JPS62237323A - Measuring instrument for amount of particles stored in particle storage silo - Google Patents

Measuring instrument for amount of particles stored in particle storage silo

Info

Publication number
JPS62237323A
JPS62237323A JP8001286A JP8001286A JPS62237323A JP S62237323 A JPS62237323 A JP S62237323A JP 8001286 A JP8001286 A JP 8001286A JP 8001286 A JP8001286 A JP 8001286A JP S62237323 A JPS62237323 A JP S62237323A
Authority
JP
Japan
Prior art keywords
amount
air
silobin
silo
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8001286A
Other languages
Japanese (ja)
Inventor
Hisashi Motoyasu
本康 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP8001286A priority Critical patent/JPS62237323A/en
Publication of JPS62237323A publication Critical patent/JPS62237323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

PURPOSE:To easily take a measurement speedily by measuring particles stored in a particle storage silo by a noncontacting method. CONSTITUTION:Air is pressed in a silo bin 1 by an air press-in pump 6 and the amount of the pressed-in air is detected by a flow meter 8 incorporated in a duct 7. Further, the air pressure in the silo bin 1 is detected by a pressure sensor 10 arranged in the silo bin. Further, detected values of the flow meter 8 and sensor 10 and temperature detected values of temperature sensors 11 and 11' are converted into electric signals, which are inputted to a computing element 12. Consequently, the computing element 12 computes and measures the storage amount of grains 4 in the silo bin 1 by using a specific expression. Thus, the storage amount is measured by the noncontacting method, so the measuring operation is performed regardless of the surface shapes and properties of the grains 4.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は穀物用サイロの如き粉粒体貯蔵サイロにおけろ
貯蔵物量の計測装置に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a device for measuring the amount of material stored in a powder storage silo such as a grain silo.

(従来の技術) の測定は的確な方法がなく、その都度、第2図に示すよ
うに人がサイロビン(α)の頂部点検孔(b)より、重
錘((+1付きの検尺(dJ ’&降ろし、サイロビン
内の粉粒体(#)の頂面に接触させて同面からサイロビ
ン頂部°までの距Mを測定する。
(Prior art) There is no accurate method for measuring this, and each time, as shown in Figure 2, a person has to use a weight ( '& lower it, bring it into contact with the top surface of the powder or granular material (#) in the cyrobin, and measure the distance M from the same surface to the top of the cyrobin.

しかしながら測定点が限られているため、サイロビン内
に貯蔵された粉粒体の形状を目視によって判定し、前記
測定値と併わせて同粉粒体のjtY簡易的に求めていた
However, since the measurement points are limited, the shape of the powder or granule stored in the silobin has been visually determined, and in conjunction with the above measurement value, the jtY of the same powder or granule has been simply determined.

(発明が解決しようとする問題点) 従って前記従来の方法による測定値は目安でしかなく、
正確なサイ口内貯蔵物量が求められず、また測定の都度
、人がサイロビン頂部に上らなくてはならず、多くの人
手?:要した。
(Problem to be solved by the invention) Therefore, the values measured by the conventional method are only a guideline,
It is not possible to accurately determine the amount of material stored in the mouth of the rhinoceros, and each time a measurement is made, a person must climb to the top of the rhinoceros robin, requiring a large amount of labor. : It took.

(問題点を解決するための手段) 本発明はこのような問題点を解決しようとするもので、
密閉サイロビン内に対する空気圧入ポンプと、同ポンプ
の前記サイロビンに対する空気供給管路に介装された同
ポンプによる圧入空気量をを検出する圧力センサと、前
記流量計及び圧力センサによるサイロビン内圧入空気量
並にサイロビン内空気圧力の検出値を電気信号に変換し
て入力し、サイロビン内の貯蔵物量を演算する演算装置
よジなろことを特徴とするもので、その目的とする処は
、計測が簡単、迅速にしかも正確に行なわれ、更に無人
計測が可能な粉粒体貯蔵サイロにおけろ貯蔵物量の計測
装置を供する点にある。
(Means for solving the problems) The present invention aims to solve these problems,
A pump for pressurizing air into the sealed silobin, a pressure sensor for detecting the amount of air pressurized by the pump, which is installed in an air supply line of the same pump to the silobin, and an amount of air pressurized inside the silobin by the flow meter and the pressure sensor. It is also characterized by a calculation device that converts the detected value of the air pressure inside the silobin into an electrical signal and inputs it to calculate the amount of stored material in the silobin.The purpose of this is that it is easy to measure. The object of the present invention is to provide a device for measuring the amount of material stored in a powder storage silo, which can be quickly and accurately measured, and can also be measured unattended.

(作用) 本発明は完全に密閉された一定容積の容器内に空気を圧
入した場合の同容器内の空気圧値は、空気の温度を一定
とすると、容器内の空隙と圧入空気量とによって一定の
上昇値を示すという事実に基いて提案されたものであっ
て、前記空気圧入ポンプによって密閉サイロビン内に空
気を圧入し、このときの同サイロビンに対する圧入空気
量を前記ポンプとサイロビンとの間を連絡する空気供給
管路に介装された流量計によって検出するとともに、前
記サイロビン内の空気圧力を圧力センサによって検出し
、同圧力センサによるサイロビン内の空気圧力検出値、
及び前記流量計によるサイロビンに対する圧入空気量検
出値を電気信号に変換して演q:機に入力してサイロビ
ン内の貯蔵物i−ヲ演算するものである。
(Function) The present invention provides that when air is injected into a completely sealed container with a certain volume, the air pressure inside the container is constant depending on the voids in the container and the amount of injected air, assuming the temperature of the air is constant. This method was proposed based on the fact that air is injected into a sealed silobin by the air injection pump, and the amount of air injected into the silobin at this time is calculated by dividing the amount of air between the pump and the silobin. Detecting the air pressure in the silobin with a flow meter installed in the communicating air supply pipe, and detecting the air pressure in the silobin with a pressure sensor, and detecting the air pressure in the silobin with the pressure sensor;
The amount of air injected into the silo robin detected by the flow meter is converted into an electrical signal and inputted to a calculation machine to calculate the amount of air stored in the silo robin.

(発明の効果) このように本発明の計測装置によれば非接触方法によっ
て粉粒体貯蔵サイロ内の貯蔵物量の計測が行なわれるの
で、貯蔵物の形状、性状に関係なく貯蔵物量の計測が可
能である。
(Effects of the Invention) As described above, according to the measuring device of the present invention, the amount of stored material in the powder storage silo is measured by a non-contact method, so the amount of stored material can be measured regardless of the shape and properties of the stored material. It is possible.

また本発明の装置によれば粉粒体貯蔵サイロの貯蔵物量
の無人計測が可能となり、更に測足者の技量に関係なく
、精度の高い計測値が得られろ。
Further, according to the device of the present invention, it becomes possible to measure the amount of stored material in a powder storage silo unattended, and furthermore, highly accurate measurement values can be obtained regardless of the skill of the foot measurer.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

(1)はサイロビン、(2)は気密機構付排出ゲート、
(3)は気密機構付投入シュート、(4)はサイロビン
(1)内に貯蔵された穀物、(5)はサイロビン(1)
内の空隙部である。
(1) is Cyrobin, (2) is an airtight discharge gate,
(3) is a feeding chute with an airtight mechanism, (4) is grain stored in the silobin (1), (5) is the silin robin (1)
This is the void inside.

(6)は空気圧入ポンプで、同ポンプ(6)の吐出側と
サイロビン(1)との間を接続する空気供給管路(7)
には前記ポンプ(6)によるサイロビン(1)に対スる
圧入空気量を検出する流量計(8)が介装されている。
(6) is an air pressure pump, and the air supply pipe (7) connects the discharge side of the pump (6) and the silobin (1).
A flow meter (8) for detecting the amount of air injected into the silobin (1) by the pump (6) is interposed therein.

図中(9)は前記ポンプ(6)の吸込側に接続された空
気ダクトである。
In the figure, (9) is an air duct connected to the suction side of the pump (6).

サイロビン(1)内には同サイロビン内の空気圧力を検
出する圧力センサ0uが配設され、またサイロビン(1
)内、及びサイロビン(1)外部には温度センサαlN
11つが配設されている。
A pressure sensor 0u that detects the air pressure inside the silobin (1) is installed inside the silobin (1).
) and outside of Cyrobin (1) is a temperature sensor αIN.
There are 11 installed.

これらの温度センサは、空気の温度変化もサイロビン(
1)内の空気圧力値を変動させるため温度による補正を
必要とするので、この補正のために使用されるものであ
る。
These temperature sensors also detect temperature changes in the air.
1) Since temperature-based correction is required to vary the air pressure value in 1), this is used for this correction.

(12+は演算機で、前記流量計(8)、圧力センサ0
ω、温度センサ0υ(11つによる検出値を電気信号に
変換して後述の式に基いて演算し、サイロビン(1)内
における穀物(4)の貯蔵量を計測するものである。
(12+ is a computer, the flow meter (8), pressure sensor 0
ω, temperature sensor 0υ (11) The detected value by the temperature sensor 0υ is converted into an electric signal and calculated based on the formula described later, and the amount of grain (4) stored in the cyrobin (1) is measured.

なお前記貯蔵量の計測に当っては、サイロビン(1)が
空の時点における空気流入量と内部圧力上昇特性とを予
め測定しておけば、より正確なサイロビン(1)の容積
を知っておくことができろ。
In addition, when measuring the storage amount, if the air inflow amount and internal pressure rise characteristics at the time when the silobin (1) is empty are measured in advance, the volume of the silobin (1) can be known more accurately. Be able to do that.

更に既知の穀物仝を貯蔵した場合における各貯R量毎の
空気圧入量と、サイロビン内部圧力上昇特性値を予め測
定しておくと、更に精度の高い計測が可能となる。
Furthermore, if the amount of air injected for each stored R amount and the characteristic value of the pressure increase inside the silobin are measured in advance when a known amount of grain is stored, even more accurate measurement is possible.

図示の実施例は前記したように構成されているので、空
気圧入ポンプ(6)によってサイロビン(1)内に空気
を圧入し、この際のサイロビン(1)に対する圧入空気
量を前記管路(7)に介装された流量計(8)によって
検出するとともに、サイロビン(1)内の空気圧力を同
サイロビン(1)内に配設された圧力センサα0)によ
って検出し、前記流量計(8)及び圧力センサαQによ
る検出値、並に前記温度センサ旧)(11′)による温
度検出値を夫々電気信号に変換して演算機a3に入カレ
、同演算機←2によってサイロビン(1)内の穀物(4
)の貯蔵量を計測する。
Since the illustrated embodiment is configured as described above, air is pressurized into the silobin (1) by the air pump (6), and the amount of pressurized air to the silobin (1) at this time is adjusted to ), the air pressure inside the silobin (1) is detected by a pressure sensor α0) installed in the silobin (1), and the flowmeter (8) The detected value by the pressure sensor αQ, and the temperature detected value by the temperature sensor (old) (11') are converted into electrical signals and input to the computer a3. Grain (4
) is measured.

今、サイロビンは漏気がなく、その容積VOはサイロビ
ン内部圧力Pによって変化しないものとし、サイロビン
内の空隙部の容積なり1.穀物容積i−を■2、穀物重
量をM、穀物の比重をρ、サイロビン内圧入空気量をQ
とすると、次式によってすイロピン内の穀物重量が計測
される。
Now, it is assumed that the cyrobin has no air leakage and its volume VO does not change due to the internal pressure P of the cyrobin, and the volume of the void inside the cyrobin is 1. The grain volume i- is ■2, the grain weight is M, the grain specific gravity is ρ, and the amount of pressurized air inside the silobin is Q.
Then, the weight of the grain in Suiropin is measured by the following formula.

■o=v0+v2 p=VO−Q KP=v1・Ql・tl ここに、K:圧力上昇係数 tl:温度補正 而して圧力上昇係数にとサイロビン内の空隙部の容積■
1  との関係至を求めておくことによりI Vl    −P−t1’ 従って穀物重量Mは次式で求められる。
■o=v0+v2 p=VO-Q KP=v1・Ql・tl Where, K: Pressure increase coefficient tl: Volume of the void inside the cyrobin ■
By determining the relationship with 1, I Vl -P-t1' Therefore, the grain weight M can be determined by the following formula.

M−Pv2−P (To−Vl) −P (Vo−’ 
−P−tl)Ql このように前記実施例によれば、非接触方法によってサ
イロビン(1)内の穀物(4)の貯蔵量の計測が行なわ
れるので、穀物(4)の表面形状、性状に関係なく同穀
物(4)の貯蔵量の計測が可能となる。
M-Pv2-P (To-Vl) -P (Vo-'
-P-tl)Ql As described above, according to the above embodiment, since the amount of grain (4) stored in the silobin (1) is measured by a non-contact method, the surface shape and properties of the grain (4) can be measured. It becomes possible to measure the storage amount of the same grain (4) regardless of the situation.

また前記実施例によればサイロビン(1)内の穀物(4
)の貯蔵量の無人計測が可能となり、測定者の技量に関
係なく、精度の高い計測値が得られる。
Further, according to the above embodiment, the grain (4) in the cyrobin (1)
) can be measured unattended, and highly accurate measurement values can be obtained regardless of the skill of the measurer.

以上本発明を実施例について説明したが、本発明は勿論
このような実施例にだけ局限されろものではなく、本発
明の精神を逸脱しない範囲内で種種の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, the present invention is, of course, not limited to such embodiments, and can be modified in various designs without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る粉粒体貯蔵サイロにおける貯蔵物
量の11測装置の一実施例を示す縦断面図、第2図は従
来の計測装置の縦断面図である。 <IJ・・・サイロビン、(6)・・・空気圧入ポンプ
(7)・・・望見供給管路、      (8)・・・
流量計(IQ・・・圧力センサ、    αυ(11’
)・・・温度センサα3・・・演算機
FIG. 1 is a vertical cross-sectional view showing an embodiment of a device for measuring the amount of stored material in a powder storage silo according to the present invention, and FIG. 2 is a vertical cross-sectional view of a conventional measuring device. <IJ... Cyrobin, (6)... Air pressure pump (7)... View supply pipe, (8)...
Flow meter (IQ...pressure sensor, αυ(11'
)...Temperature sensor α3...Calculating machine

Claims (1)

【特許請求の範囲】[Claims] 密閉サイロビン内に対する空気圧入ポンプと、同ポンプ
の前記サイロビンに対する空気供給管路に介装された同
ポンプによる圧入空気量を検出する流量計と、前記サイ
ロビン内の空気圧力を検出する圧力センサと、前記流量
計及び圧力センサによるサイロビン内圧入空気量並にサ
イロビン内空気圧力の検出値を電気信号に変換して入力
し、サイロビン内の貯蔵物量を演算する演算装置よりな
ることを特徴とする粉粒体貯蔵サイロにおける貯蔵物量
の計測装置。
a pump for injecting air into a sealed silobin; a flow meter for detecting the amount of air injected by the pump; and a pressure sensor for detecting air pressure in the silobin; A powder particle comprising a calculation device that converts the detected value of the amount of air injected into the silobin and the air pressure inside the silobin into electrical signals and calculates the amount of stored material in the silobin by the flow meter and pressure sensor. A device for measuring the amount of material stored in a body storage silo.
JP8001286A 1986-04-09 1986-04-09 Measuring instrument for amount of particles stored in particle storage silo Pending JPS62237323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8001286A JPS62237323A (en) 1986-04-09 1986-04-09 Measuring instrument for amount of particles stored in particle storage silo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8001286A JPS62237323A (en) 1986-04-09 1986-04-09 Measuring instrument for amount of particles stored in particle storage silo

Publications (1)

Publication Number Publication Date
JPS62237323A true JPS62237323A (en) 1987-10-17

Family

ID=13706407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8001286A Pending JPS62237323A (en) 1986-04-09 1986-04-09 Measuring instrument for amount of particles stored in particle storage silo

Country Status (1)

Country Link
JP (1) JPS62237323A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136996A (en) * 1988-11-17 1990-05-25 Kubota Ltd Cup type automatic vending machine
JPH0271230U (en) * 1988-11-17 1990-05-30
JPH04113204A (en) * 1990-09-03 1992-04-14 Hazama Gumi Ltd Method of measuring stored quantity
JPH04232422A (en) * 1990-06-02 1992-08-20 Martin Lehmann Method and apparatus for measuring volume of container
USRE38617E1 (en) * 1997-03-18 2004-10-12 Hoya Corporation Method of injection molding plastic lens
DE10041051B4 (en) * 2000-08-22 2006-08-10 Fti Technologies Gmbh Method for volume measurement by pressure shock determination
WO2016143514A1 (en) * 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
NL2020078B1 (en) * 2017-12-13 2019-06-21 Econview B V Measurement of a filling level of a bulk solids storage unit
WO2020035582A1 (en) * 2018-08-16 2020-02-20 Endress+Hauser Messtechnik Gmbh+Co. Kg Method for determining a remaining empty volume, method for on-site calibration of a fill level measuring device, and on-site calibration module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936026A (en) * 1972-08-11 1974-04-03
JPS5359463A (en) * 1976-11-09 1978-05-29 Tadahiro Yuuki Method of and apparatus for measuring human volume

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936026A (en) * 1972-08-11 1974-04-03
JPS5359463A (en) * 1976-11-09 1978-05-29 Tadahiro Yuuki Method of and apparatus for measuring human volume

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136996A (en) * 1988-11-17 1990-05-25 Kubota Ltd Cup type automatic vending machine
JPH0271230U (en) * 1988-11-17 1990-05-30
JPH0564837B2 (en) * 1988-11-17 1993-09-16 Kubota Kk
JPH04232422A (en) * 1990-06-02 1992-08-20 Martin Lehmann Method and apparatus for measuring volume of container
JPH04113204A (en) * 1990-09-03 1992-04-14 Hazama Gumi Ltd Method of measuring stored quantity
USRE38617E1 (en) * 1997-03-18 2004-10-12 Hoya Corporation Method of injection molding plastic lens
DE10041051B4 (en) * 2000-08-22 2006-08-10 Fti Technologies Gmbh Method for volume measurement by pressure shock determination
WO2016143514A1 (en) * 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
JP2016165423A (en) * 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
US10962400B2 (en) 2015-03-10 2021-03-30 Fujifilm Corporation Measurement system, and measurement method
NL2020078B1 (en) * 2017-12-13 2019-06-21 Econview B V Measurement of a filling level of a bulk solids storage unit
WO2020035582A1 (en) * 2018-08-16 2020-02-20 Endress+Hauser Messtechnik Gmbh+Co. Kg Method for determining a remaining empty volume, method for on-site calibration of a fill level measuring device, and on-site calibration module

Similar Documents

Publication Publication Date Title
US6208943B1 (en) Fluid flow measurement correcting system and methods of constructing and utilizing same
JPS56114748A (en) Grain moisture measuring device
JPS62237323A (en) Measuring instrument for amount of particles stored in particle storage silo
CN106802176A (en) A kind of water level detecting system
WO2015007072A1 (en) Sliding groove scale
US8423303B2 (en) Method for real time measurement of mass flow rate of bulk solids
CN203642985U (en) Monitoring device for metering tank
JPS5847219A (en) Storage measuring device of silo for storing powder and particle
CN208721133U (en) A kind of counter weight type tipping bucket multiparameter measuring device
JP3690923B2 (en) Fresh concrete air meter and air amount measuring method
CN207540605U (en) A kind of quantitative Skip meter of magnetic force
CN105928595B (en) Weighing-up wave acquisition method
JPH0136887B2 (en)
JPS601120Y2 (en) mobile oil tank
CN104444383B (en) High-pressure dense-phase transportation metering method and device
CN215586419U (en) Liquid feeding device capable of accurately metering
JPS5622917A (en) Liquid level indicator
CN109403951A (en) Oil well three-phase metering integrated apparatus
TWI820841B (en) Inspection method of material in top bin of blast furnace
Mai et al. Design and test of porosity testing apparatus for granular materials
CN217277635U (en) Sand bulk density meter for concrete performance detection
JPS63193019A (en) Apparatus for measuring liquid fluid
CN210802676U (en) Weighing feeder calibrating device
CN208568013U (en) A kind of vacuum epoxy casting equipment low dose additive automatic metering system
CN105890727B (en) A kind of weighing-appliance