JP3682544B2 - Plant power rate control system using inverter drive device - Google Patents

Plant power rate control system using inverter drive device Download PDF

Info

Publication number
JP3682544B2
JP3682544B2 JP21849898A JP21849898A JP3682544B2 JP 3682544 B2 JP3682544 B2 JP 3682544B2 JP 21849898 A JP21849898 A JP 21849898A JP 21849898 A JP21849898 A JP 21849898A JP 3682544 B2 JP3682544 B2 JP 3682544B2
Authority
JP
Japan
Prior art keywords
current
inverter drive
power
converter
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21849898A
Other languages
Japanese (ja)
Other versions
JP2000037082A (en
Inventor
昇 梓沢
繁 椙山
河野  行弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21849898A priority Critical patent/JP3682544B2/en
Publication of JP2000037082A publication Critical patent/JP2000037082A/en
Application granted granted Critical
Publication of JP3682544B2 publication Critical patent/JP3682544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Control By Computers (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、IGBT、GTD等自己消弧素子を用いた半導体PWM順変換器・逆変換器からなるインバータドライブ装置に係り、特に、PWM順変換器の余力変換機能を用いてプラント電源全体のカ率を制御するインバータドライブ装置によるプラント電源カ率制御方式に関する。
【0002】
【従来の技術】
PWMコンバータ・インバータを用いたインバータドライブ装置は、「日立評論 1993年3月号 pp37〜40」に記載のように、ドライブ装置として、電源カ率を1.0に制御している。
従来のインバータドライブ装置の構成図を図6に示す。図6において、インバータドライブ装置6は、誘導電動機7の回転速度を直接制御するIGBTインバータ30と、IGBTインバータ30の入力直流電圧を電源トランス5から供給される三相交流より直流に変換し、制御するIGBTコンバータ40より構成される。IGBTインバータ30は、IGBTコンバータ40より供給される直流電源をもとに誘導電動機7の要求される回転速度に対応する交流電圧、周波数及び位相の三相交流に変換するPWMインバータ主回路31と、この主回路31を介して速度制御を行なう速度制御装置32とより構成される。速度制御装置32は、誘導電動機7に直結されたパルスエンコーダ33で検出される回転速度検出値Wrと速度制御指令Wr*とより、誘導電動機7の磁束を制御するための励磁電流(d軸成分電流)Id*成分と発生トルクを制御するためのトルク電流(q軸成分電流)Iq*成分とのベクトル演算により、誘導電動機7の磁束制御を含む速度制御演算を行ない、この演算結果のd軸、q軸電流指令Id*、Iq*に基づき、d軸、q軸電流制御を行なうとともに、すべり周波数fを演算し、すべり周波数演算結果と回転速度検出値ωrより一次周波数指令値ω1*を演算する。一方、d軸、q軸電流指令Id*、Iq*及び一次周波数指令値ω1*に基づき、ベクトル演算により三相交流電流制御を行ない、その演算結果である3相出力電圧指令に基づき、多重PWM制御により演算されるPWMパルスによりインバータ主回路31を制御し、誘導電動機7の速度制御を行なう。
IGBTコンバータ40は、電源カ率を1.0に制御すると共に、IGBTインバータ30の入力電源となる直流電圧を一定に制御する交流−直流変換のIGBTコンバータ主回路21とこの主回路21を介して電源カ率1.0制御及び直流電圧を一定に制御するコンバータ制御部42とより構成される。コンバータ制御部42では、直流電圧指令Ed*にコンバータ21の出力電圧Edが一致するように直流電圧制御部25で有効電流指令であるq軸電流指令Iq*を演算する。このq軸電流指令Iq*とカ率1.0とするためのd軸電流指令Id*44を指令値として、q軸及びd軸電流制御を電流制御部43で演算するとともに、電流制御部43では電源電圧、位相の検出器27の信号を基準として、d軸、q軸のベクトル演算を行ない、三相交流電流制御を行ない、IGBTコンバータ21のPWMパルスの基準となる三相交流電圧指令を演算する。この三相交流電圧指令に基づき、PWM制御部でPWMパルスを演算出力し、IGBTコンバータ21によって電流カ率を1.0、直流電圧Edを一定にする制御を行なう。
このようにインバータドライブ装置6は、単体として、電流カ率を1.0に制御し、誘導電動機7の速度制御を行なえる理想的なドライブ装置である。
しかし、図5に示すように、従来のプラント構成は、電源トランス1、遅れカ率負荷設備3−1〜3−n用のトランス2−1〜2−n、インバータドライブ装置6−1〜6−N用のトランス5−1〜5−N、電動機7−1〜7−N、プラント全体の無効電力を補償する無効電力補償設備4から構成され、インバータドライブ装置6−1〜6−Nとして図6のインバータドライブ装置6が使用されるが、一般に無効電力補償設備4は、進相コンデンサを数バンクの容量に分割して入切するため、遅れカ率負荷設備3の負荷変動により、プラント全体のカ率を常に一定に制御することが出来ず、プラント全体の電源カ率が変動し、電圧変動が発生する。これらの対策として、無効電力補償設備4として、無効電力を連続制御できる設備「負荷追従形無効電力補償装置」(SVC)があるが、設備コストが高くなるという問題があるため、導入されてない。
【0003】
【発明が解決しようとする課題】
従来においては、単体として、電流カ率を1.0に制御し、誘導電動機7の速度制御を行なえる理想的なインバータドライブ装置6を使用しても、プラント全体の電源カ率を連続制御するには、設備コストの高いSVC装置が必要となるという問題があり、また、進相コンデンサバンクの段階的投入では、負荷の変動に連続で追従できないため、プラント全体の電源カ率変動、電圧変動を発生するという問題があった。また、電力コストの点からも、カ率変動分だけ余分なコストがかかっていた。
【0004】
本発明の課題は、プラントの中で大きな電力比率をもつPWMコンバータの無効電流供給余力機能を最大限に活用し、プラント全体の電源カ率を最適に制御するインバータドライブ装置によるプラント電源カ率制御方式を提供することにある。
【0005】
【課題を解決するための手段】
上記課題は、PWMコンバータので流せる最大定格電流とプラントで使用されるPWMインバータを介して電動機に流れる有効電流に基づいて各インバータドライブ装置の前記コンバータの余力無効電流供給可能量を演算し、この演算結果に基づいて前記コンバータの最大定格までの範囲でカ率補償用無効電流を流し、プラント全体のカ率を連続制御することによって、解決される。
【0006】
本発明は、プラントの中で大きな電力比率をもつ、インバータドライブ装置群のPWMコンバータの無効電流制御機能を用いて、また、これらPWMコンバータは常時最大負荷では運転されてないことを利用して、インバータドライブ装置のPWMコンバータの余力無効電流供給機能を最大限に活用し、連続カ率制御可能なSVC装置の機能と同じように、プラント全体の電源カ率を負荷に追従して最適に制御することができる。また、独立したSVC装置を設置する必要がなくなるため、設備スペースを小さく、かつ、設備コストを低減することができる。
【0007】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
図1は、本発明の一実施形態による全体構成を示す。1は電源トランス、2−1〜2−nはトランス、3−1〜3−nは遅れカ率負荷設備、5−1〜5−Nはトランス、7−1〜7−Nは電動機、8−1〜8−NはIGBTPWMコンバータ余力無効電流制御付インバータドライブ装置、9は全体カ率制御部、10は無効電力検出器、11は電圧検出器、12は電流検出器を表わす。
電源の電圧検出器11と電流検出器12の信号より無効電力検出器10により無効電力Qを検出し、全体カ率制御部9がその検出値によりプラント全体のカ率を最適とする無効電流指令IQ*を演算し、インバータドライブ装置8−1〜8−Nに指令する。
【0008】
インバータドライブ装置8の詳細を図2に示す。20はPWMコンバータ、21はPWMコンバータ変換部、22はPWMコンバータ制御部、23は有効電流無効電流を独立制御するd、q軸電流制御部、24はPWMコンバータの余力無効電流指令の最大値を制限制御するid*最大値制限制御部、25は直流電圧制御部、26は図1の全体カ率制御部9からの無効電流指令IQ*、27はd、q軸電流制御部23の基準位相検出のための電圧検出器、28は電流検出器、30はIGBTPWMインバータ、31はPWMインバータ変換部、32はPWMインバータのドライブ制御部である。
【0009】
id*最大値制限制御部24の詳細を図3に示す。51はPWMコンバータ20のd、q軸電流id、iqのベクトル加算電流である一次電流I1の最大定格値I1max(PWMコンバータ20が流せる最大定格値)、52は電動機負荷で決まるq軸電流iq(有効電流)、53はコンバータ定格で決まるI1maxと電動機負荷で決まるiqとより、PWMコンバータの余力無効電流分idmax=√(I1max)2−(iq)2を演算する演算部、54は無効電流指令IQ*に対してidmaxを最大値に制限する制御部である。
【0010】
図4に全体カ率制御部9の構成図を示す。101はプラント全体で要求される無効電力指令Q*であり、プラント全体の電源カ率を1.0に制御する場合は“0”となる。102は減算器であり、無効電力指令Q*と無効電力検出器10より検出される検出値Qとの偏差を演算する。103は無効電力制御部であり、減算器102の演算結果を入力し、減算器102の偏差がなくなるように、すなわち、無効電力指令値Q*にプラント全体の無効電力を補正するための無効電流指令IQ*を演算し、その演算結果はインバータドライブ装置8−1〜8−Nに指令する。
【0011】
次に、本実施形態の動作を説明する。PWMインバータのドライブ制御部32の動作は従来例と同じであるので、省略し、PWMコンバータ制御部22について説明する。
PWMコンバータ制御部22では、直流電圧指令Ed*にコンバータ21の出力電圧Edが一致するように直流電圧制御部25で有効電流指令であるq軸電流指令Iq*を演算する。一方、全体カ率制御部9においてプラント全体の電源カ率を最適とするために演算された無効電流指令IQ*は、各インバータドライブ装置8−1〜8−NのPWMコンバータ制御部22の図3に示すid*最大値制限制御部24に入力され、この制御部24では、余力無効電流分演算部53においてPWMコンバータ20の一次電流I1の最大定格値I1max51と電動機負荷で決まるq軸電流iq52に基づいて各々のPWMコンバータの余力無効電流分idmaxを演算し、この余力無効電流idmaxの制限範囲内で無効電流指令id*をd、q軸電流制御部23に出力する。
ここで、無効電力制御部103の演算結果の無効電流指令値IQ*は、N台のインバータドライブ装置で全体を補正するため、N台の各々の余力無効電流分Idmaxの最大値以下の値となる。例えば、各インバータドライブ装置の余力無効電流分Idmaxが8−1が0.5PU、8−2が0.4PU、8−3が0.3PU、8−4〜8−Nが0PUで、全体の必要無効電流が1.0PUの運転状態の場合、IQ*は0.4PUとなり、全体の必要無効電流が1.0PUのうち、8−3は余力無効電流分の0.3PUを分担、8−2も余力無効電流分の0.4PUを分担し、8−1は余力無効電流分0.5PUのうち0.4PUを分担するように制御される。これは、図3のidmax最大値制限制御部54により、余力無効電流分の少ないインバータドライブ装置から余力無効電流分を分担する作用があるためである。
また、無効電流指令id*は、各々のPWMコンバータの余力無効電流idmaxの制限範囲内の値であり、この余力無効電流idmaxの制限範囲内で全体カ率補償用無効電流を各々のPWMコンバータより供給することになる。
d、q軸電流制御部23では、q軸電流指令Iq*とd軸電流指令Id*を指令値とし、電源電圧、位相の検出器27の信号を基準として、d軸、q軸のベクトル演算を行ない、IGBTコンバータ21の一次電流指令I1*を出力する。この一次電流指令I1*と電流検出器28の信号に基づいて三相交流電流制御を行ない、IGBTコンバータ21のPWMパルスの基準となる三相交流電圧指令を演算し、この三相交流電圧指令に基づき、PWM制御部でPWMパルスを演算出力し、IGBTコンバータ21によってプラント全体の電源カ率を負荷に追従して最適に制御する。
本実施形態では、各々のPWMコンバータの余力無効電流idmaxの制限範囲内で全体カ率補償用無効電流を各々のPWMコンバータより供給することにより、プラント全体の電力のうち大きな比率をもつインバータドライブ装置群のPWMコンバータの余力無効電流供給能力を負荷追従形無効電力補償装置(SVC)の代わりに活用することにより、別に設備を設置することなく、プラント全体の電源カ率を負荷に追従して最適に制御することができる。
【0012】
なお、本発明は、各インバータドライブ装置の負荷状態をドライブ装置の上位制御装置により監視し、各インバータドライブ装置の余力無効電流供給能力を上位制御装置で演算し、各インバータドライブ装置に無効電流指令を分配するようにしても実施可能である。
また、図2の実施形態ではIGBTPWMインバータを用いたが、本発明は、GTQ、IGCT等他の自己消弧素子を用いたPWM変換器でも同じ効果が得られる。
また、本発明は、プラント全体の構成より、インバータドライブ装置のPWMコンバータの容量をインバータ部に比べて大きく設定する等により最適化を図れるという機能も付加することができる。
【0013】
【発明の効果】
以上説明したように、本発明によれば、インバータドライブ装置として、もともと持つているPWMコンバータの余力無効電流供給能力を最大限に活用するので、負荷追従形無効電力補償(SVC)装置の機能と同じように、プラント全体の電源カ率を負荷に追従して最適に制御することができる。
また、独立したSVC装置を設置する必要がなくなるため、設備スペースを小さく、かつ、設備コストを低減することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による全体構成図
【図2】本発明のインバータドライブ装置の詳細図
【図3】本発明のId*最大値制限制御部の詳細図
【図4】本発明の全体カ率制御部の構成図
【図5】従来例の全体構成図
【図6】従来例のインバータドライブ装置
【符号の説明】
1…電源トランス、2−1〜2−n…トランス、3−1〜3−n…遅れカ率負荷設備、5−1〜5−N…トランス、7−1〜7−N…電動機、8−1〜8−N…IGBTPWMコンバータ余力無効電流制御付インバータドライブ装置、9…全体カ率制御部、10…無効電力検出器、11…電圧検出器、12…電流検出器、20…PWMコンバータ、21…PWMコンバータ変換部、22…PWMコンバータ制御部、23…d、q軸電流制御部、24…id*最大値制限制御部、25…直流電圧制御部、26…無効電流指令IQ*、27…電圧検出器、28…電流検出器、30…IGBTPWMインバータ、31…PWMインバータ変換部、32…PWMインバータのドライブ制御部、53…PWMコンバータの余力無効電流分idmaxを演算する演算部、54…idmaxを最大値に制限する制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inverter drive device composed of a semiconductor PWM forward converter and an inverse converter using self-extinguishing elements such as IGBTs and GTDs, and more particularly, to the capacity of the entire plant power supply using the remaining power conversion function of the PWM forward converter. The present invention relates to a plant power supply rate control system using an inverter drive device for controlling the rate.
[0002]
[Prior art]
As described in “Hitachi Review, March 1993, pp 37-40”, the inverter drive device using the PWM converter / inverter controls the power supply rate to 1.0 as a drive device.
A configuration diagram of a conventional inverter drive device is shown in FIG. In FIG. 6, the inverter drive device 6 converts the IGBT inverter 30 that directly controls the rotational speed of the induction motor 7, and converts the input DC voltage of the IGBT inverter 30 from the three-phase AC supplied from the power transformer 5 to DC. The IGBT converter 40 is configured. The IGBT inverter 30 is a PWM inverter main circuit 31 that converts AC voltage, frequency, and phase into three-phase AC corresponding to the required rotation speed of the induction motor 7 based on the DC power supplied from the IGBT converter 40; It is comprised from the speed control apparatus 32 which performs speed control via this main circuit 31. The speed control device 32 is an excitation current (d-axis component) for controlling the magnetic flux of the induction motor 7 based on the rotation speed detection value Wr detected by the pulse encoder 33 directly connected to the induction motor 7 and the speed control command Wr *. Current) Id * component and a torque current (q-axis component current) Iq * component for controlling the generated torque are used to perform speed control calculation including magnetic flux control of induction motor 7, and the d-axis of this calculation result Based on the q-axis current commands Id * and Iq *, the d-axis and q-axis currents are controlled, the slip frequency f is calculated, and the primary frequency command value ω 1 * is calculated from the slip frequency calculation result and the rotation speed detection value ωr. Calculate. On the other hand, based on the d-axis and q-axis current commands Id * and Iq * and the primary frequency command value ω 1 *, the three-phase AC current control is performed by vector calculation, and based on the three-phase output voltage command that is the calculation result, The inverter main circuit 31 is controlled by the PWM pulse calculated by the PWM control, and the speed control of the induction motor 7 is performed.
The IGBT converter 40 controls the power supply rate to 1.0, and also controls the DC voltage serving as the input power source of the IGBT inverter 30 to be constant, and the AC-DC conversion IGBT converter main circuit 21 and the main circuit 21. The power source power ratio is 1.0 control and the converter control unit 42 controls the DC voltage to be constant. In converter control unit 42, DC voltage control unit 25 calculates q-axis current command Iq *, which is an effective current command, so that output voltage Ed of converter 21 matches DC voltage command Ed *. The q-axis current command Iq * and the d-axis current command Id * 44 for setting the power ratio to 1.0 are used as command values, and the q-axis and d-axis current control is calculated by the current control unit 43, and the current control unit 43 Then, based on the signal of the power supply voltage and phase detector 27, vector calculation of the d-axis and q-axis is performed, three-phase AC current control is performed, and a three-phase AC voltage command serving as a reference for the PWM pulse of the IGBT converter 21 is provided. Calculate. Based on this three-phase AC voltage command, the PWM controller calculates and outputs a PWM pulse, and the IGBT converter 21 performs control to make the current ratio 1.0 and the DC voltage Ed constant.
Thus, the inverter drive device 6 is an ideal drive device that can control the current rate to 1.0 and control the speed of the induction motor 7 as a single unit.
However, as shown in FIG. 5, the conventional plant configuration includes a power transformer 1, transformers 2-1 to 2-n for delay rate load facilities 3-1 to 3-n, and inverter drive devices 6-1 to 6-6. -N transformers 5-1 to 5-N, electric motors 7-1 to 7-N, and reactive power compensation equipment 4 for compensating reactive power of the entire plant, as inverter drive devices 6-1 to 6-N Although the inverter drive device 6 of FIG. 6 is used, the reactive power compensation facility 4 generally divides the phase advance capacitor into several banks of capacity and turns it on and off. The overall power rate cannot always be controlled to be constant, the power rate of the entire plant fluctuates, and voltage fluctuations occur. As a countermeasure for these, there is a “load-following reactive power compensator” (SVC) capable of continuously controlling reactive power as reactive power compensation facility 4, but it has not been introduced because of the problem of increased equipment cost. .
[0003]
[Problems to be solved by the invention]
Conventionally, as a single unit, the power rate of the entire plant is continuously controlled even when an ideal inverter drive device 6 that can control the current rate to 1.0 and control the speed of the induction motor 7 is used. However, there is a problem that an SVC device with a high equipment cost is required. In addition, when a phase-advancing capacitor bank is gradually introduced, it is impossible to continuously follow load fluctuations. There was a problem that occurred. Also, from the viewpoint of power cost, an extra cost is required for the fluctuation of the power rate.
[0004]
An object of the present invention is to control a plant power supply rate by an inverter drive device that optimally controls a power supply rate of the entire plant by making the most of the reactive current supply surplus function of a PWM converter having a large power ratio in the plant. To provide a method.
[0005]
[Means for Solving the Problems]
The above problem is to calculate the remaining available current supply amount of the converter of each inverter drive device based on the maximum rated current that can be flowed by the PWM converter and the effective current that flows to the motor via the PWM inverter used in the plant, and this calculation This can be solved by flowing a reactive current for power ratio compensation in the range up to the maximum rating of the converter based on the result, and continuously controlling the power ratio of the entire plant.
[0006]
The present invention uses the reactive current control function of the PWM converter of the inverter drive device group having a large power ratio in the plant, and utilizes that these PWM converters are not always operated at the maximum load, Utilizes the remaining reactive current supply function of the PWM converter of the inverter drive device to the maximum, and controls the power rate of the entire plant following the load in the same way as the function of the SVC device capable of continuous power rate control. be able to. Moreover, since it is not necessary to install an independent SVC device, the equipment space can be reduced and the equipment cost can be reduced.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an overall configuration according to an embodiment of the present invention. 1 is a power transformer, 2-1 to 2-n are transformers, 3-1 to 3-n are delay rate load facilities, 5-1 to 5-N are transformers, 7-1 to 7-N are motors, 8 -1 to 8-N are inverter drive devices with IGBT PWM converter remaining power reactive current control, 9 is an overall power ratio control unit, 10 is a reactive power detector, 11 is a voltage detector, and 12 is a current detector.
Reactive power Q is detected by the reactive power detector 10 from the signals of the voltage detector 11 and the current detector 12 of the power source, and the total power rate control unit 9 optimizes the power rate of the entire plant based on the detected value. IQ * is calculated and commanded to the inverter drive devices 8-1 to 8-N.
[0008]
The details of the inverter drive device 8 are shown in FIG. 20 is a PWM converter, 21 is a PWM converter conversion unit, 22 is a PWM converter control unit, 23 is a d / q-axis current control unit that independently controls the active current reactive current, and 24 is a maximum value of the remaining reactive current command of the PWM converter. Id * maximum value limit control unit for limiting control, 25 is a DC voltage control unit, 26 is a reactive current command IQ * from the overall power rate control unit 9 of FIG. 1, 27 is a reference phase of d, q-axis current control unit 23 A voltage detector for detection, 28 is a current detector, 30 is an IGBT PWM inverter, 31 is a PWM inverter converter, and 32 is a drive controller of the PWM inverter.
[0009]
Details of the id * maximum value restriction control unit 24 are shown in FIG. 51 is the maximum rated value I 1 max (maximum rated value that the PWM converter 20 can flow) of the primary current I 1 that is a vector addition current of d, q-axis current id, and iq of the PWM converter 20, and 52 is the q-axis determined by the motor load. Current iq (active current), 53 is an arithmetic operation for calculating a remaining reactive current idmax = √ (I 1 max) 2 − (iq) 2 of the PWM converter from I 1 max determined by the converter rating and iq determined by the motor load. And 54 are control units that limit idmax to the maximum value for reactive current command IQ *.
[0010]
FIG. 4 shows a configuration diagram of the overall power rate control unit 9. Reference numeral 101 denotes a reactive power command Q * required for the entire plant, which is “0” when the power rate of the entire plant is controlled to 1.0. A subtractor 102 calculates a deviation between the reactive power command Q * and the detected value Q detected by the reactive power detector 10. Reference numeral 103 denotes a reactive power control unit which receives the calculation result of the subtractor 102 and eliminates the deviation of the subtractor 102, that is, the reactive current for correcting the reactive power of the entire plant to the reactive power command value Q *. The command IQ * is calculated, and the calculation result is commanded to the inverter drive devices 8-1 to 8-N.
[0011]
Next, the operation of this embodiment will be described. Since the operation of the drive control unit 32 of the PWM inverter is the same as that of the conventional example, the PWM converter control unit 22 will be described below.
In the PWM converter control unit 22, the DC voltage control unit 25 calculates a q-axis current command Iq * that is an effective current command so that the output voltage Ed of the converter 21 matches the DC voltage command Ed *. On the other hand, the reactive current command IQ * calculated for optimizing the power supply rate of the entire plant in the overall power rate control unit 9 is a diagram of the PWM converter control unit 22 of each inverter drive device 8-1 to 8-N. 3 is input to the id * maximum value limit control unit 24 shown in FIG. 3, in which the surplus reactive current component calculation unit 53 determines q based on the maximum rated value I 1 max 51 of the primary current I 1 of the PWM converter 20 and the motor load. Based on the shaft current iq52, the remaining reactive current idmax of each PWM converter is calculated, and the reactive current command id * is output to the d and q-axis current control unit 23 within the limit range of the remaining power reactive current idmax.
Here, the reactive current command value IQ * of the calculation result of the reactive power control unit 103 is a value equal to or smaller than the maximum value of the remaining reactive current component Idmax of each of the N units in order to correct the whole with N inverter drive devices. Become. For example, the remaining reactive current Idmax of each inverter drive device is 0.5 PU for 8-1, 0.4 PU for 8-2, 0.3 PU for 8-3, 0 PU for 8-4 to 8-N, When the required reactive current is 1.0 PU, IQ * is 0.4 PU. Of the total required reactive current of 1.0 PU, 8-3 shares 0.3 PU for the remaining reactive current, 2 also shares 0.4 PU for the surplus reactive current, and 8-1 is controlled to share 0.4 PU of the surplus reactive current 0.5 PU. This is because the idmax maximum value restriction control unit 54 in FIG. 3 has the function of sharing the remaining reactive current from the inverter drive device having a smaller remaining reactive current.
Further, the reactive current command id * is a value within the limit range of the remaining reactive current idmax of each PWM converter, and the total power ratio compensating reactive current is supplied from each PWM converter within the limited range of the remaining reactive current idmax. Will be supplied.
The d and q axis current control unit 23 uses the q axis current command Iq * and the d axis current command Id * as command values and uses the power supply voltage and phase detector 27 signals as a reference to calculate the d axis and q axis vectors. And the primary current command I 1 * of the IGBT converter 21 is output. Based on the primary current command I 1 * and the signal from the current detector 28, three-phase AC current control is performed, and a three-phase AC voltage command serving as a reference for the PWM pulse of the IGBT converter 21 is calculated. Based on the above, the PWM control unit calculates and outputs a PWM pulse, and the IGBT converter 21 optimally controls the power supply rate of the entire plant following the load.
In the present embodiment, an inverter drive device having a large proportion of the electric power of the entire plant by supplying the total power ratio compensating reactive current from each PWM converter within the limit range of the remaining reactive current idmax of each PWM converter. By utilizing the surplus reactive current supply capability of the group PWM converters instead of the load-following reactive power compensator (SVC), the power supply rate of the entire plant can be optimally tracked to the load without installing separate equipment. Can be controlled.
[0012]
In the present invention, the load state of each inverter drive device is monitored by the host controller of the drive device, the remaining reactive current supply capability of each inverter drive device is calculated by the host controller, and a reactive current command is sent to each inverter drive device. It is also possible to distribute the above.
Further, although the IGBT PWM inverter is used in the embodiment of FIG. 2, the present invention can achieve the same effect even in a PWM converter using other self-extinguishing elements such as GTQ and IGCT.
In addition, the present invention can add a function that can be optimized by setting the capacity of the PWM converter of the inverter drive device larger than that of the inverter unit, etc., compared to the configuration of the entire plant.
[0013]
【The invention's effect】
As described above, according to the present invention, since the remaining reactive current supply capability of the original PWM converter is utilized to the maximum extent as the inverter drive device, the function of the load following reactive power compensation (SVC) device is Similarly, the power supply rate of the entire plant can be optimally controlled following the load.
Moreover, since it is not necessary to install an independent SVC device, the equipment space can be reduced and the equipment cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram according to an embodiment of the present invention. FIG. 2 is a detailed diagram of an inverter drive device of the present invention. FIG. 3 is a detailed diagram of an Id * maximum value limit control unit of the present invention. FIG. 5 is a block diagram of an overall power ratio control unit of the conventional apparatus. FIG. 5 is an overall block diagram of a conventional example. FIG.
DESCRIPTION OF SYMBOLS 1 ... Power supply transformer, 2-1 to 2-n ... Transformer, 3-1 to 3-n ... Delay capacity load equipment, 5-1 to 5-N ... Transformer, 7-1 to 7-N ... Electric motor, 8 -1 to 8-N: IGBT PWM converter remaining power reactive current control inverter drive device, 9 ... Overall power ratio control unit, 10 ... Reactive power detector, 11 ... Voltage detector, 12 ... Current detector, 20 ... PWM converter, 21 ... PWM converter conversion unit, 22 ... PWM converter control unit, 23 ... d, q-axis current control unit, 24 ... id * maximum value limit control unit, 25 ... DC voltage control unit, 26 ... reactive current command IQ *, 27 ... Voltage detector, 28 ... Current detector, 30 ... IGBT PWM inverter, 31 ... PWM inverter conversion unit, 32 ... Drive control unit of PWM inverter, 53 ... Calculation of remaining capacity invalid current idmax of PWM converter That the arithmetic unit, a control unit for limiting a maximum value of 54 ... idmax

Claims (2)

有効電流と無効電流を独立に制御できる半導体PWM順変換器と、該順変換器の直流出力に接続され、その出力を電源として、電動機の速度制御を行なう半導体PWM逆変換器とから構成される複数のインバータドライブ装置と、プラント電源の無効電力を検出する検出器と、全体のカ率を最適とするために前記インバータドライブ装置にカ率補償用無効電流指令を指令する全体カ率制御部とからなり、
前記各インバータドライブ装置によって、前記順変換器で流せる最大定格電流とプラントで使用される前記逆変換器を介して電動機に流れる有効電流に基づいて前記各インバータドライブ装置の前記順変換器の余力無効電流供給可能量を演算し、この演算結果に基づいて前記順変換器の最大定格までの範囲でカ率補償用無効電流を流し、プラント全体のカ率を連続制御することを特徴とするインバータドライブ装置によるプラント電源カ率制御方式。
A semiconductor PWM forward converter that can control the active current and the reactive current independently, and a semiconductor PWM reverse converter that is connected to the DC output of the forward converter and uses the output as a power source to control the speed of the motor. A plurality of inverter drive devices, a detector for detecting the reactive power of the plant power supply, and an overall power rate control unit for commanding a reactive current command for power compensation to the inverter drive device in order to optimize the overall power rate; Consists of
Based on the maximum rated current that can be flowed by the forward converter and the effective current that flows to the motor through the reverse converter used in the plant by each inverter drive apparatus, the remaining capacity of the forward converter of each inverter drive apparatus is invalidated An inverter drive characterized in that a current supplyable amount is calculated, a reactive current for power rate compensation is passed in a range up to the maximum rating of the forward converter based on a result of the calculation, and the power rate of the entire plant is continuously controlled. Plant power rate control system using equipment.
有効電流と無効電流を独立に制御できる半導体PWM順変換器と、該順変換器の直流出力に接続され、その出力を電源として、電動機の速度制御を行なう半導体PWM逆変換器とから構成される複数のインバータドライブ装置と、各インバータドライブ装置に運転パターンを指令する上位制御装置からなり、
前記上位制御装置によって、各インバータドライブ装置の負荷状態を検出し、前記順変換器で流せる最大定格電流とプラントで使用される前記逆変換器を介して電動機に流れる有効電流に基づいて前記各インバータドライブ装置の前記順変換器の余力無効電流供給可能量を演算し、この演算結果に基づいて前記順変換器の最大定格までの範囲でカ率補償用無効電流を流し、プラント全体のカ率を連続制御することを特徴とするインバータドライブ装置によるプラント電源カ率制御方式。
A semiconductor PWM forward converter that can control the active current and the reactive current independently, and a semiconductor PWM reverse converter that is connected to the DC output of the forward converter and uses the output as a power source to control the speed of the motor. It consists of a plurality of inverter drive devices and a host control device that commands the operation pattern to each inverter drive device.
The host controller detects the load state of each inverter drive device, and based on the maximum rated current that can flow in the forward converter and the effective current that flows to the motor via the reverse converter used in the plant The amount of remaining reactive current that can be supplied to the forward converter of the drive device is calculated, and based on the calculation result, a reactive current for compensating the power ratio is supplied in the range up to the maximum rating of the forward converter, and the power ratio of the entire plant is calculated. A plant power rate control system using an inverter drive device, characterized by continuous control.
JP21849898A 1998-07-16 1998-07-16 Plant power rate control system using inverter drive device Expired - Lifetime JP3682544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21849898A JP3682544B2 (en) 1998-07-16 1998-07-16 Plant power rate control system using inverter drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21849898A JP3682544B2 (en) 1998-07-16 1998-07-16 Plant power rate control system using inverter drive device

Publications (2)

Publication Number Publication Date
JP2000037082A JP2000037082A (en) 2000-02-02
JP3682544B2 true JP3682544B2 (en) 2005-08-10

Family

ID=16720883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21849898A Expired - Lifetime JP3682544B2 (en) 1998-07-16 1998-07-16 Plant power rate control system using inverter drive device

Country Status (1)

Country Link
JP (1) JP3682544B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637447A4 (en) * 2003-06-26 2017-05-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation Electric motor drive system
WO2005002038A1 (en) * 2003-06-26 2005-01-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Motor drive system
US7038329B1 (en) * 2004-11-04 2006-05-02 Utc Power, Llc Quality power from induction generator feeding variable speed motors
CN105119297A (en) * 2015-08-06 2015-12-02 广东明阳龙源电力电子有限公司 Method used for adaptive reactive power compensation of photovoltaic inverter
JP7125875B2 (en) * 2018-07-26 2022-08-25 株式会社日立製作所 Plant power control system and its control method
CN112290567B (en) * 2020-12-23 2021-03-23 西南交通大学 Three-phase power quality compensation device and method based on half-bridge converter

Also Published As

Publication number Publication date
JP2000037082A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
CA2282802C (en) Apparatus and method to generate braking torque in an ac drive
US8008885B2 (en) Power converters
US8513911B2 (en) Power converters
JP4489091B2 (en) Electric vehicle control device
US5390102A (en) Parallel running control apparatus for PWM inverters
JPS61236389A (en) Magnetic flux control for induction motor driver using load commutation type inverter circuit
US5097193A (en) Method and apparatus for direct regulation of output currents of an inverter feeding a predetermined number of induction machines
JP4060777B2 (en) Electric vehicle control device
KR20220096128A (en) Fault tolerance operation apparatus of six-phase permanent magnet synchronous motor
JP2007181398A (en) Electric car control device
JP2002010684A (en) Driving system for ac motor
US4721861A (en) Turbine helper drive apparatus
JP3682544B2 (en) Plant power rate control system using inverter drive device
US4818890A (en) Turbine helper drive apparatus
JP3838092B2 (en) Grid interconnection power converter
JP3787803B2 (en) Control device for permanent magnet synchronous motor
JPH09233898A (en) Controller for ac motor and controller for elevator
JP2003134833A (en) Power converter
KR20170095557A (en) Power conversion device for preventing a circulating current and method of driving the same
JP2010104234A (en) Electric vehicle controller
JP3381465B2 (en) Control method of power converter
JP3187257B2 (en) Operation control device for AC excitation synchronous machine
JP4671521B2 (en) Electric motor control device
WO2024057633A1 (en) Power regeneration converter
JP2003264907A (en) Linear induction motor controller for driving railway vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

EXPY Cancellation because of completion of term