JPS60127719A - Method of producing pyroelectric infrared ray detector - Google Patents

Method of producing pyroelectric infrared ray detector

Info

Publication number
JPS60127719A
JPS60127719A JP23508383A JP23508383A JPS60127719A JP S60127719 A JPS60127719 A JP S60127719A JP 23508383 A JP23508383 A JP 23508383A JP 23508383 A JP23508383 A JP 23508383A JP S60127719 A JPS60127719 A JP S60127719A
Authority
JP
Japan
Prior art keywords
thin film
substrate
pyroelectric
pyroelectric infrared
oxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23508383A
Other languages
Japanese (ja)
Inventor
島貫 専治
進 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23508383A priority Critical patent/JPS60127719A/en
Publication of JPS60127719A publication Critical patent/JPS60127719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高感度で赤外線を検出することのできる焦電
型赤外線検出素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a pyroelectric infrared detection element capable of detecting infrared rays with high sensitivity.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に焦電型赤外線検出素子は測定物から離れて、その
温度を測定することができる非接触温度センサーとして
侵入者検出器や火災報知器等に実用化されている。この
焦電型赤外線検出素子に使用されている焦電材料として
は、セラミックス。
In general, pyroelectric infrared detection elements are put into practical use in intruder detectors, fire alarms, etc. as non-contact temperature sensors that can measure the temperature of an object while being separated from it. The pyroelectric material used in this pyroelectric infrared detection element is ceramic.

単結晶及び高分子材料の強誘電体がある。例えばセラミ
ックスとしてはPbTiO3やPZT 、単結晶として
はLiTaO3,又高分子材料としてはポリフッ化ビニ
リデン(PVF2 )等の強誘電体が知られている。
There are ferroelectrics made of single crystal and polymeric materials. For example, PbTiO3 and PZT are known as ceramics, LiTaO3 is known as a single crystal, and ferroelectric materials such as polyvinylidene fluoride (PVF2) are known as polymer materials.

このうちセラミックスでは、加工性、量産性に富むとい
う利点を持っている反面、性能的に劣シ、又特性の信頼
性に欠けるという問題がある。単結晶は単結晶特有の完
全性、均一性という大きな長所を持ち、焦電特性の再現
性、信頼性に浸れているという利点があるが、製造コス
トが高いという欠点がある。又高分子材料の場合、シー
トで大面積のものが容易に量産出来るなど製造コストが
安いという利点があるが性能的に劣るという問題がある
Among these, ceramics have the advantage of being easy to process and mass-produced, but have the problem of poor performance and unreliable properties. Single crystals have the great advantages of perfection and uniformity unique to single crystals, and the reproducibility and reliability of pyroelectric properties, but they have the disadvantage of high manufacturing costs. Furthermore, in the case of polymeric materials, they have the advantage of low manufacturing costs, such as the ease with which large-area sheets can be mass-produced, but they have the problem of inferior performance.

一方、焦電型赤外線検出素子に用いられる焦電素子は通
常赤外線に対する応答速度や感度を上げるため、焦電素
子の熱容量を小さくt、、100μm以下の膜厚にする
必要があるが1強度上の問題から5μm以上の膜厚が必
要である。またこの焦電素子を形成するのに通常焦電材
料のセラミックスや単結晶のブロックを切断および研摩
して100μmの薄板に加工している。しかし検出素子
の感度を上げるため焦電素子の厚さを100μm以下に
すると、薄板の加工が難しくなシ1歩留シが著しく低下
し量産上の問題がある。又1通常の焦電素子の薄板は導
電性接着剤で基体に接着されて赤外線検出素子に構成さ
れているので、焦電素子の厚さが薄くなるとなればなる
程、焦電材料自体が脆いため検出素子の組立が難しいと
いう問題があった。
On the other hand, in order to increase the response speed and sensitivity to infrared rays, the pyroelectric element used in a pyroelectric infrared detection element usually has a small heat capacity, t, and a film thickness of 100 μm or less, which is one strength higher. Due to this problem, a film thickness of 5 μm or more is required. In order to form this pyroelectric element, a block of ceramic or single crystal of pyroelectric material is usually cut and polished into a thin plate of 100 μm. However, if the thickness of the pyroelectric element is reduced to 100 μm or less in order to increase the sensitivity of the detection element, processing of the thin plate becomes difficult and the yield rate decreases significantly, causing problems in mass production. Furthermore, since the thin plate of a normal pyroelectric element is bonded to a substrate with a conductive adhesive to form an infrared detection element, the thinner the pyroelectric element becomes, the more brittle the pyroelectric material itself becomes. Therefore, there was a problem in that it was difficult to assemble the detection element.

〔発明の目的〕[Purpose of the invention]

本発明はかかる点に鑑みなされ九もので、単結晶と同等
以上焦電性能を有し、赤外線に対する応答速度や感度の
優れ九、且つ量産性に優れた焦電型赤外線検出素子の製
造方法を提供することを目的とする。
The present invention was developed in view of the above, and provides a method for manufacturing a pyroelectric infrared detection element that has pyroelectric performance equal to or better than that of a single crystal, has excellent response speed and sensitivity to infrared rays, and is excellent in mass production. The purpose is to provide.

〔発明の概要〕[Summary of the invention]

本発明は導電性を有する基体上に非晶質酸化物薄膜を形
成し、該非晶質酸化物薄膜を加熱処理によυ再結晶化し
、焦電性を有する多結晶強誘電体酸化物薄膜を形成する
ことを特徴とするものである。
The present invention forms an amorphous oxide thin film on a conductive substrate, recrystallizes the amorphous oxide thin film by heat treatment, and forms a polycrystalline ferroelectric oxide thin film with pyroelectricity. It is characterized by forming.

非晶質強誘電体薄膜は、再結晶化により分極軸が基体に
垂直に配向された多結晶強誘電体酸化物薄膜となる。よ
って焦電係数(dPS/dT )は単結晶と同じである
が、多結晶であるため単結晶より熱伝導率K (”4”
c)と熱拡散係数(a/l/ sec )とが小さくな
るため、実際には1本発明の検出素子の焦電性能は単結
晶を用いた検出素子によシ大きいという特徴がある。
The amorphous ferroelectric thin film becomes a polycrystalline ferroelectric oxide thin film whose polarization axis is oriented perpendicular to the substrate by recrystallization. Therefore, the pyroelectric coefficient (dPS/dT) is the same as that of a single crystal, but since it is a polycrystal, the thermal conductivity K ("4") is higher than that of a single crystal.
c) and thermal diffusion coefficient (a/l/sec) are smaller, so that the pyroelectric performance of the detection element of the present invention is actually higher than that of a detection element using a single crystal.

又1本発明では例えば100μm以下の多結晶強誘電体
酸化物薄膜が基体上に直接形成されているので切断加工
による焦電素子の作製が膜厚に拘らず非常に容易という
特徴がある。
Another feature of the present invention is that since a polycrystalline ferroelectric oxide thin film of, for example, 100 μm or less is formed directly on the substrate, it is very easy to fabricate a pyroelectric element by cutting regardless of the film thickness.

以下1本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において用いられる焦電材料はPb5Ge301
1(ゲルマン酸鉛) 、 PbTi0a (チタン酸鉛
) 、PZ’l’(チタン酸、ジルコン酸鉛) 、Li
TaO3(リチウムタンタレート)等の優れた焦電特性
を有する強誘電体酸化物が用いられる。これを基体上に
非晶質酸化物を形成する方法としては蒸着法および液体
急冷法がある。蒸着法としては例えばスパッタリング法
を用いる場合、第1図に示すように、ガス導入バルブ1
と排気パルプ2を設けた真空容器3内に高周波電源4に
接続した前記焦電材料の結晶質酸化物のターゲット5を
設けると共に、これと対向して導電性を有する基体6を
配置して高周波スパッタリングを行うことによシ基体上
に非晶質酸化物薄膜7を形成する。次に第2図に示すよ
うに基体6の表面の非晶質酸化物薄膜7をヒーター8に
よ)加熱処理を行い再結晶化を行うと9分極軸が基体に
垂直となるように配向した多結晶の焦電性を有する強誘
電体酸化物薄膜9が形成される。
The pyroelectric material used in the present invention is Pb5Ge301
1 (lead germanate), PbTi0a (lead titanate), PZ'l' (titanic acid, lead zirconate), Li
A ferroelectric oxide having excellent pyroelectric properties such as TaO3 (lithium tantalate) is used. Methods for forming this amorphous oxide on a substrate include a vapor deposition method and a liquid quenching method. When using a sputtering method as the vapor deposition method, for example, as shown in FIG.
A target 5 of the crystalline oxide of the pyroelectric material connected to a high frequency power source 4 is provided in a vacuum container 3 in which a vacuum chamber 3 is provided with an exhaust pulp 2, and a conductive substrate 6 is placed opposite to the target 5 to generate high frequency power. An amorphous oxide thin film 7 is formed on the substrate by sputtering. Next, as shown in FIG. 2, the amorphous oxide thin film 7 on the surface of the substrate 6 was heated (using a heater 8) to recrystallize it, and the polarization axis was oriented perpendicular to the substrate. A polycrystalline pyroelectric ferroelectric oxide thin film 9 is formed.

基体上に形成されたこの薄膜状の焦電体は直接モザイク
状に切断されて焦電型赤外線検出素子に用いられる。
This thin film-like pyroelectric material formed on the substrate is directly cut into a mosaic shape and used for a pyroelectric infrared detection element.

基体に非晶質酸化物を形成す為場合特にスパッタリング
法では基板を回転することによシ組成の均一な非晶質酸
化物が容易に作製できる。又、基板は強誘電体酸化物の
それよ少も大きくかつ導電性を有する金属性の薄板ある
いは薄膜が好ましい。
In order to form an amorphous oxide on a substrate, an amorphous oxide having a uniform composition can be easily produced by rotating the substrate, especially when using a sputtering method. Further, the substrate is preferably a metallic thin plate or thin film that is slightly larger than the ferroelectric oxide and has conductivity.

例えば白金、金、パラジウム、ニッケルなどの貴金属お
るいはその合金が熱処理によって酸化をうけないので本
発明に適している。又、基板はBaPbO3、V2O3
,ReO3などの導電性のセラミックでもよく、あるい
は絶縁体の基体上に白金、金、パラジウム、ニッケルな
どの貴金属や上記導電性セラミックを蒸着して薄膜を形
成したものでもよい。
For example, noble metals such as platinum, gold, palladium, and nickel, or alloys thereof, are suitable for the present invention because they are not oxidized by heat treatment. Also, the substrate is BaPbO3, V2O3
, ReO3, or the like, or a thin film formed by vapor-depositing noble metals such as platinum, gold, palladium, nickel, or the above-mentioned conductive ceramics on an insulating substrate.

又、導電性を有する基体の熱膨張係数は強誘電体酸化物
のそれと等しいか大きいことが好ましい。
Further, it is preferable that the thermal expansion coefficient of the conductive substrate is equal to or larger than that of the ferroelectric oxide.

これは熱処理にょ夛クラックが入るのを防ぐためである
。非晶質酸化物を加熱処理にょシ強誘電体酸化物薄膜を
得る場合の加熱手段としては、均一加熱あるいはレーザ
ーや赤外線イメージ炉などKよシ一端よシ順次加熱して
もよい。
This is to prevent cracks from forming during heat treatment. When heating an amorphous oxide to obtain a ferroelectric oxide thin film, the heating means may be uniform heating or sequential heating from one end to the other using a laser, an infrared image furnace, or the like.

液体急冷法としては酸化物融体中に基体を浸漬して引き
上げて基体の表面に非晶質酸化物薄膜を形成するディピ
ング法、酸化物融体を基体の表面にスプレして薄膜を形
成するスプレ法、および回転している金属製の単ロール
あるいは双ロールに酸化物融体を接触して非晶質酸化物
薄膜を形成する方法が挙げられる。
Liquid quenching methods include the dipping method, in which a substrate is immersed in a molten oxide and pulled up to form an amorphous oxide thin film on the surface of the substrate, and the molten oxide is sprayed onto the surface of the substrate to form a thin film. Examples include a spray method and a method of forming an amorphous oxide thin film by bringing an oxide melt into contact with a rotating metallic single roll or twin rolls.

〔発明の実施例〕[Embodiments of the invention]

以下実施例を挙げて本発明を具体的に説明する。 The present invention will be specifically explained below with reference to Examples.

第1図に示す高周波スパッタ装置を用いPb5Qe3O
エエで示される組成の焼結体をターゲット5として、ガ
ス圧4X10 ”Torrのアルゴン、酸素(混合比6
:4)の算囲気中で放電させて、ターゲット5に対向し
て配置された100闘角、厚さ1頗の金(1μm)を蒸
着したセラミック基体6に厚さ30μmの酸化物薄膜7
をスパッタ蒸着した。尚この場合基体6は水冷されてい
る。得られた薄膜7をX線回折で調べたところ1本のブ
ロードな回折線のみが観察され非晶質であることが確認
された。
Using the high frequency sputtering equipment shown in Figure 1, Pb5Qe3O was
A sintered body having the composition shown by A is used as a target 5, and argon and oxygen (mixing ratio 6
A thin oxide film 7 with a thickness of 30 μm is applied to a ceramic substrate 6 on which gold (1 μm) with a thickness of 1 μm is deposited at a fighting angle of 100 and placed opposite the target 5 by discharging in the atmosphere described in 4).
was sputter deposited. In this case, the base body 6 is water-cooled. When the obtained thin film 7 was examined by X-ray diffraction, only one broad diffraction line was observed, confirming that it was amorphous.

又、この非晶質酸化物薄膜7を第2図に示すようヒータ
ー8によ、9700℃で加熱処理を行った。これをX線
回折及び光学顕微鏡で調べたところ、膜面が0面の結晶
粒径300μmの強誘電体P b 5 Ge 3011
多結晶薄膜9となっていることが確認された。
Further, this amorphous oxide thin film 7 was subjected to heat treatment at 9700° C. using a heater 8 as shown in FIG. When this was examined using X-ray diffraction and an optical microscope, it was found that the film was a ferroelectric P b 5 Ge 3011 with a crystal grain size of 300 μm and a 0-plane surface.
It was confirmed that the film was a polycrystalline thin film 9.

次にこの基板上に形成されたC面配向のPb5Ge3O
11多結晶薄膜9をダイヤモンドカッタにより3.5m
角に切断し、赤外線検出素子をつくった。
Next, C-plane oriented Pb5Ge3O was formed on this substrate.
11 Polycrystalline thin film 9 was cut to 3.5 m using a diamond cutter.
I cut it into corners and made an infrared detection element.

この素子の赤外線に対する応答感度を示す電圧感度(R
v)を測定したところ周波数10HzでRv −450
¥Wと得九。これは同じ形状及び寸法のPb5Ge3O
11単結晶を用いた赤外線検出素子のRv=300$よ
)大きいことがわかった。
Voltage sensitivity (R
v) was measured and found Rv -450 at a frequency of 10Hz.
¥W and Toku9. This is Pb5Ge3O with the same shape and dimensions.
It was found that the Rv of an infrared detection element using a No. 11 single crystal was large (Rv = 300 $).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明のように導電性の有する基体上に分
極軸が膜面に垂直となるように配向した焦電性を有する
強誘電体酸化物多結晶薄膜を具備した焦電型赤外線検出
素子は単結晶を用いた場合よりIれた応答感度を示す。
As described above, according to the present invention, a pyroelectric infrared detection device is provided with a ferroelectric oxide polycrystalline thin film having pyroelectric properties and oriented such that the polarization axis is perpendicular to the film surface on a conductive substrate. The device exhibits greater response sensitivity than when using a single crystal.

又1本発明では多結晶薄膜が基体上に形成されるため、
薄膜の厚さが薄くても薄膜の加工が簡単で赤外線検出素
子の作製が容易となシ、量産性にすぐれた検出素子とい
える。これによシ本発明の検出素子は侵入者検出器や火
災報知器をはじめ、高感度を必要とする分光光度計、ガ
ス分析器、レーザー検出器、ミリ波検出器に使用できる
ほか、赤外線イメジャー(撮像器)、焦電ビジコン、焦
電二次元アレイなどの焦電デバイスへの応用も期待され
るものである。
In addition, in the present invention, since a polycrystalline thin film is formed on a substrate,
Even if the thickness of the thin film is small, processing of the thin film is easy and the infrared detecting element can be manufactured easily, so it can be said that it is a detecting element with excellent mass production. Therefore, the detection element of the present invention can be used not only for intruder detectors and fire alarms, but also for spectrophotometers, gas analyzers, laser detectors, and millimeter wave detectors that require high sensitivity. It is also expected to be applied to pyroelectric devices such as tape measure (imager), pyroelectric vidicon, and pyroelectric two-dimensional array.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るスパッタ蒸着装置の概
略図、第2図は蒸着法にょ)得られた非晶質酸化物を加
熱処理して、配向した焦電性を有する強誘電体酸化物多
結晶が基体上に生ずる状態を示す斜視図、第3図は本発
明の赤外線検出素子を示す斜視図。 1・・・ガス導入パルプ 、2・・・排気バルブ3・・
・真空容器 、4・・・高周波電源5°゛ターゲツト 
、6・・・基体 7・・・非晶質酸化物薄膜、8・・・ヒーター9・・・
強誘電体酸化物薄膜。
Fig. 1 is a schematic diagram of a sputter deposition apparatus according to an embodiment of the present invention, and Fig. 2 is a schematic diagram of a sputter deposition apparatus according to an embodiment of the present invention. FIG. 3 is a perspective view showing the infrared detecting element of the present invention; FIG. 1... Gas introduction pulp, 2... Exhaust valve 3...
・Vacuum container, 4...High frequency power supply 5° target
, 6... Substrate 7... Amorphous oxide thin film, 8... Heater 9...
Ferroelectric oxide thin film.

Claims (5)

【特許請求の範囲】[Claims] (1)導電性を有する基体上に非晶質強誘電体酸化物薄
膜を形成した後、前記非晶質酸化物薄膜に加熱処理を施
し再結晶化することによシ焦電性を有する強誘電体酸化
物薄膜を形成することを特徴とした焦電型赤外線検出素
子の製造方法。
(1) After forming an amorphous ferroelectric oxide thin film on a conductive substrate, the amorphous ferroelectric oxide thin film is heated and recrystallized to produce a pyroelectric oxide. A method for manufacturing a pyroelectric infrared detection element, characterized by forming a dielectric oxide thin film.
(2)前記基体の熱膨張係数が強誘電体酸化物の熱膨張
係数よ勺も大きいことを特徴とする特許請求の範囲第一
項記載の焦電型赤外線検出素子の製造方法。
(2) The method for manufacturing a pyroelectric infrared detecting element according to claim 1, wherein the thermal expansion coefficient of the base is much larger than that of the ferroelectric oxide.
(3)基体に形成する非晶質酸化物薄膜の厚さが5μm
以上かつ100μm以下であることを特徴とする特許請
求の範囲第一項記載の焦電型赤外線検出素子の製造方法
(3) The thickness of the amorphous oxide thin film formed on the substrate is 5 μm
The method for manufacturing a pyroelectric infrared detection element according to claim 1, wherein the diameter is 100 μm or more and 100 μm or less.
(4)基体に非晶質酸化物薄膜を蒸着法により付着形成
することを特徴とする特許請求の範囲第一項記載の焦電
型赤外線検出素子の製造方法。
(4) A method for manufacturing a pyroelectric infrared detecting element according to claim 1, characterized in that an amorphous oxide thin film is deposited on a substrate by a vapor deposition method.
(5)基体に非晶質酸化物薄膜を液体急冷法により形成
することを特徴とする特許請求の範囲第一項記載の焦電
型赤外線検出素子の製造方法。
(5) A method for manufacturing a pyroelectric infrared detecting element according to claim 1, characterized in that an amorphous oxide thin film is formed on a substrate by a liquid quenching method.
JP23508383A 1983-12-15 1983-12-15 Method of producing pyroelectric infrared ray detector Pending JPS60127719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23508383A JPS60127719A (en) 1983-12-15 1983-12-15 Method of producing pyroelectric infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23508383A JPS60127719A (en) 1983-12-15 1983-12-15 Method of producing pyroelectric infrared ray detector

Publications (1)

Publication Number Publication Date
JPS60127719A true JPS60127719A (en) 1985-07-08

Family

ID=16980810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23508383A Pending JPS60127719A (en) 1983-12-15 1983-12-15 Method of producing pyroelectric infrared ray detector

Country Status (1)

Country Link
JP (1) JPS60127719A (en)

Similar Documents

Publication Publication Date Title
Taguchi et al. Raman scattering from PbTiO3 thin films prepared on silicon substrates by radio frequency sputtering and thermal treatment
Takayama et al. Pyroelectric properties and application to infrared sensors of PbTiO3, PbLaTiO3 and PbZrTiO3 ferroelectric thin films
Francombe Ferroelectric films and their device applications
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
JPS6267175A (en) Production of thin ferroelectric film
JPS61177900A (en) Piezo-electric element and its manufacture
Okuyama et al. PbTiO3 ferroelectric thin films and their pyroelectric application
Saenger et al. Lead zirconate titanate films produced by pulsed laser deposition
JPH08253324A (en) Ferroelectric thin film constitution body
JP2688872B2 (en) Method for producing PZT thin film and sputtering apparatus
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
Borrelli et al. Compositional and structural properties of sputtered PLZT thin films
JPS60127719A (en) Method of producing pyroelectric infrared ray detector
Fuflyigin et al. Free-standing films of PbSc 0.5 Ta 0.5 O 3 for uncooled infrared detectors
Sayer et al. Integrated piezoelectric and pyroelectric devices from thin film ferroelectrics
JPH04357888A (en) Pyroelectric infrared ray detecting element
JPS6054724B2 (en) Temperature sensor and its manufacturing method
JP2718414B2 (en) Method for producing lead titanate thin film
JP3214031B2 (en) Ferroelectric thin film element and method of manufacturing the same
JPH07111107A (en) Manufacture of thin film of ferroelectric substance
Bell et al. PbTiO/sub 3/thin films for pyroelectric detection
JPH06102122A (en) Pressure sensor and production thereof
Bruchhaus et al. Sputtered PZT films for ferroelectric devices
JPH07286897A (en) Pyroelectric type infrared ray element and its manufacturing method
Kandušer et al. Ferroelectric LiTaO3 thin film annealed in an electric field