JPS60134199A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS60134199A
JPS60134199A JP24602783A JP24602783A JPS60134199A JP S60134199 A JPS60134199 A JP S60134199A JP 24602783 A JP24602783 A JP 24602783A JP 24602783 A JP24602783 A JP 24602783A JP S60134199 A JPS60134199 A JP S60134199A
Authority
JP
Japan
Prior art keywords
coating layer
water
copper
powder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24602783A
Other languages
Japanese (ja)
Inventor
Yu Fukuda
祐 福田
Yasunori Kaneko
金子 康典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24602783A priority Critical patent/JPS60134199A/en
Publication of JPS60134199A publication Critical patent/JPS60134199A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To raise the durability and performance of a heat exchanger by preventing the lowering of heat exchanging efficiency as well as the occurrence of corrosion (generation of blue-color water) for long periods of time by a method in which a specific composition of coating layer 2 is formed on the surface of the copper heating part being in contact with water. CONSTITUTION:A paint, prepared by mixing a binder or a mixture of an acrylic resin, melamine resin, and an epoxy resin, any one or mixture of SiC powder and Al2O3 powder, and any one glass powder of Na2O.SiO2, Li2O.SiO2, and K2O.SiO2, is coated on the surface to be touched by water of a copper heating part 1 and hardened by heating to form a coating layer 2. A binder composed of a mixture of acrylic resin, melamine resin, and epoxy resin is further coated on the surface of the coating layer 2 in which the powder 2a of SiC and Al2O3 and the glass powder 2b are uniformly dispersed and then hardened by heating to form a coating layer 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は給湯機器、暖房機器などの使用される銅製伝熱
部利よ!lなる熱交換器に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is useful for copper heat transfer parts used in hot water supply equipment, heating equipment, etc. This relates to a heat exchanger.

従来例の構成とその問題点 。Conventional configuration and its problems.

従来より、この挿の熱交換器の伝熱部利は加工性、熱伝
導性が良好でかつ一般の水道水に対し耐食的である銅を
用いることが多い。しかし地下水のようにPH(水素イ
オンm度)が7以下で遊離炭酸(水中に溶解した炭酸ガ
ス)や塩素イオン、硝酸イオンなどの陰イオンが多量に
存在する水質環境下では111J記銅かJfd食される
。 ′腐食によって溶出した銅イオンは石けんなどの脂
肪酸と反応して青色の銅錯塩を形成し、これが水を青色
に変色させたり、風呂等で使用するタオルに前記銅錯塩
が吸着してタオルを青く変色させるなどの問題があった
Conventionally, copper, which has good workability and thermal conductivity, and is resistant to corrosion by ordinary tap water, has often been used for the heat transfer part of this insert heat exchanger. However, in a water environment such as groundwater where the pH (hydrogen ion degree) is 7 or less and there are large amounts of anions such as free carbonate (carbon dioxide gas dissolved in water), chlorine ions, and nitrate ions, 111J copper or Jfd. eaten. 'Copper ions eluted by corrosion react with fatty acids such as soap to form blue copper complex salts, which discolor water blue, and the copper complex salts adsorb onto towels used in baths, turning the towels blue. There were problems such as discoloration.

銅の腐食を防止する手段として、ケイ酸塩、リン酸塩の
ポリマーなどの防錆剤を水に添加し、銅表面に前記防錆
剤成分の保護被膜を形成する手段があるが、この保護被
膜に短期間に劣化し、剥離するため定期的に防錆剤を添
加する必要があり、一般家庭ではその管理が困難である
という問題があった。
One way to prevent corrosion of copper is to add a rust inhibitor such as a silicate or phosphate polymer to water and form a protective film of the rust inhibitor component on the copper surface. Since the coating deteriorates and peels off in a short period of time, it is necessary to periodically add a rust preventive agent, which is difficult to manage in general households.

1だ、銅表面に二・ソケル、スズなどの金属メッキを施
す手段は、前述の腐食性の強い酸性の水質環境下に2か
ルると前記ニッケル、スズは銅よりも電位的に低い金属
であるためメッキ層が短期間で腐食され、メッキ層の剥
離、消耗により、旬月である銅系腐食するという問題が
あった。
1. The method of plating metals such as nickel and tin on the copper surface is in the highly corrosive acidic water environment mentioned above. Therefore, the plating layer corroded in a short period of time, and due to peeling and wear of the plating layer, there was a problem that copper corrosion occurred frequently.

さらに、有機系、ζj1ξ機系バインダーのコーティン
グは、コーティング層自身に多数のピンホールが存在し
、このピンホーlvf介して銅が腐食するためコーティ
ング層の膜厚金100μm以上と厚くする必要があり、
この構成では熱伝導率が悪くなり熱交換効率が著しく低
ドするなどの問題を有していた。
Furthermore, when coating with an organic or ζj1ξ mechanical binder, there are many pinholes in the coating layer itself, and copper corrodes through these pinholes, so the coating layer needs to be as thick as 100 μm or more.
This configuration has problems such as poor thermal conductivity and extremely low heat exchange efficiency.

発明の1」的 本発明はかかる問題全解消するもので、長期にわた!l
l銅製伝熱部材よりなる熱交換器の水による腐食(青水
の発生)を防止するとともに、熱交換効率の低下を防止
し、機器としての耐久性、性能の向上全図ることを目的
とする。
The present invention, which is the first aspect of the invention, solves all such problems and lasts for a long time! l
The purpose is to prevent water corrosion (generation of blue water) of heat exchangers made of copper heat transfer members, prevent a decrease in heat exchange efficiency, and fully improve the durability and performance of the equipment.

発明の構成 本発明は水と接触する銅製伝熱部利表面にアクリル樹脂
とメラミン樹脂とエポキシ樹脂より71i:るバインダ
ーに、SiC,At203 (Q少なくとも1A、!1
1以上よ!llなる粉末とl’Ja2○、Li2O,に
2○のいずれか1種とSiC2よりなるガラス粉末を分
散混合した塗料でコーティング層を形成し、さらにこの
上にアクリル樹脂とメラミン樹脂とエポキシ樹脂よジな
るバインダーでコーチインク層を形成したものである。
Structure of the Invention The present invention provides a binder made of acrylic resin, melamine resin, and epoxy resin on the surface of a copper heat transfer part that comes into contact with water, and a binder made of SiC, At203 (Q at least 1A, !1).
More than 1! A coating layer is formed with a paint made by dispersing and mixing powder ll, any one of l'Ja2○, Li2O, and 2○, and glass powder made of SiC2, and on top of this, acrylic resin, melamine resin, and epoxy resin are applied. The coach ink layer is formed using a different binder.

この構成において、熱交換器が地下水のような腐食性の
強い水質環境下−で使用されても水と接触する側の銅製
伝熱部側の表面に2層のコーディノグ層ヲ形成している
ので水と銅製伝熱jGfs材との直接的な接触は、+H
B+i (なるとともに、1川記コ−jイノグ層のピン
ホー)Lyf介して水中の酸性I94食囚rが1受入し
ても前記コーティング層中のガラス粉末により中和され
るために腐食性が無くなり、前記銅製伝熱部材の腐食を
防止でき、銅のJN食によって発生する水やタオルの青
色化の防1」や熱交換器の耐久性の向上を図ることがで
きる。また、前記コーティング層に熱伝導性に優nた粉
末ケルいているので熱交換効率のイ1下全防[I−する
ことができる。
With this configuration, even if the heat exchanger is used in a highly corrosive water environment such as groundwater, two layers of coordinog are formed on the surface of the copper heat transfer part that comes into contact with water. Direct contact between water and copper heat transfer jGfs material is +H
B+i (Along with the pinhole of the 1st riverbed layer) Even if 1 acidic I94 in the water is received through Lyf, it is neutralized by the glass powder in the coating layer, so the corrosivity disappears. It is possible to prevent corrosion of the copper heat transfer member, prevent water and towels from turning blue due to JN corrosion of copper, and improve the durability of the heat exchanger. In addition, since the coating layer contains a powder having excellent thermal conductivity, it is possible to completely reduce the heat exchange efficiency.

実施例の説明 以下、本発明の一実施例について、図面に基づき説明す
る。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

図は本発明の一実施例を示す熱交換器の一部断面図であ
る。同図において、1は銅製伝熱部材であり、この銅製
伝熱部材1の水と接触する側の表面にアクリル樹脂とメ
ラミン樹脂とエポキシ樹脂の混合物をバインダーとし、
これにSiC粉末、At203粉末のいずれか一方かも
しくにこれらの混合物とNa2○・SiO2,Li2O
・Sio2.に20・5i02のいずれか1種のガラス
粉末を添加し、分散混合した塗料を塗布し、加熱硬化さ
せることによりコーティング層2が形成される。このコ
ーティング層2中にはSic、At203 よりなる粉
末2aとガラス粉末2bが均一に分散している。
The figure is a partial sectional view of a heat exchanger showing an embodiment of the present invention. In the figure, 1 is a copper heat transfer member, and a mixture of acrylic resin, melamine resin, and epoxy resin is used as a binder on the surface of the copper heat transfer member 1 that comes into contact with water.
This is combined with either SiC powder or At203 powder, especially a mixture of these, and Na2○, SiO2, Li2O.
・Sio2. The coating layer 2 is formed by adding any one type of glass powder of 20.5i02 to the glass, applying a dispersed mixture, and curing by heating. In this coating layer 2, powder 2a made of Sic and At203 and glass powder 2b are uniformly dispersed.

さらに前記コーティング層20表面にはアクリル樹脂と
メラミン樹脂とエポキシ樹脂の混合物よ!llなるバイ
ンダーfc伶布し、加熱硬化することによりコーティン
グ層3が形成される。
Furthermore, the surface of the coating layer 20 is a mixture of acrylic resin, melamine resin, and epoxy resin! A coating layer 3 is formed by dispersing a binder fc and curing it by heating.

この構成において、コーティング層2及び3はバインダ
ーとして用いるアクリル樹脂とメラミン樹脂とエポキシ
樹脂が加熱硬化によって、分子構造が3次元の密な網目
構造となるために水分子や酸性腐食因子の透過が少なく
、しかもガラス転移点が低いために銅製伝熱部材1に対
する濡れ性が良くなりコーティング層内のピンホー/L
/ft−rh<めて少なくすることができるのでこのコ
ーティング層2及び3を形成することにより、地f水な
どに多量に存在する酸性腐食因子の浸入を大部分阻止す
ることができ、銅製伝熱部材1への酸性1昌食因rのア
タックf13とんど防止できる。一方、コーティング層
2及び3ないずnもピンホー)Vf完全に除去すること
は不可能であるためこのピンホールを介して前記酸性腐
食因子がわずかに浸入するが、コーティング層2中に分
散しているガラス粉末2bに含有するNa2O+ L 
i 20 、 K2Oの771/力リ分と中 、′和反
応を起こすため、コーティング層2内で前記酸性腐食因
子が消費される。したがって銅製伝熱部側1の腐食は完
全に防止され、銅イオンとして水中に溶出してくること
に無くなり、銅の腐食が?N因で発生する水やタオルな
どの間色化や熱交換器の激しい腐食を防止することがで
きる。−コーチイングツ曽2の」二にはコーティング層
3を形成しており、このコーチインク層3がバインダー
のみであるため、j曽中のピンホールは(〕9くめて少
なく、前記酸性腐食因子の浸入はわずかな量となるので
コーティング暦2中に存在するガラス粉末2bの中和反
応に必要なNa2O、L i 2○、に2○のアルカリ
分の消費はわずかなものとなり、長期にわたり、中和機
能を維持することができる。
In this configuration, the acrylic resin, melamine resin, and epoxy resin used as binders in the coating layers 2 and 3 are heat-cured to form a three-dimensional dense network structure, which reduces the permeation of water molecules and acidic corrosion factors. Moreover, since the glass transition point is low, the wettability to the copper heat transfer member 1 is improved, and the pinhole/L in the coating layer is improved.
By forming these coating layers 2 and 3, it is possible to largely prevent the infiltration of acidic corrosion factors that exist in large quantities in ground water, etc. Attack f13 of the acidic food factor r on the heating member 1 can be almost completely prevented. On the other hand, since it is impossible to completely remove coating layers 2 and 3 (pinholes), the acidic corrosion factor slightly enters through these pinholes, but it is dispersed in coating layer 2. Na2O+ L contained in the glass powder 2b
i 20 , the acidic corrosion factor is consumed within the coating layer 2 to cause a summation reaction with the 771/force of K2O. Therefore, corrosion on the copper heat transfer part side 1 is completely prevented, and copper ions are no longer eluted into the water, causing corrosion of copper. It is possible to prevent discoloration of water, towels, etc. caused by nitrogen and severe corrosion of heat exchangers. - A coating layer 3 is formed on the second part of the coaching ink layer 3, and since this coaching ink layer 3 is only a binder, the number of pinholes in the coaching ink layer 3 is extremely small (9), which prevents the infiltration of the acidic corrosion factor. is a small amount, so the consumption of the alkali content of Na2O, Li 2○, and 2○ necessary for the neutralization reaction of the glass powder 2b present in the coating material 2 is small, and the neutralization is carried out over a long period of time. function can be maintained.

1だ、コーティング層2には熱伝導性の良好なSiC,
AA2○3の分末2aを分散させているので銅のもつ優
nた熱伝導性が損われず、優れた銅製伝熱7)3B利1
から水への熱伝達を有し、高い熱交換効イく全実現する
ことができる。
1. The coating layer 2 is made of SiC with good thermal conductivity.
Since the fraction 2a of AA2○3 is dispersed, the excellent thermal conductivity of copper is not impaired, resulting in excellent copper heat transfer 7) 3B efficiency 1
It has heat transfer from water to water, and high heat exchange efficiency can be achieved.

さらに、コーティング1曽2及び3のバインダーの1つ
にエポキシ樹脂金用いているため下地との優れた密着性
を実現することができ、長Jυjにわたり、ノ曽間での
剥離を防止することができる。
Furthermore, since epoxy resin gold is used as one of the binders in Coating 1, 2 and 3, it is possible to achieve excellent adhesion to the base, and prevent peeling between the layers over a long period of time. can.

究明の効果 本発明の熱交換器によれは、銅製伝熱部祠の表面に耐食
性、熱伝導性に優nた2層のコープインク層を形成して
いるので、 (1)伝熱部材である銅の腐食が無くなるため、銅イオ
ンの水中への溶出を防11でき、水やタオルの青色化を
防止することができる。
Effects of Investigation The heat exchanger of the present invention has a two-layer coping ink layer with excellent corrosion resistance and thermal conductivity formed on the surface of the copper heat transfer member. Since certain copper corrosion is eliminated, the elution of copper ions into water can be prevented, and water and towels can be prevented from turning blue.

(2)熱交換器の腐食による破損全防止することができ
、耐久性の大幅な向上が図ルる。
(2) Damage to the heat exchanger due to corrosion can be completely prevented, and durability can be greatly improved.

(3)銅の有する優汎た熱伝導性が損われないため熱交
換効率の低下全防止すると−とが1きる。
(3) Since the excellent thermal conductivity of copper is not impaired, it is possible to completely prevent a decrease in heat exchange efficiency.

などの効果を有する。It has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す熱交換器・7ツ一部1υ1
而図である。 2・・・・・・コーチイングツ曽、3・・・・・コーテ
ィングJ曽、2a・・・・・・S ic 、 At20
3粉末、 2b・ ・・ガラス粉本。
The figure shows an embodiment of the present invention, a heat exchanger, 7 parts, 1υ1
This is a diagram. 2...Coachings So, 3...Coating J So, 2a...Sic, At20
3 powder, 2b...Glass powder book.

Claims (1)

【特許請求の範囲】[Claims] 水と接触する側の銅製伝熱部拐表面にアクリル樹脂とメ
ラミン樹脂とエポキシ樹脂よジなるバインダーに、S 
i C、At203の少なくとも1種以上よりなる粉末
とl’J a 2○、Li2O,に20のいずれか1種
とSiO2よりなるガラス粉末を分散混合した塗料でコ
ーティング層を形成し、さらにこの上にアクリル樹脂と
メラミン樹脂とエポキシ樹脂よりなるバインダーでコー
ティング層ヲ形成した熱交換器。
A binder consisting of acrylic resin, melamine resin, and epoxy resin is applied to the surface of the copper heat transfer part that comes into contact with water.
A coating layer is formed with a paint obtained by dispersing and mixing a powder made of at least one of iC, At203, one of l'J a2○, Li2O, and a glass powder made of SiO2, and then a coating layer is formed on the coating layer. A heat exchanger with a coating layer formed with a binder made of acrylic resin, melamine resin, and epoxy resin.
JP24602783A 1983-12-23 1983-12-23 Heat exchanger Pending JPS60134199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24602783A JPS60134199A (en) 1983-12-23 1983-12-23 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24602783A JPS60134199A (en) 1983-12-23 1983-12-23 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS60134199A true JPS60134199A (en) 1985-07-17

Family

ID=17142357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24602783A Pending JPS60134199A (en) 1983-12-23 1983-12-23 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS60134199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016545A1 (en) * 1999-08-27 2001-03-08 Abb Patent Gmbh Heating element for a regenerative heat exchanger and method for producing a heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016545A1 (en) * 1999-08-27 2001-03-08 Abb Patent Gmbh Heating element for a regenerative heat exchanger and method for producing a heating element
US6648061B2 (en) 1999-08-27 2003-11-18 Alstom Heating element for a regenerative heat exchanger and method for producing a heating element

Similar Documents

Publication Publication Date Title
WO2004065497A3 (en) Corrosion resistant coatings containing rare earth compounds
EP1103582A4 (en) Water-based primer composition for fluororesin coating
CA2323122A1 (en) Chromate-free phosphate bonding composition
JPS60129552A (en) Heat exchanger
JP4975989B2 (en) Mirror backside coating composition and mirror
US4889558A (en) Coating compositions containing undissolved hexavalent chromium salt
Li et al. Effects of codeposited tungsten on the properties of low-phosphorus electroless nickel coatings
US20030106675A1 (en) Article exhibiting improved resistance to galvanic corrosion
JPS60205194A (en) Fin member material for heat exchanger
JPS60134199A (en) Heat exchanger
KR100334213B1 (en) Method of reducing galvanic corrosion
CN102337049A (en) Corrosion-resistant and anti-scaling paint used for aqueous medium heat exchange equipment and preparation method of corrosion-resistant and anti-scaling paint.
TR199700991T1 (en) Compositions and processes for the formation of a solid, adherent, protective coating on metal surfaces.
JPS60103185A (en) Two-layered chromate treated steel sheet having excellent corrosion resistance and lubricity
JPS60171349A (en) Heat exchanger
KR20020066058A (en) Coating composition for dacrotized film with excellent corrosion resistance
JPS61250494A (en) Heat exchanger
JPH0328672B2 (en)
JPS58213196A (en) Heat exchanger
CN2585166Y (en) Graphite heat exchanger coated with tetrafluoride protection layer
JPS60141549A (en) Corrosion-resistant coated laminate
JPS5812753A (en) Corrosion protective layer
JPS60228851A (en) Heat exchanger
JPS59153098A (en) Heat exchanger
JPH01174438A (en) Aluminum fin material for heat exchanger