JPS60129552A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPS60129552A JPS60129552A JP23915983A JP23915983A JPS60129552A JP S60129552 A JPS60129552 A JP S60129552A JP 23915983 A JP23915983 A JP 23915983A JP 23915983 A JP23915983 A JP 23915983A JP S60129552 A JPS60129552 A JP S60129552A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- resin
- powder
- coating layer
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Fluid Heaters (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は温水器、湯沸器などに使用され、銅製伝熱部材
を有する熱交換器に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger used in water heaters, water heaters, etc., and having a copper heat transfer member.
従来例の構成とその問題点
従来より、この種の熱交換器の伝熱部材は加工性、熱伝
導性が良好でかつ一般の水道水に対し耐食的である銅を
用いることが多い。しかし地下水中のようにPH(水素
イオン濃度)が7以下で遊離炭酸(水中に溶解した炭酸
ガス)や塩素イオン、硝酸イオンなどの陰イオンが多量
に存在する水質環境下では前記銅が腐食される。Conventional Structures and Their Problems Conventionally, the heat transfer members of this type of heat exchanger have often been made of copper, which has good workability and thermal conductivity and is corrosion resistant to ordinary tap water. However, in water environments such as groundwater where the pH (hydrogen ion concentration) is 7 or less and there are large amounts of free carbon dioxide (carbon dioxide gas dissolved in water), chlorine ions, nitrate ions, and other anions, the copper is corroded. Ru.
璃゛食によって溶出した銅イオンは石けんなどの脂肪酸
と反応して青色の銅錯塩を形成し、これが水を青色に変
色させたり、風呂等で使用するタオルに前記銅錯塩が吸
着してタオルを青く変色させるなどの問題があった。Copper ions eluted by drinking water react with fatty acids such as soap to form blue copper complex salts, which discolor water to blue, and the copper complex salts adsorb to towels used in baths, etc. There were problems such as the color turning blue.
帽の胸゛食を防止する手段として、ケイ酸塩、リン酸塩
のポリマーなとの防錆剤を水に添加し、銅表面に0「1
記防錆成分の保護被膜を形成する方法かあるが、この保
護被膜は短期間に劣化し、剥蔭[するため定期的に防錆
剤を添加する必要があり、一般家庭ではその管理が困難
であるという問題があった。As a means of preventing corrosive corrosion of the cap, rust inhibitors such as silicate and phosphate polymers are added to the water to coat the copper surface.
There is a method of forming a protective film of rust-preventing ingredients, but this protective film deteriorates in a short period of time and peels off, so it is necessary to periodically add rust-preventive agents, which is difficult to manage in ordinary households. There was a problem that.
まだ、銅表面にニッケル、スズなどの金属メッキを施す
方法は、前述の腐食性の強い水質環境下におかれると前
記ニッケル、スズは銅よりも電位的に低い金属であるた
め前述の腐食性の強い水質環境下では前記メッキ層が短
期間で腐食され、メツキ層の剥離、消耗により、母材で
ある銅が腐食するという問題があった。However, the method of plating metals such as nickel and tin on the copper surface is difficult to achieve because nickel and tin are metals with a lower electric potential than copper when exposed to the highly corrosive water environment described above. In a water environment with strong water quality, the plating layer corrodes in a short period of time, and as a result of peeling and wear of the plating layer, the base metal, copper, corrodes.
さらに、有機系、無機系バインダーのコーティング層、
コーティング層自身に多数のピンホールが存在し、この
ピンホールを介してfMが1に食するため、膜厚を10
0μm以上とかなり厚くする必要があり、その結果、熱
交換効率が著しく低下するなどの問題を有していた。Furthermore, a coating layer of organic and inorganic binders,
There are many pinholes in the coating layer itself, and fM eclipses to 1 through these pinholes, so the film thickness is reduced to 10
It is necessary to make the thickness considerably thicker, 0 μm or more, and as a result, there are problems such as a significant decrease in heat exchange efficiency.
発明の目的
本発明はかかる問題を解消するもので、長期にわたり、
銅製伝熱部材を有する熱交換の腐食を防止し、機器とし
ての耐久性、信頼性の向上を図ることを目的とする。OBJECT OF THE INVENTION The present invention solves such problems and provides long-term
The purpose is to prevent corrosion of heat exchangers that have copper heat transfer members and to improve the durability and reliability of the equipment.
発明の構成
本発明は銅製伝熱部桐表面にアクリル樹脂とメラミン樹
n旨とエポキシ4fjIH旨よりなるバインダーに、炭
化ケイ素粉末と標準電極電位が。V以下の金属粉末を分
散させた塗料でコーティング層を形成し1、さらにこの
上にアクリル樹脂とメラミン樹脂とエポキシ樹脂よりな
るバインダーでコーティング層を形成したものである。Structure of the Invention The present invention consists of a copper heat transfer part made of paulownia wood, a binder made of acrylic resin, melamine wood, and epoxy 4FJIH, silicon carbide powder, and standard electrode potential. A coating layer is formed with a paint in which metal powder of V or less is dispersed (1), and a coating layer is further formed thereon with a binder made of an acrylic resin, a melamine resin, and an epoxy resin.
この構成により、熱交換器が地下水のような腐食性の強
い水質環境下で使用されても銅製伝熱部材表面に二層の
コーティング層を形成しているため、前記銅製伝熱部材
の腐食を著しく抑制することができ、銅の腐食によって
発生する水やタオルの音色化を防止できる。With this configuration, even if the heat exchanger is used in a highly corrosive water environment such as underground water, a two-layer coating layer is formed on the surface of the copper heat transfer member, preventing corrosion of the copper heat transfer member. It is possible to significantly suppress the timbre of water and towels caused by copper corrosion.
実施例の説明
以下本発明の一実施例について、図面に基づいて説明す
る。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
図は本発明の一実施例を示す熱交換器の一部断面図であ
る。図において、1は銅製伝熱部材であり、水と接触す
る側の表面にアクリル樹脂とメラミン樹脂とエポキシ樹
脂をバインダーとし、□これに炭化ケイ素粉末き標準′
小極電位が0v以Fの金属粉末を添加した塗料を加熱硬
化することにより、コーティング層2が形成され、この
コーディング層2中には炭化ケイ素粉末2aと標準電極
電位が0v以下の金属粉末2bが均一に分散している。The figure is a partial sectional view of a heat exchanger showing an embodiment of the present invention. In the figure, 1 is a copper heat transfer member, with acrylic resin, melamine resin, and epoxy resin as binders on the surface that comes into contact with water, and silicon carbide powder applied to this as standard
A coating layer 2 is formed by heating and curing a paint to which metal powder with a small electrode potential of 0 V or less F is added, and this coating layer 2 contains silicon carbide powder 2a and metal powder 2b with a standard electrode potential of 0 V or less. is evenly distributed.
さらにこのコーティング層2の上にはアクリル樹脂とメ
ラミン41とエポキシ樹脂の三種を混合したバインダー
を塗布し、加熱便化することによりコーティング層3が
形成される。Further, on this coating layer 2, a binder made of a mixture of acrylic resin, melamine 41, and epoxy resin is applied and heated to form a coating layer 3.
この構成において、コーティング層2及び3はバインダ
ーとして用いているアクリル樹脂とメラミン樹脂が加熱
硬化の1祭、分子構造が三次元の密な網目構造上なるた
めに水分子や腐食因子の透過性か小さく、しかもガラス
転移点が低いためにピンホールを極めて少なくするこ吉
かできるのでこのコーティング層2及び3の存在にょシ
、地下水などに多量に存在する腐食因子の銅製伝熱部材
1への侵入を大部分阻止することができる。In this configuration, coating layers 2 and 3 are made of acrylic resin and melamine resin used as binders, which are cured by heat, and their molecular structure is a three-dimensional dense network structure, making them impermeable to water molecules and corrosion factors. Because they are small and have a low glass transition point, the presence of these coating layers 2 and 3 makes it possible to minimize the number of pinholes.The existence of these coating layers 2 and 3 prevents corrosive factors, which exist in large quantities in underground water, from penetrating the copper heat transfer member 1. can be largely prevented.
しかし、コーティング層2及び3はいずれもピンホール
を完全に除去することは不可能であるためにこのピンホ
ールを介して、11J記腐食因子がわずかに侵入するが
、コーティング層2中に存在する金属粉末2bの標準電
極電位が。V以下であり、母材である銅製伝熱部材1よ
りも電位的に低いので前記金属粉末2bが侵入してきた
腐食因子(!−選択的に腐食反応を起こし、腐食因子が
このコーティング層2内で消費されるので銅製伝熱部材
1の朋食は防止され、銅イオンとして水中に溶出してく
ることはなくなる。また、コーティング層2の上にはコ
ーティング層3が存在するためにこのコーティング層a
を通過してくる前記腐食因子はわずかな量となるので、
コーティング層2中に存在する金属粉末2bの腐食によ
る損失はわずかなものであり、長期にわたり、銅製伝熱
部4−A1の腐食及び水中への銅イオンの演出を防止す
るこ七ができる。However, since it is impossible to completely remove pinholes in both coating layers 2 and 3, the corrosion factor No. 11J slightly enters through these pinholes, but is present in coating layer 2. The standard electrode potential of metal powder 2b is. V or less, and the potential is lower than that of the copper heat transfer member 1, which is the base material, so the metal powder 2b enters the corrosion factor (!- selectively causes a corrosion reaction, and the corrosion factor enters the coating layer 2. Since the copper heat transfer member 1 is consumed in water, corrosion of the copper heat transfer member 1 is prevented, and copper ions are no longer eluted into the water.Also, since the coating layer 3 is present on the coating layer 2, this coating layer a
Since the amount of the corrosion factor passing through is small,
The loss of the metal powder 2b present in the coating layer 2 due to corrosion is small, and it is possible to prevent corrosion of the copper heat transfer part 4-A1 and production of copper ions into the water over a long period of time.
また、コーティング層2内には熱伝導性の良好な炭化ケ
イ素粉末2aを分散させているので銅のもつ優れた熱伝
導性が損われず、その結果、銅製伝熱部材から水への熱
伝達が損われないため高い熱交換効率を実現することが
できる。In addition, since silicon carbide powder 2a with good thermal conductivity is dispersed in the coating layer 2, the excellent thermal conductivity of copper is not impaired, and as a result, heat transfer from the copper heat transfer member to water is improved. High heat exchange efficiency can be achieved because the heat exchange efficiency is not impaired.
さらに、コーティング層2及び3にエポキシ樹脂を添加
しているので銅製伝熱部材1及びコーティング層2の密
着性を著しく向上させることができる8
本発明のコーティング層2及び3に用いるアクリル樹脂
とメラミン樹脂とエポキシ樹脂の組成比は、水や腐食因
子の透過性を小さくする分子構造と優れた密着性を実現
するために重量比で〔アクリル(封月旨/メラミン(舅
月旨〕か[1/1]〜[110,7] 。Furthermore, since epoxy resin is added to the coating layers 2 and 3, the adhesion between the copper heat transfer member 1 and the coating layer 2 can be significantly improved.8 Acrylic resin and melamine used in the coating layers 2 and 3 of the present invention The composition ratio of resin and epoxy resin is determined by weight ratio [Acrylic (Hugetsuji)/Melamine (Sogetsuji]) or [1 /1] ~ [110,7].
〔アクリル樹脂とメラミン樹脂/エポキシ樹脂〕が[I
lo、1]〜[Ilo、2.1の範囲であることが望ま
しい。[Acrylic resin and melamine resin/epoxy resin] is [I
The range is preferably from [Ilo, 1] to [Ilo, 2.1.
一方、標準電極電位が0V以下の余端粉末2bとしては
アルミニラ云、亜鉛、スス゛、ニッケル、鉄が挙げられ
、中でも耐食性の良好なアルミニウム、ニッケル、スズ
が良い。On the other hand, examples of the residual powder 2b having a standard electrode potential of 0 V or less include aluminum, zinc, tin, nickel, and iron, and among them, aluminum, nickel, and tin are preferable because of their good corrosion resistance.
発明の効果
本発明の熱交換器によれば、銅製伝熱部材の表面に耐食
性、熱伝導性に優れた2層のコーティングを形成してい
るので伝熱部材である銅の腐食を阻止し、銅イオンの溶
出を防止することができるので銅イオンが原因で起こる
水やタオルの青色化を防止することができるとともに、
銅製伝熱部材の腐食を長期にわたり防止できることや銅
のもつ優れた熱伝導性を損わないという点からは熱交換
器としての耐久性、信頼性の大幅な向上が期待できるも
のである。Effects of the Invention According to the heat exchanger of the present invention, since a two-layer coating with excellent corrosion resistance and thermal conductivity is formed on the surface of the copper heat transfer member, corrosion of the copper, which is the heat transfer member, is prevented. Since it can prevent the elution of copper ions, it can prevent water and towels from turning blue due to copper ions, and
Since corrosion of copper heat transfer members can be prevented for a long period of time and copper's excellent thermal conductivity is not impaired, it is expected that the durability and reliability of heat exchangers will be significantly improved.
図は不発り1の一実施例である熱交換器の−r?16断
面図である。
2・・・・・・コーティング層、3・・・・・・コーテ
ィング層、2a・・・・・・炭化ケイ累粉末、2b・・
・・・・金属粉末。The figure shows -r? of a heat exchanger which is an example of misfire 1. 16 is a sectional view. 2...Coating layer, 3...Coating layer, 2a...Silicon carbide powder, 2b...
...Metal powder.
Claims (1)
ポキシ樹脂よりなるバインダーに炭化ケーイ素粉末と標
準電極電位がOV以下の金属粉末を分散させた塗料でコ
ーティング層を形成し、さらにこの上にアクリル樹脂と
メラミン樹脂とエポキシ樹脂よりなるバインダーでコー
ティング層を形成した熱交換器。A coating layer is formed on the surface of the copper heat transfer member with a paint in which silicon carbide powder and metal powder with a standard electrode potential of OV or less are dispersed in a binder made of acrylic resin, melamine resin, and epoxy resin, and then acrylic is coated on top of this. A heat exchanger with a coating layer formed with a binder made of resin, melamine resin, and epoxy resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23915983A JPS60129552A (en) | 1983-12-19 | 1983-12-19 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23915983A JPS60129552A (en) | 1983-12-19 | 1983-12-19 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60129552A true JPS60129552A (en) | 1985-07-10 |
Family
ID=17040613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23915983A Pending JPS60129552A (en) | 1983-12-19 | 1983-12-19 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60129552A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014031516A1 (en) * | 2012-08-21 | 2014-02-27 | Uop Llc | Methane conversion apparatus and process using a supersonic flow reactor |
US8927769B2 (en) | 2012-08-21 | 2015-01-06 | Uop Llc | Production of acrylic acid from a methane conversion process |
US8933275B2 (en) | 2012-08-21 | 2015-01-13 | Uop Llc | Production of oxygenates from a methane conversion process |
US8937186B2 (en) | 2012-08-21 | 2015-01-20 | Uop Llc | Acids removal and methane conversion process using a supersonic flow reactor |
US9023255B2 (en) | 2012-08-21 | 2015-05-05 | Uop Llc | Production of nitrogen compounds from a methane conversion process |
US9205398B2 (en) | 2012-08-21 | 2015-12-08 | Uop Llc | Production of butanediol from a methane conversion process |
US9308513B2 (en) | 2012-08-21 | 2016-04-12 | Uop Llc | Production of vinyl chloride from a methane conversion process |
US9327265B2 (en) | 2012-08-21 | 2016-05-03 | Uop Llc | Production of aromatics from a methane conversion process |
US9370757B2 (en) | 2012-08-21 | 2016-06-21 | Uop Llc | Pyrolytic reactor |
US9434663B2 (en) | 2012-08-21 | 2016-09-06 | Uop Llc | Glycols removal and methane conversion process using a supersonic flow reactor |
US9656229B2 (en) | 2012-08-21 | 2017-05-23 | Uop Llc | Methane conversion apparatus and process using a supersonic flow reactor |
US9689615B2 (en) | 2012-08-21 | 2017-06-27 | Uop Llc | Steady state high temperature reactor |
US9707530B2 (en) | 2012-08-21 | 2017-07-18 | Uop Llc | Methane conversion apparatus and process using a supersonic flow reactor |
-
1983
- 1983-12-19 JP JP23915983A patent/JPS60129552A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014031516A1 (en) * | 2012-08-21 | 2014-02-27 | Uop Llc | Methane conversion apparatus and process using a supersonic flow reactor |
US8927769B2 (en) | 2012-08-21 | 2015-01-06 | Uop Llc | Production of acrylic acid from a methane conversion process |
US8933275B2 (en) | 2012-08-21 | 2015-01-13 | Uop Llc | Production of oxygenates from a methane conversion process |
US8937186B2 (en) | 2012-08-21 | 2015-01-20 | Uop Llc | Acids removal and methane conversion process using a supersonic flow reactor |
US9023255B2 (en) | 2012-08-21 | 2015-05-05 | Uop Llc | Production of nitrogen compounds from a methane conversion process |
US9205398B2 (en) | 2012-08-21 | 2015-12-08 | Uop Llc | Production of butanediol from a methane conversion process |
US9308513B2 (en) | 2012-08-21 | 2016-04-12 | Uop Llc | Production of vinyl chloride from a methane conversion process |
US9327265B2 (en) | 2012-08-21 | 2016-05-03 | Uop Llc | Production of aromatics from a methane conversion process |
US9370757B2 (en) | 2012-08-21 | 2016-06-21 | Uop Llc | Pyrolytic reactor |
US9434663B2 (en) | 2012-08-21 | 2016-09-06 | Uop Llc | Glycols removal and methane conversion process using a supersonic flow reactor |
US9656229B2 (en) | 2012-08-21 | 2017-05-23 | Uop Llc | Methane conversion apparatus and process using a supersonic flow reactor |
US9689615B2 (en) | 2012-08-21 | 2017-06-27 | Uop Llc | Steady state high temperature reactor |
US9707530B2 (en) | 2012-08-21 | 2017-07-18 | Uop Llc | Methane conversion apparatus and process using a supersonic flow reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60129552A (en) | Heat exchanger | |
AU648452B2 (en) | Multilayer coating, with manufacturing process and mode of application | |
EP0119608B1 (en) | Coating composite for extended corrosion resistance | |
PL175903B1 (en) | Pipe section of conduit, pipe conduit and method of corrosion protection of pipe element by coating | |
JPS60171349A (en) | Heat exchanger | |
CA2065536A1 (en) | Organic composite coated steel strip having improved corrosion resistance and spot weldability | |
JPS60165387A (en) | Thin-film corrosion-resistant laminate plated steel pipe | |
JPS61250494A (en) | Heat exchanger | |
JPS6343479B2 (en) | ||
JPS6155598A (en) | Corrosion-proof structure for heat exchanger | |
JPH0693467A (en) | Formation of steel excellent in weather resistance and rust layer | |
JPS60134199A (en) | Heat exchanger | |
JPH0328672B2 (en) | ||
CN115404474B (en) | Medium-chromium weathering steel small member surface stabilization treatment fluid and preparation and use methods thereof | |
JPS60141549A (en) | Corrosion-resistant coated laminate | |
JPS59142394A (en) | Heat exchanger | |
JPS60228851A (en) | Heat exchanger | |
JPS59153098A (en) | Heat exchanger | |
US4335754A (en) | Prevention of hydrogen embrittlement of metals in corrosive environments | |
JPH01163278A (en) | Anticorrosion coating composition | |
JPS5812753A (en) | Corrosion protective layer | |
JPH04371594A (en) | Iron coated cr-containing steel sheet | |
JPS6245049Y2 (en) | ||
JPH0217287A (en) | Copper pipe for feeding water/hot water | |
JPS58213196A (en) | Heat exchanger |