JPH04113204A - Method of measuring stored quantity - Google Patents

Method of measuring stored quantity

Info

Publication number
JPH04113204A
JPH04113204A JP2230592A JP23059290A JPH04113204A JP H04113204 A JPH04113204 A JP H04113204A JP 2230592 A JP2230592 A JP 2230592A JP 23059290 A JP23059290 A JP 23059290A JP H04113204 A JPH04113204 A JP H04113204A
Authority
JP
Japan
Prior art keywords
storage
storage tank
level
ccd camera
inflection points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2230592A
Other languages
Japanese (ja)
Other versions
JPH0769157B2 (en
Inventor
Kimihiro Aso
麻生 公裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Gumi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd filed Critical Hazama Gumi Ltd
Priority to JP2230592A priority Critical patent/JPH0769157B2/en
Publication of JPH04113204A publication Critical patent/JPH04113204A/en
Publication of JPH0769157B2 publication Critical patent/JPH0769157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To reduce time of measuring works and handling, and enable accurate measurement of entire stored forms, by utilizing laser ray measuring quantity of pulverulent bodies, granular materials, etc., stored in a storage tank. CONSTITUTION:When a one-dimensional laser ray 5, diverging in a plane, is projected obliquely into a storage tank 1 from a laser source 3 in the storage tank, an image is taken on locus line of irradiation 6, as shown in the figure, with a CCD camera 4, and an output of analog wave form from the CCD camera 4 in accordance with the irregularities of locus line of irradiation 6. Taking out the inflection points a and b by digital processing, the length of line segment L from the number of image elements of CCD camera 4 at that time is obtained and, the level of storage is calculated therefrom. Then using this storage level as reference, the volume a of the rugged parts of upper layer of storage above that is calculated, by integrating the digital data in accordance with the levels of unevenness between the inflection points a and b.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明1ま、貯蔵槽に貯蔵された粉体や粒体等の貯蔵量
をレーザ光を利用して測定する貯1ml測定方法に関す
る。
The present invention 1 relates to a method for measuring 1 ml of stored powder, granules, etc. stored in a storage tank using laser light.

【従来の技術】[Conventional technology]

セメントやコンクリート用骨材なとを貯蔵するサイロや
コルゲートビン等では、上部からの投入と下部からの排
出を繰り返すため、貯蔵物の貯蔵形状が複雑に変化する
。 従来、その貯蔵量の測定方法として超音波方式や静電誘
導方式が知られているが、これらは点的な測定であるた
めに全体の貯蔵量を知るには不十分であった。また、全
体を知るには点的な測定を繰り返L、多点の測定データ
を累積して貯蔵量を求める方法も考えられるが、測定作
業に手間がかかる上に貯蔵量算出の処理時間が長く、実
用化に至っていない。また、超音波方式の場合は設備コ
ストが高く、静電誘導方式では破損や計測点のズレが多
かった。
In silos, corrugated bins, and the like that store cement and concrete aggregates, the storage shape of the stored materials changes in a complex manner because they are repeatedly loaded from the top and discharged from the bottom. Conventionally, the ultrasonic method and the electrostatic induction method have been known as methods for measuring the storage amount, but since these methods are point measurements, they are insufficient to determine the total storage amount. In addition, in order to obtain a complete picture, it is possible to calculate the amount of storage by repeating point measurements or by accumulating measurement data from multiple points, but this method is time-consuming and takes time to calculate the amount of storage. For a long time, it has not been put into practical use. Additionally, the ultrasonic method requires high equipment costs, and the electrostatic induction method often suffers from breakage and misalignment of measurement points.

【発明が解決りようする課題】[Problem to be solved by the invention]

本発明の課題:よ、占、的ではなく締約な測定が行え、
測定作業及び処理時間の短縮が図机るとともに、貯蔵形
状全体の正確な測定ができ、しかも使用する設備も簡単
で経済的に測定できる新規な貯蔵量測定方法を従供する
ことである。
Problem of the present invention: It is possible to perform precise measurements rather than predictions,
It is an object of the present invention to provide a new storage amount measuring method that can reduce measurement work and processing time, accurately measure the entire storage shape, and use simple and economical equipment.

【課題を解決するための手段】[Means to solve the problem]

本発明による貯蔵量測定方法では、貯蔵槽の上方からそ
の内部を横断する拡がりをもった一次元レーザ光を照射
L、その照射軌跡線を含む貯蔵槽内部をCCDカメラで
撮影L、該c CDカメラの出力から得られた上記照射
線分の凹凸レベルに応じた一群のデジタルデータから、
貯蔵量を算出する。 一次元レーザ光の1回の照射で測定をよしとする場合に
は、一次元レーザ光を斜めに照射する。 その場合の貯蔵量算出の一つの手法としては、上記−群
のデジタルデ〜りから、貯蔵槽内面と貯蔵物上面との境
界である両端の変曲点を取り出してその間の線分長さL
、さらに該長さLから貯蔵し・ベルHを求めた後、上記
2つの変曲点の間の上記デジタルデータからこの貯蔵レ
ベルHより上位の貯蔵体積Vaを求めるとともに、この
高さ以下の貯蔵槽の容積Vbを求め、これらVa、Vb
を加算する。 より高い測定精度を望む場合には、一次元レザ光の照射
軌跡線を移動させて貯蔵物上を走査する。その場合の測
定量算出の手法としては、上記−群のデジタルデータか
ら、各照射軌跡線ごとに貯蔵槽内面と貯蔵物上面との境
界である両端の変曲点を取り出L、その変曲点群のうち
のレベル最小の変曲点のデジタルデータから貯蔵レベル
Hを求めた後、上記2つの変曲点の間の上記デジタルデ
ータからこの貯蔵レベルHの面を基準としたそれより上
位の貯蔵体積Vaを求めるとともに、これ以下の貯蔵槽
の容積Vbを求め、これらVa。 Vbを加算する。
In the storage amount measuring method according to the present invention, a one-dimensional laser beam that spreads across the inside of the storage tank is irradiated L from above, the inside of the storage tank including the irradiation trajectory line is photographed with a CCD camera, and the cCD From a group of digital data corresponding to the unevenness level of the irradiation line obtained from the camera output,
Calculate storage amount. If one-time irradiation with a one-dimensional laser beam is sufficient for measurement, the one-dimensional laser beam is irradiated obliquely. In that case, one method for calculating the storage amount is to extract the inflection points at both ends, which are the boundaries between the inner surface of the storage tank and the upper surface of the stored material, from the digital data of the above-mentioned group, and calculate the length of the line segment between them. L
, Further, after determining the storage volume H from the length L, the storage volume Va above this storage level H is determined from the digital data between the two inflection points, and the storage volume Va below this height is determined. Determine the volume Vb of the tank, and calculate these Va, Vb
Add. If higher measurement accuracy is desired, the irradiation trajectory line of the one-dimensional laser beam is moved to scan over the stored object. In this case, the method for calculating the measured quantity is to extract the inflection points L at both ends, which are the boundaries between the inner surface of the storage tank and the upper surface of the stored object, for each irradiation trajectory line from the digital data of group - above, and After calculating the storage level H from the digital data of the inflection point with the lowest level among the inflection points, the storage level H is calculated from the digital data between the two inflection points above the storage level H based on the surface of the storage level H. The storage volume Va is determined, and the volume Vb of the storage tank smaller than this is determined, and these Va. Add Vb.

【作  用】[For production]

第1図及び第2図に示すように、貯蔵槽1のレーザ光源
3から貯蔵槽内部に平面的拡がりをもった一次元レーザ
光5を斜めに照射すると、CCDカメラ4によって第3
図に示すような照射軌跡線6が描像され、該CCDカメ
ラ4から照射軌跡線6の凹凸に応じたアナログ波形の出
力(1フレームについて)が得られれる。この図におい
て両端の変曲点a、bは貯M槽内面と貯蔵物上面との境
界によって得られたもので、一次元レーザ光5を一定の
位置から例えば斜めに照射した場合、第2回において貯
蔵レベルHが鎖線より実線へと低くなるに従い貯蔵物の
上面はレーザ光#3及びCCDカメラ4から遠ざかる。 従って、両端の変曲点a、b間の線分長さしは貯蔵槽1
内の貯蔵物2の貯蔵レベルHに比例して変化する。そこ
で、変曲点a、bをデジタル処理により取り出L、その
取り出した変曲点a、b間におけるCCDカメラ4の画
素数から線分長さしを求め、これから貯蔵レベルHを算
定することができる。そして、この貯蔵レベルHを基準
としてそれより上位の貯蔵物上層の凹凸部分の体積Va
は、変曲点a、b間の凹凸レベルに応じたデジタルデー
タを積算することにより求めることができる。また、貯
蔵槽1が円筒形の場合、その半径をRとすると、貯蔵レ
ベルH以下の貯R槽の容積VbはVb−πR2Hによっ
て求まり、そして貯蔵量■はV=Va +Vbとなる。 貯蔵形状全体を含めた正確な貯蔵量を測定する場合には
、一次元レーザ光の照射軌跡線を移動させて貯蔵物上を
走査する。照射軌跡線ごとに得られる両端の変曲点のう
ち全照射軌跡線で最小の値の変曲点のデジタルデ〜りを
もって貯蔵レベルHを算定L、この貯蔵レベルHを基準
として各照射軌跡線について両端の変曲点間の凹凸部分
の断面積をそれぞれ求め、これを全照射軌跡線について
積算することによって貯蔵レベルHの面を基準としたそ
れより上位の体積Vaが得られる。この体積Vaに上記
と同様に貯蔵レベルH以下の貯蔵槽の容積Vbを加えれ
ば、貯蔵量Vが求まる。
As shown in FIGS. 1 and 2, when the one-dimensional laser beam 5 with a planar spread is irradiated obliquely from the laser light source 3 of the storage tank 1 into the inside of the storage tank, the CCD camera 4
An irradiation trajectory line 6 as shown in the figure is imaged, and an analog waveform output (for one frame) corresponding to the unevenness of the irradiation trajectory line 6 is obtained from the CCD camera 4. In this figure, the inflection points a and b at both ends are obtained by the boundary between the inner surface of the M storage tank and the upper surface of the stored material. As the storage level H becomes lower from the dashed line to the solid line, the upper surface of the storage object moves away from the laser beam #3 and the CCD camera 4. Therefore, the length of the line segment between the inflection points a and b at both ends is the storage tank 1
It changes in proportion to the storage level H of the storage material 2 within. Therefore, the inflection points a and b are extracted by digital processing L, the line segment length is determined from the number of pixels of the CCD camera 4 between the extracted inflection points a and b, and the storage level H is calculated from this. I can do it. Then, with this storage level H as a reference, the volume Va of the uneven portion of the upper layer of the stored material is
can be obtained by integrating digital data corresponding to the unevenness level between the inflection points a and b. Further, when the storage tank 1 is cylindrical, and its radius is R, the volume Vb of the storage tank below the storage level H is determined by Vb - πR2H, and the storage amount ■ becomes V=Va +Vb. When accurately measuring the storage amount including the entire storage shape, the irradiation trajectory line of the one-dimensional laser beam is moved to scan over the storage object. The storage level H is calculated using the digital value of the inflection point with the minimum value among all the irradiation trajectory lines among the inflection points at both ends obtained for each irradiation trajectory line, and each irradiation trajectory line is calculated based on this storage level H. By calculating the cross-sectional area of the uneven portion between the inflection points at both ends and integrating the cross-sectional areas for all the irradiation trajectory lines, a volume Va higher than the surface of the storage level H can be obtained. The storage amount V can be determined by adding the volume Vb of the storage tank below the storage level H to this volume Va in the same manner as described above.

【実 施 例】【Example】

以下、本発明の実施例について説明する。 第1図は本発明の貯蔵量測定方法の一実施状態の説明図
である。円筒形の貯蔵槽1に粉体または粒体等の貯蔵物
2が貯蔵されているものとすると、この貯蔵槽1の上方
にレーザ光#3及びCCDカメラ4を設置L、レーザ光
源3から一次元レーザ光5を斜め上方より貯蔵槽2内へ
照射する一方、その照射像をCCDカメラ4によって斜
め上方から撮像する。一次元レーザ光5は、貯蔵槽l内
を横断する平面的な拡がりをもっており、図の例では貯
蔵槽2の直径線に沿って横断するように照射している。 かかる照射によって、貯蔵物2の上面の凹凸形状に従っ
た軌跡部分の両端に貯蔵槽1の表面の形状に応じた軌跡
部分が連続する照射軌跡線6が生ずる。CCDカメラ4
は、この照射軌跡線6を一次元レーザ光5の入射角に対
して所定の角度θをもって撮像するように設置されてい
る。 CCDカメラ4はマトリックス型CCDイメージセンサ
を備え、貯蔵槽】内をその深さ方向に例えば512、直
径方向に480の縦横の画素にして撮像する。CCDカ
メラ4のモニタ画面に映し出される撮影像は、満杯時に
は第4図(a)、それ以下の貯蔵時には同図(b)、空
量時には同図(C1の如くになる。 CCDカメラ4のイメージセンサからの出力は、アナロ
グ・デジタル変換されてパーソナルコンピュータ等によ
る画像処理装置7に取り込まれ、デジタルデータにして
後述の如く画像処理される。 なお、レーザ光′a3もこの画像処理装置7によって制
御される。 第5図は画像処理装置7による処理の流れを示すフロー
チャートである。ステップ50でレーザ光源3から一次
元レーザ光5を上記のように照射L、ステップ51でC
CDカメラ4により上記の如く照射軌跡線6を撮像L、
ステップ52でその軌跡を2値化してメモリに記憶する
。照射軌跡線6の2値化データ中には、貯蔵物2の上面
形状によるもの以外に貯蔵槽1自体の表面形状によるも
のも含まれているため、空量時の撮像データを予めメモ
リに記憶しておき、これと現時点での照射軌跡線6の2
値化データとの差分を求めれば、貯蔵物2の上面形状の
軌跡データのみが残ることになる。そこで、ステップ5
3ではこのような差分計算によって貯蔵物2の上面軌跡
のみ(上面軌跡↓こよるデジタルデータ群)を検出する
。 貯蔵物2の上面軌跡は凹凸に応じた多数の変曲点がある
が、貯蔵槽lの内面と貯蔵物2との境界による変曲点は
、ステップ53で検出したデジタルデータ群の両端の変
曲点a、bとなる。そこで、ステップ54では、かかる
両端の変曲点a、bから貯蔵物2の上面軌跡の両端を検
出L、さらにステップ55では、両端の変曲点a、b間
の画素数から貯ii!物2の上面軌跡の両端を結ぶ線分
の長さしを算出する。この線分長さしは、両端の変曲点
a。 5間の画素数に予め決められている倍数を掛算すること
により求めることができる。 一次元レーザ光5は、上記のように貯蔵槽l内に斜め上
方からその内面を横断するように照射するため、上記線
分長さしは貯蔵物2の貯蔵レベルH(貯蔵物2の上面軌
跡の両端を結ぶ線より貯蔵槽1の底面へ降ろした垂線の
長さ)に比例L、そのレベル変化と一定の関係をもって
変化する。そこで、ステップ56では線分長さしから貯
蔵レベルHを算出する。この後、ステ2・ブ57!こδ
いてこの貯蔵レベルHを基準としてそれ以上における貯
蔵物2の体積Vaを、両端の変曲点a、b間におけるデ
ジタルデータから求める。すなわち、両端の変曲点a、
b間におけるデジタルデータを積算すれば、上記線分よ
り上の貯i!物2の垂直な断面積が求まる。これを貯蔵
レベルH以上における貯蔵物2の各垂直面での平均断面
積とすれば、これから上記体積Vaを概算値として算出
することができる。一方、ステップ58において貯蔵レ
ベルH以下の貯蔵槽1の容積Vbを算出する。この容積
■bは貯蔵槽1の半径をRとすると、この半径Rと貯蔵
レベルHとからπR2H−Vbなる計算によって求まる
。最後にステップ59でVaとVbとを加算して貯蔵量
Vを算出する。 上記の実施例では、一次元レーザ光5の1回の照射によ
って貯蔵量測定したが、貯蔵物2の上面全域の凹凸形状
も加味した正確な貯蔵量測定をする場合には、一次元レ
ーザ光5の照射位置をその長さ方向と直角な方向に移動
させて貯蔵槽1内を走査ε、照射軌跡線6を一定のピッ
チで移動させる。そして、各間引軌跡線6についてその
j最像した一群のデジタルデータをメモ1民二記憶L、
各照射軌跡線6ごとに両端の変曲点a、bを検出した後
、全照射軌跡線6について最小の値の変曲点を取り出L
、そのデジタルデータをもって貯蔵レベルHを算定する
。この後、貯蔵レベルHを基準として各照射軌跡線6に
ついて両端の変曲点a、  b間の凹凸部分の断面積を
それぞれ求め、これを全照射軌跡線について積算するこ
とによって貯蔵レベルHの面を基準としたそれより上位
の体積Vaを求める。さらに、貯蔵レベルH以下の貯蔵
槽1の容積Vbを上記と同様に算出L、VaとVbを加
算して貯蔵量■を算出する。
Examples of the present invention will be described below. FIG. 1 is an explanatory diagram of one implementation state of the storage amount measuring method of the present invention. Assuming that a storage material 2 such as powder or granules is stored in a cylindrical storage tank 1, a laser beam #3 and a CCD camera 4 are installed above the storage tank 1. The original laser beam 5 is irradiated into the storage tank 2 from diagonally above, and the irradiated image is captured by a CCD camera 4 from diagonally above. The one-dimensional laser beam 5 has a planar spread that traverses the inside of the storage tank 1, and in the illustrated example, it is irradiated across the storage tank 2 along the diameter line. By this irradiation, an irradiation trajectory line 6 is generated in which a trajectory portion corresponding to the shape of the surface of the storage tank 1 is continuous at both ends of a trajectory portion following the uneven shape of the upper surface of the stored object 2. CCD camera 4
is installed so as to image the irradiation trajectory line 6 at a predetermined angle θ with respect to the incident angle of the one-dimensional laser beam 5. The CCD camera 4 is equipped with a matrix-type CCD image sensor, and images the inside of the storage tank with, for example, 512 vertical and horizontal pixels in the depth direction and 480 vertical and horizontal pixels in the diameter direction. The photographed image displayed on the monitor screen of the CCD camera 4 is as shown in Figure 4 (a) when it is full, as shown in Figure 4 (b) when it is less than that, and as shown in Figure 4 (C1) when it is empty. Image of CCD camera 4 The output from the sensor is converted from analog to digital and taken into an image processing device 7 such as a personal computer, where it is converted into digital data and subjected to image processing as described below.The laser beam 'a3 is also controlled by this image processing device 7. FIG. 5 is a flowchart showing the flow of processing by the image processing device 7. In step 50, the one-dimensional laser beam 5 is irradiated with L from the laser light source 3 as described above, and in step 51, C is irradiated with the one-dimensional laser beam 5.
The irradiation trajectory line 6 is imaged as described above by the CD camera 4 L,
In step 52, the locus is binarized and stored in memory. Since the binarized data of the irradiation trajectory line 6 includes data due to the surface shape of the storage tank 1 itself in addition to the data due to the top surface shape of the stored object 2, the imaged data when empty is stored in the memory in advance. In addition, this and the current irradiation trajectory line 6-2
If the difference with the valued data is calculated, only the locus data of the top surface shape of the stored object 2 will remain. Therefore, step 5
In step 3, only the upper surface locus of the stored object 2 (upper surface locus↓digital data group) is detected by such a difference calculation. The locus of the upper surface of the stored object 2 has many inflection points depending on the unevenness, but the inflection point due to the boundary between the inner surface of the storage tank l and the stored object 2 is determined by the change at both ends of the digital data group detected in step 53. The curve points are a and b. Therefore, in step 54, both ends of the upper surface trajectory of the stored object 2 are detected L from the inflection points a and b at both ends, and in step 55, the number of pixels between the inflection points a and b at both ends is detected L! The length of the line segment connecting both ends of the upper surface locus of object 2 is calculated. The length of this line segment is the inflection point a at both ends. It can be determined by multiplying the number of pixels between 5 and 5 by a predetermined multiple. Since the one-dimensional laser beam 5 is irradiated into the storage tank l from diagonally above so as to cross the inner surface thereof, the length of the line segment is the storage level H of the storage item 2 (the upper surface of the storage tank 2). L is proportional to the length of the perpendicular line drawn from the line connecting both ends of the locus to the bottom of the storage tank 1), and changes in a constant relationship with the level change. Therefore, in step 56, the storage level H is calculated from the line segment length. After this, Step 2 Bu57! This δ
Using this storage level H as a reference, the volume Va of the stored object 2 above it is determined from digital data between the inflection points a and b at both ends. That is, the inflection points a at both ends,
If you integrate the digital data between b, then the storage i! above the above line segment! Find the vertical cross-sectional area of object 2. If this is taken as the average cross-sectional area of the stored object 2 on each vertical plane at the storage level H or higher, the volume Va can be calculated from this as an approximate value. On the other hand, in step 58, the volume Vb of the storage tank 1 below the storage level H is calculated. This volume (2b) is determined by the calculation πR2H-Vb from this radius R and the storage level H, where R is the radius of the storage tank 1. Finally, in step 59, the storage amount V is calculated by adding Va and Vb. In the above embodiment, the storage amount was measured by one irradiation with the one-dimensional laser beam 5. However, in order to accurately measure the storage amount by taking into account the uneven shape of the entire upper surface of the storage object 2, it is necessary to use the one-dimensional laser beam 5. The irradiation position 5 is moved in a direction perpendicular to its length direction, and the inside of the storage tank 1 is scanned ε, and the irradiation trajectory line 6 is moved at a constant pitch. Then, for each thinned-out locus line 6, the most imaged group of digital data is stored in a memo 1, 2, and a memory L.
After detecting the inflection points a and b at both ends of each irradiation trajectory line 6, extract the inflection point with the minimum value for all irradiation trajectory lines 6.
, calculate the storage level H using the digital data. After this, the cross-sectional area of the uneven portion between the inflection points a and b at both ends of each irradiation trajectory line 6 is calculated using the storage level H as a reference, and this is integrated for all irradiation trajectory lines to determine the surface of the storage level H. The volume Va above the reference value Va is determined. Furthermore, the volume Vb of the storage tank 1 below the storage level H is calculated L in the same way as above, and the storage amount ■ is calculated by adding Va and Vb.

【発明の効果】【Effect of the invention】

本発明の貯蔵量測定方法によれば、点的ではなく絆的な
測定が行え、測定作業及び処理時間の短縮が回れるとと
もに、貯蔵物全体の正確な測定ができ、しかも使用する
設備も簡単で経済的に測定できる。
According to the storage amount measurement method of the present invention, it is possible to perform bond-based measurement rather than point-by-point measurement, shorten measurement work and processing time, and accurately measure the entire storage amount, and the equipment used is simple. can be measured economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の貯i!Th測定方法の一実施例の説明
図、第2図はその測定概念図、第3図は一次元レーザ光
による照射軌跡線の線形図、第4図(a)ないしFC)
はCCDカメラのモニタ画面に映し出される照射軌跡線
の映像図で、(a)は貯蔵槽か満杯のとき、(C)は貯
蔵物が貯蔵されているとき、(C)は空量のときの図で
ある。第5図は画像処理装置による処理の流れを示すフ
ローチャートである。 ■・・・・・・貯蔵槽、2・・・・・・貯蔵物、3・・
・・・・レーザ光源、4・・・・・・CCDカメラ、5
・・・・・・一次元レーザ光。 第4 図(CI> 一一512画素−一 第4図(b) 第 図 第 図 第 図
Figure 1 shows the storage i! of the present invention! An explanatory diagram of an example of the Th measurement method, Fig. 2 is a conceptual diagram of the measurement, Fig. 3 is a linear diagram of the irradiation trajectory line by a one-dimensional laser beam, Fig. 4 (a) to FC)
The figures below are image diagrams of the irradiation trajectory lines displayed on the CCD camera monitor screen. (a) is when the storage tank is full, (C) is when the storage tank is stored, and (C) is when it is empty. It is a diagram. FIG. 5 is a flowchart showing the flow of processing by the image processing device. ■...Storage tank, 2...Storage, 3...
... Laser light source, 4 ... CCD camera, 5
...One-dimensional laser light. Fig. 4 (CI> 11512 pixels - 1 Fig. 4 (b) Fig. Fig. Fig.

Claims (1)

【特許請求の範囲】 1、貯蔵槽の上方からその内部を横断する拡がりをもっ
た一次元レーザ光を照射し、その照射軌跡線を含む貯蔵
槽内部をCCDカメラで撮影し、該CCDカメラの出力
から得られた上記照射軌跡線の凹凸レベルに応じた一群
のデジタルデータから、貯蔵量を算出することを特徴と
する貯蔵量測定方法。 2、貯蔵槽の上方からその内部を横断する拡がりをもっ
た一次元レーザ光を斜めに照射し、その照射軌跡線を含
む貯蔵槽内部をCCDカメラで撮影し、該CCDカメラ
の出力より得られた上記照射軌跡線の凹凸レベルに応じ
た一群のデジタルデータから、貯蔵槽内面と貯蔵物上面
との境界である両端の変曲点を取り出してその間の線分
長さL、さらに該長さLから貯蔵レベルHを求めた後、
上記2つの変曲点の間の上記デジタルデータからこの貯
蔵レベルHより上位の貯蔵体積Vaを求めるとともに、
この高さ以下の貯蔵槽の容積Vbを求め、これらVa、
Vbを加算することを特徴とする貯蔵量測定方法。 3、貯蔵槽の上方からその内部を横断する拡がりをもっ
た一次元レーザ光を照射し、その照射軌跡線を含む貯蔵
槽内部をCCDカメラで撮影しながら上記一次元レーザ
光の照射軌跡線を移動させて貯蔵槽内部を走査し、上記
CCDカメラの出力より得られた上記照射軌跡線の凹凸
レベルに応じた一群のデジタルデータから、各照射軌跡
線ごとに貯蔵槽内面と貯蔵物上面との境界である両側の
変曲点を取り出し、その変曲点群のうちのレベル最小の
変曲点のデジタルデータから貯蔵レベルHを求めた後、
上記2つの変曲点の間の上記デジタルデータからこの貯
蔵レベルHの面を基準としたそれより上位の貯蔵体積V
aを求めるとともに、これ以下の貯蔵槽の容積Vbを求
め、これらVa、Vbを加算することを特徴とする貯蔵
量測定方法。
[Claims] 1. A one-dimensional laser beam that spreads across the inside of the storage tank is irradiated from above, and the inside of the storage tank including the irradiation trajectory line is photographed with a CCD camera. A storage amount measuring method characterized in that the storage amount is calculated from a group of digital data corresponding to the level of unevenness of the irradiation trajectory line obtained from the output. 2. A one-dimensional laser beam that spreads across the inside of the storage tank is irradiated obliquely from above, and the inside of the storage tank including the irradiation trajectory line is photographed with a CCD camera. From a group of digital data corresponding to the unevenness level of the irradiation trajectory line, the inflection points at both ends, which are the boundaries between the inner surface of the storage tank and the upper surface of the stored material, are extracted, and the line segment length L between them is determined, and the length is further calculated. After finding the storage level H from L,
Determine the storage volume Va above the storage level H from the digital data between the two inflection points, and
The volume Vb of the storage tank below this height is determined, and these Va,
A storage amount measuring method characterized by adding Vb. 3. Irradiate a one-dimensional laser beam that spreads across the inside of the storage tank from above, and record the irradiation trajectory line of the one-dimensional laser beam while photographing the interior of the storage tank, including the irradiation trajectory line, with a CCD camera. The interior of the storage tank is scanned, and the inner surface of the storage tank and the top surface of the stored items are determined for each irradiation trajectory line from a group of digital data corresponding to the unevenness level of the irradiation trajectory line obtained from the output of the CCD camera. After extracting the inflection points on both sides, which are the boundaries of
From the above digital data between the above two inflection points, the storage volume V above this storage level H is taken as a reference.
A storage amount measuring method characterized by determining a, determining a volume Vb of a storage tank smaller than this, and adding these Va and Vb.
JP2230592A 1990-09-03 1990-09-03 Storage amount measurement method Expired - Lifetime JPH0769157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230592A JPH0769157B2 (en) 1990-09-03 1990-09-03 Storage amount measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230592A JPH0769157B2 (en) 1990-09-03 1990-09-03 Storage amount measurement method

Publications (2)

Publication Number Publication Date
JPH04113204A true JPH04113204A (en) 1992-04-14
JPH0769157B2 JPH0769157B2 (en) 1995-07-26

Family

ID=16910157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230592A Expired - Lifetime JPH0769157B2 (en) 1990-09-03 1990-09-03 Storage amount measurement method

Country Status (1)

Country Link
JP (1) JPH0769157B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242337A (en) * 1994-01-12 1995-09-19 Japan Energy Corp Grain fitting monitoring method and device
CN104176389A (en) * 2014-08-08 2014-12-03 常州市日发精密机械厂 Inner peeping type plastic particle storing device
JP5844925B1 (en) * 2015-01-29 2016-01-20 株式会社中嶋製作所 Feed remaining amount measuring device and barn management system using the same
JP2017039498A (en) * 2015-08-17 2017-02-23 清水建設株式会社 Silo management system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255502A (en) * 1985-09-04 1987-03-11 Toyota Auto Body Co Ltd Method of measuring shape of matter by three-dimensional measuring machine
JPS6281513A (en) * 1985-10-04 1987-04-15 Nec Corp Profilometer
JPS62237323A (en) * 1986-04-09 1987-10-17 Fujita Corp Measuring instrument for amount of particles stored in particle storage silo

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255502A (en) * 1985-09-04 1987-03-11 Toyota Auto Body Co Ltd Method of measuring shape of matter by three-dimensional measuring machine
JPS6281513A (en) * 1985-10-04 1987-04-15 Nec Corp Profilometer
JPS62237323A (en) * 1986-04-09 1987-10-17 Fujita Corp Measuring instrument for amount of particles stored in particle storage silo

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242337A (en) * 1994-01-12 1995-09-19 Japan Energy Corp Grain fitting monitoring method and device
CN104176389A (en) * 2014-08-08 2014-12-03 常州市日发精密机械厂 Inner peeping type plastic particle storing device
JP5844925B1 (en) * 2015-01-29 2016-01-20 株式会社中嶋製作所 Feed remaining amount measuring device and barn management system using the same
JP2017039498A (en) * 2015-08-17 2017-02-23 清水建設株式会社 Silo management system

Also Published As

Publication number Publication date
JPH0769157B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
CA1103018A (en) Optical measuring apparatus
US11859966B2 (en) Determining a surface characteristic of a roadway using an imaging device
US9273951B2 (en) Optical method and apparatus for determining a characteristic such as volume and density of an excavated void in a construction material
JPH04252940A (en) Method and apparatus for inspecting flaw of end part of body
Fang et al. Application of a multi-smartphone measurement system in slope model tests
CN101033954A (en) Liquid assisted section scanning measurement method for three-dimensional form
JP2005283440A (en) Vibration measuring device and measuring method thereof
CN201007646Y (en) Liquid auxiliary dislocation scanning three-dimensional shape measuring apparatus
US5463697A (en) Apparatus for detecting an edge of an image
JPH04113204A (en) Method of measuring stored quantity
Heyduk Laser triangulation in 3-dimensional granulometric analysis
JPH05333160A (en) Cloud amount measuring method and device
EP0094522A2 (en) Edge detection
JP2681745B2 (en) A method for measuring the vertical and lateral movement of an object to be measured with a speckle pattern using laser light.
JPH02287139A (en) Surface tension measuring instrument
Aksamitauskas et al. Investigation of error sources measuring deformations of engineering structures by geodetic methods
US20240133684A1 (en) Determining a surface characteristic of a roadway using an imaging device
JP2642569B2 (en) Image reading method and apparatus
JPH11264770A (en) Temperature measuring device for coal pile
JPS61186828A (en) Method for obtaining stress distribution image
JPS606805A (en) Optical detection of edge position
JP2023161870A (en) Scrap pile shape measuring device, scrap pile shape measuring method, and program
JPH01242906A (en) Linearizing method by light cutting method
Opilski et al. Static and dynamic displacement of bridges measure using digital camcorder
JP2000074721A (en) Apparatus for detecting received vol. of melt