JPS60128515A - Controller of power converter - Google Patents

Controller of power converter

Info

Publication number
JPS60128515A
JPS60128515A JP58236899A JP23689983A JPS60128515A JP S60128515 A JPS60128515 A JP S60128515A JP 58236899 A JP58236899 A JP 58236899A JP 23689983 A JP23689983 A JP 23689983A JP S60128515 A JPS60128515 A JP S60128515A
Authority
JP
Japan
Prior art keywords
voltage
load
correction signal
converter
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236899A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Shibata
光博 芝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58236899A priority Critical patent/JPS60128515A/en
Publication of JPS60128515A publication Critical patent/JPS60128515A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

PURPOSE:To control stably the entire region of load state by compensating the gain variation of a control system produced by the impedance change of a load circuit by means of a correction signal operating device. CONSTITUTION:Plural inverters are connected to the output side of a common converter and each inverter drives an induction motor individually. A DC voltage is inputted to the inverter via a main circuit contactor 23 and an input capacitor 22, the voltage is converted into a variable voltage/variable frequency and the result is fed to the said motor. In this case, a voltage feedback signal VFBK, a current feedback signal IFBK and an operating signal 6 representing the on/off state of the contactor 23 are inputted to a correction signal operating device 5 so as to operate the load resistance component of the converter and also the load capacitor component is operated from the capacitor 22. Then a function cancelling the main circuit transfer function is operated and the result is inputted to a gain correction signal 7 as a voltage controlling operator VC.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、交流電力を直流電力に変換する可制御型の電
力変換器を出力直流電圧が設定値に一致するように負帰
還制御する電力変換器の制御装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a power conversion method that performs negative feedback control of a controllable power converter that converts AC power to DC power so that the output DC voltage matches a set value. This relates to a control device for a device.

〔発明の技術的背景〕[Technical background of the invention]

この種の電力変換器(以下、コンバータという)は、安
定に制御された直流電圧を要求し、かつ負荷の変動範囲
の広い用途、たとえは可変速駆動の電動機の電源装置と
して広く用いら詐ている。特に上述のコンバータの曲流
出力を平滑回路を介して逆変換器(以下、インバータと
い9)に導き、ここで可変電圧、可変周波数の交流電力
に変換して交流電動機を駆動する方式は広く用いられて
いる。第1図は、このような駆動方式を実施する装@を
示すものであら。
This type of power converter (hereinafter referred to as a converter) is widely used in applications that require a stably controlled DC voltage and a wide range of load fluctuations, such as power supplies for variable-speed motors. There is. In particular, the method of guiding the curved output of the converter mentioned above through a smoothing circuit to an inverter (hereinafter referred to as inverter 9), where it is converted into variable voltage, variable frequency AC power to drive an AC motor, is widely used. It is being FIG. 1 shows a device for implementing such a drive method.

第1図は、共通のコンバータ装置/の出力側に複数台の
インバータ装置、2を接続し、各インピ−ダンスにより
個々に交流電動機、たとえは誘導電動機3を駆動する場
合の装置構成を示すものでおる。コンバーク装置lは、
逆並列接続のコンバータ/lにより入力交流電力を直流
音圧vTHYの直流電力に変換し、さらにリアクトル/
2およ心コンデンサ13からなるLO平滑回路k ’>
FIJして脈動の少ない直流電圧Vcとして電力する。
Figure 1 shows a device configuration in which a plurality of inverter devices 2 are connected to the output side of a common converter device, and an AC motor, for example an induction motor 3, is individually driven by each impedance. I'll go. The convergence device l is
The input AC power is converted to DC power with a DC sound pressure vTHY by the anti-parallel connected converter/l, and then the reactor/
LO smoothing circuit k' consisting of 2 and core capacitor 13
The FIJ is performed to generate electric power as a DC voltage Vc with less pulsation.

インバータ装置2は、主回路接触器23および入力コン
デンサ22ヲ介して前記の電圧Vcの直流電力’tt圧
形インバータ21によって可変電圧、可変周波数の交流
電力に変換し、それを誘導電動機3に供給してこれを可
変速制御する。インノ々−夕2/にはそれぞれ可変電圧
、可変周波数の制御をするための制御装置が付設されて
いる。ここで電圧基準信号vRF、Fは、コンデンサ1
3の両端すなわちコンバータ装置/の出力端から雷圧検
田器VDを介して得られた電圧帰還信号■FBKと比較
され、その偏差が電圧制御演算器■0によって増幅され
て電圧基準信号工R1I、Fとなる。
The inverter device 2 converts the DC power of the voltage Vc into variable voltage, variable frequency AC power by the voltage type inverter 21 via the main circuit contactor 23 and the input capacitor 22, and supplies it to the induction motor 3. This is then controlled at variable speed. Each of the innovators 2/ is equipped with a control device for controlling variable voltage and variable frequency. Here, the voltage reference signal vRF, F is the capacitor 1
It is compared with the voltage feedback signal ■FBK obtained from both ends of 3, that is, the output terminal of the converter device/through the lightning voltage detector VD, and the deviation thereof is amplified by the voltage control calculator ■0 and sent to the voltage reference signal generator R1I. , F.

この電流基準信号■R11;Fはさらにコンバーター/
の交流入力側に設けられた電流検出器IDi介して得ら
れた電圧帰還信号工FBKと比較され、その偏差が電流
制御演算器aaによって増幅され、位相制御器PH0i
介してコンバータ//の点弧位相を制御する。
This current reference signal ■R11;F is further converted to a converter/
It is compared with the voltage feedback signal generator FBK obtained through the current detector IDi provided on the AC input side of
The firing phase of the converter // is controlled through the converter.

第2図は、第1図のLO平滑回路から負荷にわたる主回
路部分、すなわちコンバータ/lから見た負荷回路を等
価回路として表現したものである。可変抵抗で表された
負荷抵抗≠はインバ−タ装置2を介して負荷となる誘導
電動機3を等測的に抵抗分とみなして表したものである
。この等価回路は、電圧vTHYの電源入力端に面列に
リアクトル/2を接続し、その出力側にコンデンサ13
、コンデンサn、および負荷抵抗≠を並列に接続した結
果となっている。
FIG. 2 is an equivalent circuit representation of the main circuit section extending from the LO smoothing circuit to the load in FIG. 1, that is, the load circuit as seen from the converter/l. The load resistance ≠ expressed as a variable resistance is expressed by assuming that the induction motor 3 serving as a load via the inverter device 2 is isometrically considered as a resistance component. This equivalent circuit connects reactor /2 in a plane row to the power supply input terminal of voltage vTHY, and capacitor 13 is connected to the output side.
, capacitor n, and load resistance≠ are connected in parallel.

上述の等価回路における周波数伝達関数G(jω)は ただし・ ffi ”” ’共振周波数tF=ζ・減衰
係数 R0 となり、二次遅れの要素になっている。
The frequency transfer function G(jω) in the above-mentioned equivalent circuit is as follows: ffi ""'resonant frequency tF=ζ damping coefficient R0, which is an element of second-order lag.

第1図および第2図からコンバータ装置lの制御系のブ
ロック図は第3図のようになる。この制御系は、いわゆ
る電流マイナル−7″OMLを持ってオリ、この電流マ
イナルーズの伝達関数をまとめて一次遅れ要素に近似し
てG。0として簡略表現したのが第グ図でおる。両図に
おいて、GAvRは電圧制御演算器Vaの伝達関数、同
様にGAORは電流制御演算器c’aの、GI +G2
 rGRは各主回路部分の、GVDは電圧検出器VDの
、G工、は電流検出器よりの、各伝達関数である。
From FIGS. 1 and 2, a block diagram of the control system of the converter device 1 is shown in FIG. 3. This control system has a so-called current minor-7'' OML, and the transfer function of this current minor loose is approximated to a first-order lag element and expressed simply as G.0 in Figure 3. , GAvR is the transfer function of the voltage control calculator Va, and similarly, GAOR is the transfer function of the current control calculator c'a, GI + G2
rGR is the transfer function of each main circuit portion, GVD is the voltage detector VD, and G is the transfer function of the current detector.

第7図における伝達関数Gsは as (s)”−一一一一 /+OR8 ただいR:負荷抵抗≠の抵抗値 C:コンデンサ13とnの合成キャ パシタンス となる。このことは、負荷の大きさ、すなわち負荷抵抗
lの抵抗値Rと、接続されているインバ−タ装置2の台
数、す4わち合成キャパシタンスCとによって制御系の
ゲインが変化することを表している。
The transfer function Gs in FIG. , that is, the gain of the control system changes depending on the resistance value R of the load resistance l and the number of connected inverter devices 2, that is, the combined capacitance C.

〔背景技術の問題点〕[Problems with background technology]

以上述べたこと−から、第1図に示す装置には次のよう
な不都合点があった。
From what has been stated above, the apparatus shown in FIG. 1 has the following disadvantages.

(1)負荷の状態(つま9、RおよびCの値)によって
制御系のゲインが大幅に変化するため、全領域において
速い応答で安定に制御するのは極めて困難である。
(1) Since the gain of the control system changes significantly depending on the load condition (the values of the toe 9, R and C), it is extremely difficult to perform stable control with fast response over the entire range.

(2) 応答を遅くすれば、安定度を増すことはできる
が、負荷急変時のりカバリが遅く、それが回生動作中で
おれば過電、圧発生の原因となる。
(2) Stability can be increased by slowing down the response, but recovery is slow when the load suddenly changes, and this can cause overvoltage and voltage generation if regenerative operation is in progress.

(JJLO平滑回路は、元来共振特性を持っているため
、ある特定の周波数においては著しくゲインが増加し、
不安定になる傾向を持つ。
(Since the JJLO smoothing circuit originally has resonance characteristics, the gain increases significantly at a certain frequency,
Tends to be unstable.

これを解消するのに、LO平滑回路に直列にダンピング
抵抗を、または、9荷抵抗に並列にダミー負荷抵抗を挿
入する方式があるが、それはっぎの欠点を持っている。
To solve this problem, there is a method of inserting a damping resistor in series with the LO smoothing circuit or a dummy load resistor in parallel with the 9-load resistor, but these methods have a number of drawbacks.

a)ダンピング抵抗またはダミー抵抗は、消皆電力が太
きいため形状が大きく高価なものとなる。
a) The damping resistor or dummy resistor consumes a large amount of power, so it is large in size and expensive.

b)ダンピング抵抗またはダミー抵抗は、すべてロスエ
ネルギーとして消費芒ゎるため変換効率が低下する。
b) The damping resistor or dummy resistor all consumes energy as loss, resulting in a decrease in conversion efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、変動の太@な違荷に対しても速い応答
で安定に制御された直流電圧を供給し得る電力変換器の
制御装置全提供することである。
An object of the present invention is to provide an entire control device for a power converter that can supply a stably controlled DC voltage with a quick response even to large fluctuations in unbalanced loads.

〔発明の概做〕[Outline of the invention]

上記目的を達成するために本発明は、負荷回路のインピ
ーダンスヲ検出するインピーダンス検出手段と、このイ
ンピーダンス検出手鞠によって検出されたインピーダン
スに基づいて形成されたゲイン補正信号により、前記負
荷回路のインピーダンスの変化によって生ずる制御系の
ゲインの変動を補償する補正信号演算器とを設けたこと
を%徴とするものである。
In order to achieve the above object, the present invention includes an impedance detection means for detecting the impedance of the load circuit, and a gain correction signal formed based on the impedance detected by the impedance detection device, to detect changes in the impedance of the load circuit. The main feature is that a correction signal calculator is provided to compensate for fluctuations in gain of the control system caused by the above.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の一実施例の要部構成を示すものである
。主回路部分は第1図のものと同様であるとする。この
装置の弔徴は、電圧帰還信号■っと、雷流帰還信号工F
BKと、各イン/2−タ装置に含まれる主回路接触器−
の大切状態を表わす動作信号6とを補正信号演算器jに
入力し、その演舞結果として得られたゲイン補正信号7
を電圧制御演算器Vaに入力する回路構成にある。
FIG. 5 shows the main structure of an embodiment of the present invention. It is assumed that the main circuit portion is the same as that in FIG. The special features of this device are the voltage feedback signal and the lightning current return signal F.
BK and main circuit contactor included in each in/2-input device
A gain correction signal 7 obtained as a result of the performance is input to a correction signal calculator j.
The circuit configuration is such that the voltage is input to the voltage control calculator Va.

第5図の装置における補正信号演算器!は、電圧帰還信
号vFBK、!:電流帰還信号IFBKとからコンノ々
−タ装慣lの負荷抵抗分Rを演算するとともに、既知キ
ヤAシタンスのコンデンサnの接続個数を接触器動作信
号6から判断してコンバータ装W/から見た負荷コンデ
ンサ分cl演算する。そして、前述の主回路伝達関数a
、 (s )=FV(/+OR9)を打ち消すような関
数を演算し、電圧制御演算器Vaにゲイン補正信号7と
して入力する。
Correction signal calculator in the device shown in Figure 5! is the voltage feedback signal vFBK,! : Calculates the load resistance R of the converter installation l from the current feedback signal IFBK, and determines the number of connected capacitors n of known capacitance from the contactor operation signal 6, and calculates it as seen from the converter installation W/. Calculate cl for the added load capacitor. Then, the main circuit transfer function a mentioned above is
, (s)=FV(/+OR9) is calculated and input as a gain correction signal 7 to the voltage control calculator Va.

第5図の装mlの機能を、第6図の制御ブロック図を参
照してさらに説明する。
The functions of the device shown in FIG. 5 will be further explained with reference to the control block diagram shown in FIG.

第6図は、第弘図のものを基本として、これに。Figure 6 is based on the one in Figure 6.

ゲイン補正信号として加えられる伝達関数G。ompが
追加されたものに相当する。この制御ブロック図からも
明らかなように、開ループ、閉ルーズとも、負荷の変動
にかかわりなく、常にゲインの一定な制御系となる。
Transfer function G added as a gain correction signal. This corresponds to the one with omp added. As is clear from this control block diagram, the control system always has a constant gain regardless of load fluctuations in both open-loop and closed-loose systems.

なお、負荷電流の検出を上述の実施例ではコンバータ/
/の交流入力側で行っているが、直流出力側で行っても
よいことはもちろんである。また、直流電圧Vcを一定
に制御する場合には、補正信号演算器jに入力する電圧
帰還信号vFBKは省略することができる。
Note that in the above embodiment, the load current is detected by the converter/
Although this is done on the AC input side of /, it is of course possible to do it on the DC output side. Further, when controlling the DC voltage Vc to be constant, the voltage feedback signal vFBK input to the correction signal calculator j can be omitted.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば補正信号演算器を追加す
ることによって以下に述べるような効果を得ることがで
きる。
As described above, according to the present invention, by adding a correction signal calculator, the following effects can be obtained.

(1)負荷の状態によって制御系のゲインが変化するこ
となく常に一定であるため、負荷変動を考慮しないとき
の最良の調整によって全領域を安定に制御することがで
き、この結果、この制御系の能力最大の応@を常に発揮
することが可能となる。
(1) Since the gain of the control system does not change depending on the load condition and is always constant, it is possible to stably control the entire range by making the best adjustment without considering load fluctuations, and as a result, this control system It will be possible to always demonstrate the maximum response of your ability.

(,2) 速い応答により、狗荷急変時のりカバリが速
くなシ、回生動作中において過電圧になる心配も著しく
減少する。
(, 2) Due to the fast response, recovery is quick when the load suddenly changes, and the risk of overvoltage during regenerative operation is significantly reduced.

(3)ダンピング抵抗または負荷ダミー抵抗等を必侠と
ぜす、したがっで変換効率が低下することなく、外形も
小形軽量とすることができる。
(3) A damping resistor or a load dummy resistor is not required, so the conversion efficiency does not decrease and the external size can be made small and lightweight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する装置の摘成図、第2図は第1
図におけるコンバータから見た負荷回路の等価回路図、 第3図は第1図のコンノ々−夕の制御ブロック図、第グ
図は第3図を等価交換および近似によって簡略化した制
御ブロック図、 第5図は本発明の一実施例を示す要部の楢成図、第6図
は第5図から得られる、第≠図に対応する制御ブロック
図である◇ l・・・コンバータ装置、λ・・・インバータ装置、3
・・・誘導電@+機、弘・・・負荷抵抗、j・・・補正
信号演算器、6・・・主回路接触器動作信号、7・・・
ゲイン補正信号、l/・・・コンバータ(flit変換
器)、/2・・・リアク)#、/J・・・コンデンサ、
VC・・・電圧制御演算器、CC・・・電流制御演算器
、 VD・・・電圧検出器、ID・・・電流検出器、■
 ・・・電圧基準信号、■FBK・・・電EF 正帰還信号、IR1!iF’・・・嘗流基準化号、1F
BK・・・電流帰還信号1.2/・・・電圧形インバー
タ1.!コ・・・入力コンデンサ、ユ3・・・主回路接
触器、GAVR・・・電圧制御演算器伝達関数、GAo
R・・・電流制御演算器伝達関数、Gl + G2 +
 Gs・・・主回路伝達関数、Gaa・・・電流マイナ
ルーゾ伝達関数、G ・・・ゲイン補正演算Omp 器伝達関数。 出動人代理人 猪 股 清
FIG. 1 is an abstract diagram of the device to which the present invention is applied, and FIG.
3 is a control block diagram of the converter shown in FIG. 1, and FIG. 3 is a control block diagram simplified by equivalent exchange and approximation of FIG. FIG. 5 is a diagram showing the main parts of an embodiment of the present invention, and FIG. 6 is a control block diagram obtained from FIG. 5 and corresponding to FIG. ...Inverter device, 3
...Induction electric @+ machine, Hiro...Load resistance, j...Correction signal calculator, 6...Main circuit contactor operation signal, 7...
Gain correction signal, l/... converter (flit converter), /2... react) #, /J... capacitor,
VC...Voltage control calculator, CC...Current control calculator, VD...Voltage detector, ID...Current detector, ■
...Voltage reference signal, ■FBK...Electric EF positive feedback signal, IR1! iF'...Standardization issue, 1F
BK...Current feedback signal 1.2/...Voltage source inverter 1. ! K...Input capacitor, U3...Main circuit contactor, GAVR...Voltage control operator transfer function, GAo
R...Current control operator transfer function, Gl + G2 +
Gs...Main circuit transfer function, Gaa...Current minoruso transfer function, G...Gain correction calculation Omp device transfer function. Dispatch agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 交流電力全直流電力に変換する可制御型の電力変換器を
出力直流電圧が設定値に一致するように負帰還制御する
電力変換器の制御装置において、負荷回路のインピーダ
ンスを検出するインピーダンス検出手段と、 このインピーダンス検出手段によって検出されたインピ
ーダンスに基づいて形成されたゲイン補正信号によシ、
前記負荷回路のインピーダンスの変化によって生ずる制
御系のゲインの変動を補償する補正信号演算器と を設けたこと金判徴とする電力変換器の制御装置O
[Claims] In a control device for a power converter that performs negative feedback control of a controllable power converter that converts AC power into DC power so that the output DC voltage matches a set value, the impedance of the load circuit is controlled. an impedance detection means to detect, and a gain correction signal formed based on the impedance detected by the impedance detection means;
A power converter control device O characterized by being provided with a correction signal calculator for compensating for fluctuations in gain of the control system caused by changes in impedance of the load circuit.
JP58236899A 1983-12-15 1983-12-15 Controller of power converter Pending JPS60128515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236899A JPS60128515A (en) 1983-12-15 1983-12-15 Controller of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236899A JPS60128515A (en) 1983-12-15 1983-12-15 Controller of power converter

Publications (1)

Publication Number Publication Date
JPS60128515A true JPS60128515A (en) 1985-07-09

Family

ID=17007404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236899A Pending JPS60128515A (en) 1983-12-15 1983-12-15 Controller of power converter

Country Status (1)

Country Link
JP (1) JPS60128515A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339468A (en) * 1986-07-30 1988-02-19 Meidensha Electric Mfg Co Ltd Controller for converter
JPH01295678A (en) * 1988-05-19 1989-11-29 Mitsubishi Electric Corp Dc distribution method voltage type inverter apparatus
EP0438059A2 (en) * 1990-01-16 1991-07-24 Kabushiki Kaisha Toshiba Reactive power compensation apparatus
JP2017093190A (en) * 2015-11-12 2017-05-25 ファナック株式会社 Motor drive device having abnormality determination function of main power supply voltage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339468A (en) * 1986-07-30 1988-02-19 Meidensha Electric Mfg Co Ltd Controller for converter
JPH01295678A (en) * 1988-05-19 1989-11-29 Mitsubishi Electric Corp Dc distribution method voltage type inverter apparatus
EP0438059A2 (en) * 1990-01-16 1991-07-24 Kabushiki Kaisha Toshiba Reactive power compensation apparatus
JP2017093190A (en) * 2015-11-12 2017-05-25 ファナック株式会社 Motor drive device having abnormality determination function of main power supply voltage
US10122316B2 (en) 2015-11-12 2018-11-06 Fanuc Corporation Motor drive apparatus having function for determining abnormality of main power supply voltage

Similar Documents

Publication Publication Date Title
SU1371513A3 (en) A.c.electric drive
US9812862B2 (en) Paralleling of active filters with independent controls
US4064419A (en) Synchronous motor KVAR regulation system
JP2001060120A (en) Maximum power control method for solar battery
JP6809247B2 (en) Frequency conversion system controller
JP3186962B2 (en) NPC inverter device
JPS60128515A (en) Controller of power converter
CN115842485B (en) Double-loop control system and control method for alternating current test power supply
CN1316724C (en) Voltage divider capacity voltage deviation feedforward control circuit of current control type semibridge transducer
RU180979U1 (en) AC ELECTRIC DRIVE
JP3818777B2 (en) Active filter control method
EP3457557B1 (en) Active stabilization of dc link in motor drive systems
JP3682544B2 (en) Plant power rate control system using inverter drive device
JP3961096B2 (en) Elevator control device
JP3314260B2 (en) Power conversion device control method and device
JP2002369533A (en) Pwm converter
Jaafer et al. Speed control of separately excited DC motor using chopper
JPH078135B2 (en) Parallel operating device for switching power supply
JP4064566B2 (en) Frequency converter
Alakula et al. Damping of oscillations in induction machines
SU922981A1 (en) Frequency-controlled electric drive
JPS60219966A (en) Controller of power converter
JP2645012B2 (en) Motor control device
JPH06261584A (en) Control device of ac motor
JPH07115770A (en) Control system for power converter