 −d歳句t・・・・・・・(1)
一方w、tw、tw、については、各2相流部3a2〜
3c、での圧損が一定測定条件(即ち管長、管径及び粉
体物性等が同一条件)の下で測定されていることに鑑み
、次式(2)〜(4)中に用いている補正係数に1〜K
m (開口断面積その他の輸送条件によシ決まる補正係
数)を一定の仮の未知数K(以下共通係数という)で置
き換えることができ、その結果W、+W、 +W、は下
記(5)式の如く算出される。
w, +w, 10W, -d haiku t...(1)
On the other hand, for w, tw, tw, each two-phase flow section 3a2~
Considering that the pressure drop at 3c was measured under constant measurement conditions (i.e., the same conditions for tube length, tube diameter, powder physical properties, etc.), the corrections used in the following equations (2) to (4) 1 to K for the coefficient
m (correction coefficient determined by opening cross-sectional area and other transportation conditions) can be replaced by a certain temporary unknown K (hereinafter referred to as common coefficient), and as a result, W, +W, +W, can be expressed as in equation (5) below. It is calculated as follows.

) 次いで上記(1)式と(5)式の比較演算が行なわれ、
下記(6)式によシにの現在実効値(補正係数として、
現在の状況に最も適した実際値)が算出される。
) Next, a comparison operation between the above equations (1) and (5) is performed,
According to the following formula (6), the current effective value (as a correction coefficient,
The most suitable actual value for the current situation) is calculated.

立 t こうして算出された愁の値を1記(2)〜(4)弐−爾
■ “□゛適用ることにより、Wl w’Wt 、Ws
の現在実 :1 ′測値がめられる。 ・ 1・。
t By applying the value of Shu calculated in this way to 1 (2) to (4)
The current actual value of 1' is found.・1・.

上述の粉体測定において使用する圧力計はどの ・よう
なものであってもよい。そして圧力計は、そ・ ゛の検
知部が各2相流部9a〜9Cの管壁を貫いて管内部へ導
通する様に配置すればよい。この様な導圧方式では、従
来の直接積出方式のように、各2相流部9a〜9C内に
検知部材全体を配置する場合に比べて2相流の流れを十
分円滑なものに維持することが可能となる。各2相流部
98〜9Cに設けるのは圧力許容1点だけであるから、
前述の相関検出流量計等を設ける場合に比べて極めて簡
略な設備となる。
Any type of pressure gauge may be used in the above-mentioned powder measurement. The pressure gauge may be arranged so that its detection portion penetrates the tube wall of each of the two-phase flow sections 9a to 9C and communicates with the inside of the tube. In this type of pressure guiding method, the flow of the two-phase flow can be maintained sufficiently smooth compared to the conventional direct loading method in which the entire detection member is placed in each of the two-phase flow sections 9a to 9C. It becomes possible to do so. Since only one pressure permissible point is provided in each two-phase flow section 98 to 9C,
The equipment is extremely simple compared to the case where the above-mentioned correlation detection flowmeter or the like is provided.

尚上記実施例は本発明の代表例を示すものであって本発
明は限定する性質のものではなく、前述の趣旨に沿って
例えば演算方式を変更したシそれに伴って入手情報の種
類や情報入手の方式を変更することも可能であシ、又上
記演算手順を採用するにしても分岐管の本数、管径、圧
損測定の位置及び間隔の長さ等をはじめ、各流量計、圧
力計及び貯蔵容器の重量針等の種類・配役方式を適当に
設計変更することは全て本発明の技術的範囲に属する。
The above-mentioned embodiments are representative examples of the present invention, and the present invention is not limited in nature. For example, the calculation method was changed in line with the above-mentioned purpose, and the type of information obtained and the information obtained were changed accordingly. It is also possible to change the method of calculation, and even if the above calculation procedure is adopted, the number of branch pipes, pipe diameter, pressure drop measurement position and interval length, etc., each flow meter, pressure gauge, Appropriate design changes to the type and arrangement of the weight needles, etc. of the storage container fall within the technical scope of the present invention.

 一 本発明は以上の様に構成したので、貯蔵容器から複数の
分岐管に分配供給された後気流輸送される場合の各分岐
管内の粉体流量を十分実用的に信頼できる精度をもって
簡単且つ経済的に有利に測定できる様になった。その結
果、各分岐管毎の正確な粉体流量の管理が容易に行なえ
ることとなつた。
Since the present invention is constructed as described above, when the powder is distributed and supplied from a storage container to a plurality of branch pipes and then transported by pneumatic flow, the flow rate in each branch pipe can be easily and economically determined with sufficient practical and reliable accuracy. It has become possible to measure this effectively. As a result, it became possible to easily manage the powder flow rate accurately for each branch pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を例示する概略説明図である。 1・・・貯蔵容器 2・・・粉体 3a〜3c・・・分岐管 3al〜3cl・・・気流部
3a!〜3c!・・・2相流部 4・・・キャリヤガス
5・・・重量計 6a−6c・・・流量計8a〜8c 
、9a−9c・・・圧力計10・・・演算器7a−′7
c・・・流量伝送器 11a〜11c*12r−12c・・・圧力伝送器出願
人 株式会社神戸製鋼所
FIG. 1 is a schematic diagram illustrating the method of the present invention. 1...Storage container 2...Powder 3a-3c...Branch pipe 3al-3cl...Air flow part 3a! ~3c! ...Two-phase flow section 4...Carrier gas 5...Weight meter 6a-6c...Flowmeter 8a-8c
, 9a-9c...Pressure gauge 10...Calculator 7a-'7
c...Flow rate transmitter 11a-11c*12r-12c...Pressure transmitter Applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)貯蔵容器から複数の分岐管に分配供給される粉粒
・体、を、5、各分岐管を流れるキャリヤガス、によっ
て気流輸送する。際の各分岐管内における粉粒体の流量
、測定方法4において、前記貯廊容器の粉体減少量をめ
ると共に、同一測定*、件下に得られたキャリヤガス流
量情報、同圧力情報、粉粒体輸送中9各:分岐管内圧力
情報及び仮定補正係数か、ら夫々の分岐管内粉体流量を
め1.次いでこれらの分岐管内粉体流量の総和と上記貯
蔵容器の粉体減少量との比較によ)上記仮定補正係数の
現在、情報を算出し、該算出された補正係数現在情報と
上記キャリ、ヤガス流章情報、同圧力情報及び粉粒体輸
送中9、各分岐管内圧力情報から各分岐・管内における
現在の実際粉粒体流、量をめることを特徴とする固気2
.相流における粉粒体の流量測定方法。
(1) Powder particles distributed and supplied from a storage container to a plurality of branch pipes are air-flow transported by 5. a carrier gas flowing through each branch pipe. In measurement method 4, the flow rate of powder and granular material in each branch pipe during measurement, the amount of powder reduction in the storage container is calculated, and the carrier gas flow rate information and pressure information obtained under the same measurement *, During transportation of powder and granular material 9 Each: Calculate the powder flow rate in each branch pipe from the pressure information in the branch pipe and the assumed correction coefficient.1. Next, by comparing the sum of the powder flow rates in these branch pipes and the amount of powder reduction in the storage container, the current information of the above assumed correction coefficient is calculated, and the current information of the calculated correction coefficient and the above carrier, yagasu are calculated. Solid air 2 characterized by calculating the current actual flow and amount of powder and granular material in each branch and pipe from flow chapter information, same pressure information, powder and granular material being transported 9, and pressure information in each branch pipe.
.. A method for measuring the flow rate of powder and granular materials in phase flow.
JP23864583A 1983-12-16 1983-12-16 Measurement of flow rate of powdery granule in solid/gas phase flow Pending JPS60129621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23864583A JPS60129621A (en) 1983-12-16 1983-12-16 Measurement of flow rate of powdery granule in solid/gas phase flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23864583A JPS60129621A (en) 1983-12-16 1983-12-16 Measurement of flow rate of powdery granule in solid/gas phase flow

Publications (1)

Publication Number Publication Date
JPS60129621A true JPS60129621A (en) 1985-07-10

Family

ID=17033209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23864583A Pending JPS60129621A (en) 1983-12-16 1983-12-16 Measurement of flow rate of powdery granule in solid/gas phase flow

Country Status (1)

Country Link
JP (1) JPS60129621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444252A (en) * 2006-11-30 2008-06-04 William Jeffrey Peet Control of closed conduit particulate distribution system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444252A (en) * 2006-11-30 2008-06-04 William Jeffrey Peet Control of closed conduit particulate distribution system
GB2444252B (en) * 2006-11-30 2010-12-15 William Jeffrey Peet Pneumatic uneven flow factoring for particulate matter distribution system

Similar Documents

Publication Publication Date Title
US4198860A (en) Method and apparatus for measuring particulate matter flow rate
CN108541301A (en) Multi-phase coriolis measuring apparatus and method
JPS5824820A (en) Method of measuring mass flow rate of powdered and pulverized fuel
US8245582B2 (en) Method and apparatus for measuring a gas flow velocity
US8423303B2 (en) Method for real time measurement of mass flow rate of bulk solids
CN110793585B (en) Wet air flow online measurement method and device based on V cone pressure loss ratio segmentation characteristic
JPS60129621A (en) Measurement of flow rate of powdery granule in solid/gas phase flow
JPS6047535B2 (en) How to measure the flow rate of powder and granular materials
JPS62237323A (en) Measuring instrument for amount of particles stored in particle storage silo
CN107121173B (en) Apparatus for measuring charge level and material level measuring method
JP2010209404A (en) Method, apparatus and program for estimating distribution of in-furnace gas flow in blast furnace
JPH067322Y2 (en) Powder flow rate measuring device
JPS6338087B2 (en)
JP2001201376A (en) Powder flow rate measuring device for measuring flow rate of powder in gas-mixed powder, and method thereof
JP3396281B2 (en) Particle flow meter
CN210735644U (en) Material conveying and metering device
CN104444383B (en) High-pressure dense-phase transportation metering method and device
JP3830264B2 (en) Ice filling rate measurement calculation method
JP2548727B2 (en) Measuring method of powder flow rate in lock hopper system
CA1318390C (en) Flowmeter for a moving packed bed
JPS5863827A (en) Measuring device for pressure in transporting tube of pulverous materials by gas
JPS59108917A (en) Method for measuring flow rate of powder body
JPH01224626A (en) Method and device for measuring flow rate of solid-vapor two-phase flow
JPS58122430A (en) Measuring method of flow rate of powder and granule
JPH02126120A (en) Flow measuring instrument for granular particles