JP3818777B2 - Active filter control method - Google Patents

Active filter control method Download PDF

Info

Publication number
JP3818777B2
JP3818777B2 JP17501898A JP17501898A JP3818777B2 JP 3818777 B2 JP3818777 B2 JP 3818777B2 JP 17501898 A JP17501898 A JP 17501898A JP 17501898 A JP17501898 A JP 17501898A JP 3818777 B2 JP3818777 B2 JP 3818777B2
Authority
JP
Japan
Prior art keywords
compensation current
inverter output
output current
iar
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17501898A
Other languages
Japanese (ja)
Other versions
JP2000014007A (en
Inventor
孝昌 天満
崇 元治
喜丈 藤田
克房 水木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP17501898A priority Critical patent/JP3818777B2/en
Publication of JP2000014007A publication Critical patent/JP2000014007A/en
Application granted granted Critical
Publication of JP3818777B2 publication Critical patent/JP3818777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Networks Using Active Elements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力系統に発生する高調波電圧歪みを補償・低減する注入回路式アクティブフィルタの制御方法に関するものである。
【0002】
【従来の技術】
近年、インバータエアコンのように半導体素子を用いた電力変換機器を有する電気製品が普及しており、それに伴って高調波障害が多発している。そのため、従来、高調波対策用アクティブフィルタ(能動型フィルタ)が導入されており、その一例を図1の一般的系統の等価回路を参照して次に示す。
【0003】
まず図において(1)は系統電源、(2)は系統母線、(3)はアクティブフィルタ(以下、AFと称す。)、(4)は負荷、(Zs)は系統インピーダンスである。上記系統電源(1)は基本波成分と共に高調波電圧成分(Vn)を含んだ電圧源で、系統母線(2)を介して負荷(4)に接続される。負荷(4)はアーク炉等の変動負荷で、AF(3)から見たインピ−ダンスは(ZL )である。系統インピーダンス(Zs)はAF(3)から系統電源(1)側を見たインピーダンスである。
【0004】
AF(3)は注入回路部(5)と高周波インバータ(6)と制御用演算部(7)とを有する注入回路式である。上記注入回路部(5)はコンデンサ(C)とリアクトル(R)を直列接続したもので、接続点(M)を介して系統母線(2)に接続される。そして、AF接続点(M)に接続されたPT(8)により高調波電圧成分(Vn)を含んだ母線電圧(Va)を検出し、注入回路部(5)内に挿入されたCT(9)により後述の補償電流(Ia)を検出する。
【0005】
高周波インバータ(6)はコンデンサ(C)とリアクトル(R)の接続点(N)にインバータ出力電流(Ii)を注入し、そこから系統母線(2)に注入されて高調波電圧歪みを補償・低減する補償電流(Ia)を発生させる。演算部(7)は高調波電圧成分(Vn)及び出力された補償電流(Ia)からインバータ出力電流(Ii)の指令値(Ir’)を算出してインバータ(6)に入力する。
【0006】
上記演算部(7)は高調波検出部と振幅位相調整部(以下、調整部と称する。)とを有し、PT(8)の検出電圧(Va)から高調波検出部においてAF接続点(M)の高調波電圧成分(Vn)を検出する。調整部は、高調波電圧成分(Vn)を入力とするニューラルネットワーク制御で構成された調整手段を有し、高調波電圧成分(Vn)に制御ゲイン(ベクトル)(G)を乗じて補償電流注入基準信号(実現したい補償電流値)(Iar)を算出する。そして、基準信号(Iar)にインバータ出力電流(Ii)に対する補償電流(Ia)の分流率(K)の逆数を乗じ、所望の補償電流(Ia)を実現するためのインバータ出力電流(Ii)の指令値(Ir’)を算出する。
【0007】
この時、補償電流(Ia)を、AF接続点(M)から電源及び負荷側を見た全系統インピーダンス(Zt)の位相に合わせて出力することが望ましい一方、系統インピーダンス(Zt)は常に変動している。そのため、ニューラルネットワークにより補償電流(Ia)を常時調整して出力する必要がある。上記ニューラルネットワークはバックプロパゲーション法によって一定の演算サイクル毎に各ニューロン間結合荷重(W)を学習(変更)して見直す。それにより補償電流(Ia)を系統インピーダンス(Zt)の変動に追従して一定サイクルで常時調整し、最適の補償電流(Ia)を出力制御する。上記ニューロン間結合荷重(W)の学習を指令するニューラルネットワークの教師信号(Id’)として次式(イ)が適用される。
【0008】
|Id’|=|{(0−Vn)/Zt}+Iar|−|Iar|…(イ)
Zt={Vn(t−1)−Vn(t)}/(Ia−0)…(ロ)
{但し、Vn:AF接続点(M)の高調波電圧成分、Iar:補償電流注入基準信号、Zt:AF接続点(M)から見た系統インピーダンス、Vn(t−1):Ia無し(AF非接続)時のVn(始動時は0)、Vn(t):Ia有り(AF接続)時のVn}
上記構成によれば、高調波電圧成分(Vn)に比例した補償電流(Ia)をインバータ(6)から発生させ、高調波電圧成分(Vn)と補償電流(Ia)とでAF(3)が見掛け上、特定周波数において等価抵抗(Ra=Vn/Ia)となる。そこで、電源側系統インピーダンス(Zs)の誘導性と負荷(ZL )の容量性(例えば力率改善用コンデンサ)とが共振して系統電源(1)の高調波電圧成分(Vn)が拡大した場合、等価抵抗(Ra)がダンピング抵抗として作用し、結果として高調波電圧成分(Vn)を低減する。
【0009】
この時、AF(3)をAF接続点(M)から見た系統インピーダンス(Zt)と同位相の抵抗素子にすることが効果的であり、従って補償電流注入基準信号(Iar)は系統インピーダンス(Zt)と高調波電圧成分(Vn)とで、Iar=Vn/Ztより設定される。通常の系統では、系統インピーダンス(Zt)は常時変化し、それに応じてダンピング抵抗作用も変動する。そのため、上述したように、系統インピーダンス(Zt)の変動に追従してAF(3)が最適なインピーダンスとして作用するようにニューラルネットワーク制御により補償電流注入基準信号(Ira)を常時調整し、最適の補償電流(Ia)を出力制御する。
【0010】
【発明が解決しようとする課題】
上述の注入回路式AF(3)において、インバータ出力電流(Ii)に対する補償電流(Ia)は次式(ハ)(ニ)で与えられる。
【0011】
Ia=K・Ii…(ハ)、K=Zr/(Zt+Zc+Zr)…(ニ)
{但し、K:インバータ出力電流(Ii)に対する補償電流(Ia)の分流率、Zt:AF接続点(M)から見た系統インピーダンス、Zc:注入回路部(5)のコンデンサ(C)のインピーダンス、Zr:注入回路部(5)のリアクトル(R)のインピーダンス}
ここで、Ztが容量性で、且つ、|Zt+Zc|>|Zr|の場合(例えば電源側インピーダンスと負荷側インピーダンスとが共振している場合)、インピーダンス(Zt+Zc)及び(Zr)はそれぞれ負及び正で、(Zt+Zc+Zr)は負となり、分流率(K)も負となる。そのため、式(ハ)より指令値(Ir’)に対して補償電流(Ia)の位相が反転し、正常な補償電流(Ia)が得られず、補償効果が得られないという不具合が生じる。
【0012】
例えば、AF接続点(M)を配電用変圧器の送り出し側とし、配電用変圧器のインピーダンス(Zs=j17.4)と力率改善用コンデンサを含む負荷側インピーダンス(ZL =−j14.5)とで共振により高調波拡大が発生しているとする。(但し、括弧内は7次調波に対するインピーダンスを示す。)
Zt=(Zs・ZL )/(Zs+ZL )=−j87.0
Zt+Zc=−j103.5、Zr=j73.9
となって系統インピーダンス(Zt)が容量性で、|Zt+Zc|>|Zr|になる。ここで、Ii=1(A)とすると、
Ia={j73.9/(−j103.5+j73.9)}×1≒−2.5(A)
となって指令値(Ir’)に対して補償電流(Ia)の位相が反転し、補償効果が得られない。
【0013】
本発明の目的は、系統インピーダンス(Zt)が容量性で、且つ、|Zt+Zc|>|Zr|なる条件においても良好な補償効果が得られる注入回路式AFの制御方法を提供することである。
【0014】
【課題を解決するための手段】
本発明は、コンデンサとリアクトルを直列接続して系統母線に接続された注入回路部と、上記注入回路部のコンデンサとリアクトルの接続点にインバータ出力電流を注入する高周波インバータと、上記母線電圧から検出された高調波電圧成分を入力とするニューラルネットワーク制御で構成された調整手段により系統変動に対し最適の補償電流を出力させるインバータ出力電流指令値を算出して上記インバータに入力する演算部とを有し、系統母線に補償電流を注入して高調波電圧歪みを補償・低減する注入回路式AFを制御するにあたり、上記ニューラルネットワーク制御の教師信号を、
|Id|=|{(0−Vn)/(K・Zt)}+Iar|−|Iar|
(但し、|Id|:教師信号、Vn:AF接続点の高調波電圧成分、Iar:補償電流注入基準信号、K:インバータ出力電流に対する補償電流の分流率、Zt:始動時のAF接続点から見た系統インピーダンス)によって設定し、インバータ出力電流から補償電流への分流を考慮してニューラルネットワークを指令する。
【0015】
上記構成によれば、本発明の教師信号は分流率(K)を加味することによりインバータ出力電流(Ii)から補償電流(Ia)への分流を考慮してニューラルネットワークを学習指令し、補償電流注入基準信号(Iar)を調整する。それによりインバータ出力電流(Ii)から補償電流(Ia)への分流で指令値(Ir)に対し補償電流(Ia)の位相反転が生じないようにインバータ出力電流(Ii)を制御する。
【0016】
【発明の実施の形態】
本発明に係るAFの制御方法の実施の形態を図1を参照して次に説明する。本発明の特徴は、演算部(7)におけるニューラルネットワーク制御の教師信号を次式(ホ)によって設定することで、それに従って演算部(7)のプログラム内容を変更する。
|Id|=|{(0−Vn)/(K・Zt)}+Iar|−|Iar|…(ホ)
[但し、|Id|:教師信号、Vn:AF接続点(M)の高調波電圧成分、Iar:補償電流注入基準信号、K:インバータ出力電流(Ii)に対する補償電流(Ia)の分流率{K=Zr/(Zt+Zc+Zr)…(ニ)}、Zt:始動時のAF接続点(M)から見た系統インピーダンス、Zc:コンデンサ(C)のインピーダンス、Zr:リアクトル(R)のインピーダンス]
上記教師信号の式(ホ)によれば、分流率(K)によりインバータ出力電流(Ii)から補償電流(Ia)への分流を考慮してニューラルネットワークを学習指令する。即ち、式(ホ)は分流率(K)を加味することによりインバータ出力電流(Ii)から補償電流(Ia)への分流状態を考慮して補償電流注入基準信号(Iar)を調整し、インバータ出力電流指令値(Ir)を出力する。結果としてインバータ出力電流(Ii)を介して所望の補償電流(Ia)を直接出力制御出来る。
【0017】
そこで、例えばZtが容量性、|Zt+Zc|>|Zr|で、分流率(K)が負となる場合、インバータ出力電流(Ii)がAF接続点(M)を経て補償電流(Ia)へ分流する際、インバータ出力電流指令値(Ir)に対し補償電流(Ia)の位相反転が生じないようにニューラルネットワークを指令してインバータ出力電流(Ii)を出力制御出来、正常な補償効果が得られる。
【0018】
一方、従来の教師信号の式(イ)はインバータ出力電流(Ii)から補償電流(Ia)への分流を考慮せず、ニューラルネットワークを指令するため、インバータ出力電流(Ii)から補償電流(Ia)への分流によって位相反転が生じる場合、それを回避出来ない。
【0019】
【発明の効果】
本発明によれば、ニューラルネットワーク制御を有する注入回路式AFの制御において、ニューラルネットワークの教師信号にインバータ出力電流に対する補償電流の分流率を加味することによりインバータ出力電流から補償電流への分流を考慮してニューラルネットワークを指令し、インバータ出力電流指令値を調整するようにしたから、AFにおいてインバータ出力電流が補償電流へ分流する際、インバータ出力電流指令値に対して補償電流の位相反転が生じないようにインバータ出力電流を出力制御出来、正常な補償効果が得られる。
【図面の簡単な説明】
【図1】注入回路式AFの一般的な接続系統回路図。
【符号の説明】
2 系統母線
3 AF
4 負荷
5 注入回路部
6 高周波インバータ
7 演算部
M AF接続点
C コンデンサ
R リアクトル
N 注入回路部のコンデンサとリアクトルの接続点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling an injection circuit type active filter that compensates and reduces harmonic voltage distortion generated in a power system.
[0002]
[Prior art]
In recent years, electrical products having power conversion devices using semiconductor elements such as inverter air conditioners have become widespread, and harmonic disturbances have frequently occurred accordingly. Therefore, a harmonic countermeasure active filter (active filter) has been introduced conventionally, and an example thereof will be described below with reference to an equivalent circuit of a general system in FIG.
[0003]
First, in the figure, (1) is a system power source, (2) is a system bus, (3) is an active filter (hereinafter referred to as AF), (4) is a load, and (Zs) is a system impedance. The system power supply (1) is a voltage source including a harmonic voltage component (Vn) together with a fundamental wave component, and is connected to a load (4) via a system bus (2). The load (4) is a variable load such as an arc furnace, and the impedance viewed from the AF (3) is (ZL). The system impedance (Zs) is an impedance when the system power supply (1) side is viewed from AF (3).
[0004]
AF (3) is an injection circuit type having an injection circuit unit (5), a high-frequency inverter (6), and a control calculation unit (7). The injection circuit portion (5) is a capacitor (C) and a reactor (R) connected in series, and is connected to the system bus (2) via a connection point (M). Then, the bus voltage (Va) including the harmonic voltage component (Vn) is detected by the PT (8) connected to the AF connection point (M), and the CT (9) inserted into the injection circuit unit (5) is detected. ) Detects a compensation current (Ia) described later.
[0005]
The high frequency inverter (6) injects the inverter output current (Ii) into the connection point (N) between the capacitor (C) and the reactor (R), and from there to the system bus (2) to compensate for harmonic voltage distortion. A compensation current (Ia) to be reduced is generated. The calculation unit (7) calculates a command value (Ir ′) of the inverter output current (Ii) from the harmonic voltage component (Vn) and the output compensation current (Ia) and inputs the command value (Ir ′) to the inverter (6).
[0006]
The calculation unit (7) includes a harmonic detection unit and an amplitude phase adjustment unit (hereinafter referred to as an adjustment unit). From the detected voltage (Va) of the PT (8), an AF connection point ( The harmonic voltage component (Vn) of M) is detected. The adjustment unit has an adjustment unit configured by neural network control using the harmonic voltage component (Vn) as an input, and compensates the harmonic voltage component (Vn) by a control gain (vector) (G) to inject compensation current. A reference signal (compensation current value to be realized) (Iar) is calculated. Then, the reference signal (Iar) is multiplied by the reciprocal of the shunt rate (K) of the compensation current (Ia) with respect to the inverter output current (Ii), and the inverter output current (Ii) for realizing a desired compensation current (Ia) is obtained. A command value (Ir ′) is calculated.
[0007]
At this time, it is desirable to output the compensation current (Ia) in accordance with the phase of the entire system impedance (Zt) when the power supply and the load side are viewed from the AF connection point (M), while the system impedance (Zt) always fluctuates. is doing. Therefore, it is necessary to constantly adjust and output the compensation current (Ia) using a neural network. The neural network learns (changes) the connection load (W) between neurons every predetermined calculation cycle by the back-propagation method and reviews it. Thus, the compensation current (Ia) is constantly adjusted in a constant cycle following the fluctuation of the system impedance (Zt), and the optimum compensation current (Ia) is output-controlled. The following equation (A) is applied as a teacher signal (Id ′) of the neural network that commands learning of the interneuron connection weight (W).
[0008]
| Id ′ | = | {(0−Vn) / Zt} + Iar | − | Iar |
Zt = {Vn (t-1) -Vn (t)} / (Ia-0) (b)
{However, Vn: Harmonic voltage component of AF connection point (M), Iar: Compensation current injection reference signal, Zt: System impedance viewed from AF connection point (M), Vn (t-1): No Ia (AF Vn at disconnection) (0 at startup), Vn (t): Vn with Ia (AF connection)}
According to the above configuration, the compensation current (Ia) proportional to the harmonic voltage component (Vn) is generated from the inverter (6), and AF (3) is generated by the harmonic voltage component (Vn) and the compensation current (Ia). Apparently, an equivalent resistance (Ra = Vn / Ia) is obtained at a specific frequency. Therefore, when the harmonic voltage component (Vn) of the system power supply (1) expands due to resonance between the inductive power supply system impedance (Zs) and the load (ZL) capacitive (for example, a power factor improving capacitor). The equivalent resistance (Ra) acts as a damping resistance, resulting in a reduction of the harmonic voltage component (Vn).
[0009]
At this time, it is effective to make AF (3) a resistance element having the same phase as the system impedance (Zt) viewed from the AF connection point (M). Therefore, the compensation current injection reference signal (Iar) is the system impedance (Iar). Zt) and the harmonic voltage component (Vn) are set by Iar = Vn / Zt. In a normal system, the system impedance (Zt) constantly changes, and the damping resistance action varies accordingly. Therefore, as described above, the compensation current injection reference signal (Ira) is constantly adjusted by the neural network control so that the AF (3) acts as an optimum impedance following the fluctuation of the system impedance (Zt), and the optimum The output of the compensation current (Ia) is controlled.
[0010]
[Problems to be solved by the invention]
In the above injection circuit type AF (3), the compensation current (Ia) for the inverter output current (Ii) is given by the following formulas (C) and (D).
[0011]
Ia = K · Ii (C), K = Zr / (Zt + Zc + Zr) (D)
{However, K: shunt ratio of compensation current (Ia) to inverter output current (Ii), Zt: system impedance viewed from AF connection point (M), Zc: impedance of capacitor (C) of injection circuit section (5) , Zr: Impedance of reactor (R) of injection circuit section (5)}
Here, when Zt is capacitive and | Zt + Zc |> | Zr | (for example, when the power supply side impedance and the load side impedance are resonating), the impedances (Zt + Zc) and (Zr) are negative and Positive, (Zt + Zc + Zr) is negative, and the diversion ratio (K) is also negative. For this reason, the phase of the compensation current (Ia) is reversed with respect to the command value (Ir ′) according to the formula (C), so that a normal compensation current (Ia) cannot be obtained and a compensation effect cannot be obtained.
[0012]
For example, the AF connection point (M) is set as the delivery side of the distribution transformer, and the impedance of the distribution transformer (Zs = j17.4) and the load side impedance including the power factor improving capacitor (ZL = −j14.5) Suppose that harmonic expansion occurs due to resonance. (However, the value in parentheses indicates the impedance with respect to the seventh harmonic.)
Zt = (Zs · ZL) / (Zs + ZL) = − j87.0
Zt + Zc = −j103.5, Zr = j73.9
Thus, the system impedance (Zt) is capacitive, and | Zt + Zc |> | Zr |. Here, if Ii = 1 (A),
Ia = {j73.9 / (− j103.5 + j73.9)} × 1≈−2.5 (A)
Thus, the phase of the compensation current (Ia) is reversed with respect to the command value (Ir ′), and the compensation effect cannot be obtained.
[0013]
An object of the present invention is to provide a method for controlling an injection circuit AF that provides a good compensation effect even under the condition that the system impedance (Zt) is capacitive and | Zt + Zc |> | Zr |.
[0014]
[Means for Solving the Problems]
The present invention includes an injection circuit unit in which a capacitor and a reactor are connected in series and connected to a system bus, a high-frequency inverter that injects an inverter output current at a connection point between the capacitor and the reactor of the injection circuit unit, and detection from the bus voltage And an arithmetic unit for calculating an inverter output current command value for outputting an optimum compensation current against system fluctuations by an adjusting means configured by neural network control using the input harmonic voltage component as input, and inputting the command to the inverter. In order to control the injection circuit type AF for injecting the compensation current into the system bus and compensating / reducing the harmonic voltage distortion, the neural network control teacher signal is
| Id | = | {(0−Vn) / (K · Zt)} + Iar | − | Iar |
(However, | Id |: Teacher signal, Vn: Harmonic voltage component of AF connection point, Iar: Compensation current injection reference signal, K: Shunt ratio of compensation current with respect to inverter output current, Zt: From AF connection point at start-up The neural network is commanded in consideration of the shunt from the inverter output current to the compensation current.
[0015]
According to the above configuration, the teacher signal of the present invention gives a learning command to the neural network in consideration of the shunt from the inverter output current (Ii) to the compensation current (Ia) by taking into account the shunt ratio (K), and the compensation current Adjust the injection reference signal (Iar). As a result, the inverter output current (Ii) is controlled so that the phase inversion of the compensation current (Ia) does not occur with respect to the command value (Ir) due to the shunt from the inverter output current (Ii) to the compensation current (Ia).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an AF control method according to the present invention will be described below with reference to FIG. A feature of the present invention is that a teacher signal for neural network control in the calculation unit (7) is set by the following equation (e), and the program content of the calculation unit (7) is changed accordingly.
| Id | = | {(0−Vn) / (K · Zt)} + Iar | − | Iar |
[However, | Id |: Teacher signal, Vn: Harmonic voltage component at AF connection point (M), Iar: Compensation current injection reference signal, K: Shunt ratio of compensation current (Ia) to inverter output current (Ii) { K = Zr / (Zt + Zc + Zr) (D)}, Zt: System impedance viewed from AF connection point (M) at start-up, Zc: Impedance of capacitor (C), Zr: Impedance of reactor (R)]
According to the equation (e) of the teacher signal, the neural network is instructed to learn by considering the shunt from the inverter output current (Ii) to the compensation current (Ia) by the shunt rate (K). That is, the equation (e) adjusts the compensation current injection reference signal (Iar) in consideration of the shunting state from the inverter output current (Ii) to the compensation current (Ia) by taking into account the shunt rate (K). Output current command value (Ir) is output. As a result, the desired compensation current (Ia) can be directly output controlled via the inverter output current (Ii).
[0017]
Therefore, for example, when Zt is capacitive, | Zt + Zc |> | Zr |, and the shunt rate (K) is negative, the inverter output current (Ii) is shunted to the compensation current (Ia) via the AF connection point (M). In doing so, the neural network is commanded so that the phase inversion of the compensation current (Ia) does not occur with respect to the inverter output current command value (Ir), and the output control of the inverter output current (Ii) can be performed, thereby obtaining a normal compensation effect. .
[0018]
On the other hand, the equation (a) of the conventional teacher signal does not consider the shunt from the inverter output current (Ii) to the compensation current (Ia), and commands the neural network, so that the compensation current (Ia) is calculated from the inverter output current (Ii). ) If phase reversal occurs due to shunting, it cannot be avoided.
[0019]
【The invention's effect】
According to the present invention, in the injection circuit type AF control having the neural network control, the shunting from the inverter output current to the compensation current is considered by adding the shunting ratio of the compensation current to the inverter output current to the teacher signal of the neural network. Since the neural network is commanded and the inverter output current command value is adjusted, when the inverter output current is shunted to the compensation current in AF, the phase inversion of the compensation current does not occur with respect to the inverter output current command value. In this way, the output current of the inverter can be controlled, and a normal compensation effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a general connection system circuit diagram of an injection circuit type AF.
[Explanation of symbols]
2 system bus 3 AF
4 Load 5 Injection circuit section 6 High-frequency inverter 7 Calculation section M AF connection point C Capacitor R Reactor N Connection point between the capacitor and reactor in the injection circuit section

Claims (1)

コンデンサとリアクトルを直列接続して系統母線に接続された注入回路部と、上記注入回路部のコンデンサとリアクトルの接続点にインバータ出力電流を注入する高周波インバータと、上記母線電圧から検出された高調波電圧成分を入力とするニューラルネットワーク制御で構成された調整手段により系統変動に対し最適の補償電流を出力させるインバータ出力電流指令値を算出して上記インバータに入力する演算部とを有し、系統母線に補償電流を注入して高調波電圧歪みを補償・低減する注入回路式アクティブフィルタを制御するにあたり、
上記ニューラルネットワーク制御の教師信号を、
|Id|=|{(0−Vn)/(K・Zt)}+Iar|−|Iar|
(但し、|Id|:教師信号、Vn:アクティブフィルタ接続点の高調波電圧成分、Iar:補償電流注入基準信号、K:インバータ出力電流に対する補償電流の分流率、Zt:始動時のアクティブフィルタ接続点から見た系統インピーダンス)によって設定し、インバータ出力電流から補償電流への分流を考慮してニューラルネットワークを指令することを特徴とするアクティブフィルタの制御方法。
An injection circuit unit in which a capacitor and a reactor are connected in series and connected to a system bus, a high-frequency inverter that injects an inverter output current at a connection point between the capacitor and the reactor of the injection circuit unit, and a harmonic detected from the bus voltage A calculation bus that calculates an inverter output current command value that outputs an optimum compensation current against system fluctuations by adjusting means configured by neural network control that receives a voltage component, and inputs the inverter output current command value to the inverter; Injecting a compensation current to control the active filter with injection circuit that compensates and reduces harmonic voltage distortion
The neural network control teacher signal
| Id | = | {(0−Vn) / (K · Zt)} + Iar | − | Iar |
(However, | Id |: Teacher signal, Vn: Harmonic voltage component at active filter connection point, Iar: Compensation current injection reference signal, K: Compensation current shunt ratio with respect to inverter output current, Zt: Active filter connection at start-up A control method for an active filter, characterized in that a neural network is commanded in consideration of a shunt from an inverter output current to a compensation current.
JP17501898A 1998-06-22 1998-06-22 Active filter control method Expired - Fee Related JP3818777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17501898A JP3818777B2 (en) 1998-06-22 1998-06-22 Active filter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17501898A JP3818777B2 (en) 1998-06-22 1998-06-22 Active filter control method

Publications (2)

Publication Number Publication Date
JP2000014007A JP2000014007A (en) 2000-01-14
JP3818777B2 true JP3818777B2 (en) 2006-09-06

Family

ID=15988788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17501898A Expired - Fee Related JP3818777B2 (en) 1998-06-22 1998-06-22 Active filter control method

Country Status (1)

Country Link
JP (1) JP3818777B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100407540C (en) * 2007-02-15 2008-07-30 湖南大学 Compound control method of injection mixed active power filter
CN109546660B (en) * 2018-11-22 2021-03-02 中国航空综合技术研究所 Active power filter circuit based on neural sliding mode control strategy and control method
CN110361625B (en) * 2019-07-23 2022-01-28 中南大学 Method for diagnosing open-circuit fault of inverter and electronic equipment
WO2021181660A1 (en) * 2020-03-13 2021-09-16 三菱電機株式会社 Power conversion device
CN112014678A (en) * 2020-10-20 2020-12-01 中南大学 Three-phase voltage inverter online fault diagnosis method and device and electronic equipment
CN112448392B (en) * 2020-11-09 2022-11-01 广西电网有限责任公司电力科学研究院 Regional power grid harmonic treatment method and device based on complex-valued neural network
CN113992042B (en) * 2021-11-02 2023-08-01 国网福建省电力有限公司检修分公司 Fixed frequency model predictive control method applied to three-phase grid-connected inverter
CN115207927B (en) * 2022-07-18 2023-11-17 滨州市通联电器有限公司 Harmonic monitoring suppression device based on intelligent algorithm

Also Published As

Publication number Publication date
JP2000014007A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
US6850425B2 (en) Parallel inverter system based on tracking of system power reference
JP3818777B2 (en) Active filter control method
JPH05176549A (en) Method and device for adaptive control for power converter
EP0215362B2 (en) AC power supply device
CN114978919B (en) Method and device for widening bandwidth of transducer by using switch type non-foster system
JPH02131329A (en) Reactive power compensator for power system
JP3186962B2 (en) NPC inverter device
CN115842485B (en) Double-loop control system and control method for alternating current test power supply
JP4271457B2 (en) High frequency power supply
CN109698515B (en) Method for inhibiting low-frequency oscillation of VSC-HVDC (Voltage Source converter-high Voltage direct Current) based alternating current-direct current parallel-serial power grid
CN115207968B (en) Method for improving stability margin of photovoltaic grid-connected inverter under weak current network
CN114172344B (en) PWM topology control method and device and power supply system
JPH07131272A (en) Power amplifying device
CN111756262B (en) Parallel inverter droop control method based on power interaction
JPH04289728A (en) Higher harmonic compensator
JPH11164481A (en) Method for controlling active filter
JP3125354B2 (en) Active filter control device
JPS60128515A (en) Controller of power converter
JP3890583B2 (en) Active filter control method
JP3128985B2 (en) Control circuit of harmonic compensator
JP3133772B2 (en) Inverter device
JPH07177749A (en) Power supply unit
JP2000278935A (en) Power supply device
CN117748572A (en) Method and system for adjusting grid voltage feedforward regulator of grid-connected inverter
CN114498752A (en) Control framework and method for improving adaptability of LCL type grid-connected inverter to weak power grid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees