JP3214031B2 - Ferroelectric thin film element and method of manufacturing the same - Google Patents

Ferroelectric thin film element and method of manufacturing the same

Info

Publication number
JP3214031B2
JP3214031B2 JP3524492A JP3524492A JP3214031B2 JP 3214031 B2 JP3214031 B2 JP 3214031B2 JP 3524492 A JP3524492 A JP 3524492A JP 3524492 A JP3524492 A JP 3524492A JP 3214031 B2 JP3214031 B2 JP 3214031B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
ferroelectric
single crystal
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3524492A
Other languages
Japanese (ja)
Other versions
JPH05235428A (en
Inventor
敏夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3524492A priority Critical patent/JP3214031B2/en
Publication of JPH05235428A publication Critical patent/JPH05235428A/en
Application granted granted Critical
Publication of JP3214031B2 publication Critical patent/JP3214031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、強誘電体薄膜素子及び
その製造方法に関し、特に、強誘電体単結晶薄膜を用い
て構成された強誘電体薄膜素子及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric thin film device and a method of manufacturing the same, and more particularly, to a ferroelectric thin film device formed using a ferroelectric single crystal thin film and a method of manufacturing the same.

【0002】[0002]

【従来の技術】強誘電体薄膜素子は、PbTiO3 やP
b(Ti1-x Zrx )O3 等の強誘電体材料からなる薄
膜を基板上に直接スパッタリングすることにより、ある
いは基板上に形成された電極上にスパッタリングするこ
とにより構成されており、例えば焦電現象を利用した赤
外線センサーや不揮発性メモリの強誘電体コンデンサ等
に利用されている。
2. Description of the Related Art Ferroelectric thin film elements are made of PbTiO 3 or PbTiO 3.
It is configured by directly sputtering a thin film made of a ferroelectric material such as b (Ti 1-x Zr x ) O 3 on a substrate or by sputtering on an electrode formed on the substrate. It is used for infrared sensors utilizing the pyroelectric phenomenon, ferroelectric capacitors for nonvolatile memories, and the like.

【0003】ところで、基板上に形成された強誘電体薄
膜の強誘電性を十分に発揮させるには、強誘電体薄膜の
分極容易軸が該薄膜の結晶方向と揃えられることが好ま
しく、従って完全な異方性を有する強誘電体単結晶薄膜
を用いることが好ましい。従来、基板上に強誘電体単結
晶薄膜を形成する場合、基板材料の選択が極めて重要な
問題であった。すなわち、PbTiO3 よりなる単結晶
薄膜を得ようとした場合、c軸配向の単結晶薄膜を形成
するには、基板として(100)MgO単結晶基板を用
いることが不可欠であり、また(111)単結晶薄膜を
形成するには、C面またはR面のサファイア単結晶基板
を用いることが不可欠であった。これは、基板上におい
て強誘電体単結晶薄膜を形成する場合、基板材料の結晶
性の良否が大きな役割を果たしているためと考えられて
いた。また、強誘電体単結晶薄膜を基板上に形成する場
合、強誘電体単結晶薄膜及び基板材料間の熱膨張係数の
差が大きく影響することも報告されている(日本応用物
理学会誌、第30巻、第9B号、第2145〜2148
ページ(1991))。
In order to sufficiently exhibit the ferroelectricity of a ferroelectric thin film formed on a substrate, the axis of easy polarization of the ferroelectric thin film is preferably aligned with the crystal direction of the thin film. It is preferable to use a ferroelectric single crystal thin film having a high anisotropy. Conventionally, when a ferroelectric single crystal thin film is formed on a substrate, selection of a substrate material has been a very important problem. That is, in order to obtain a single crystal thin film made of PbTiO 3 , it is indispensable to use a (100) MgO single crystal substrate as a substrate in order to form a single crystal thin film of c-axis orientation. In order to form a single crystal thin film, it was essential to use a C-plane or R-plane sapphire single crystal substrate. This was thought to be because, when a ferroelectric single crystal thin film was formed on a substrate, the crystallinity of the substrate material played a significant role. It has also been reported that when a ferroelectric single-crystal thin film is formed on a substrate, the difference in thermal expansion coefficient between the ferroelectric single-crystal thin film and the substrate material has a large effect (Journal of the Japan Society of Applied Physics, No. Vol. 30, No. 9B, Nos. 2145-2148
Page (1991)).

【0004】[0004]

【発明が解決しようとする課題】上記のように、強誘電
体薄膜素子を強誘電体単結晶薄膜を用いて構成する場
合、強誘電体単結晶薄膜の結晶性に応じて、特定の結晶
方位の基板材料を選択しなければならなかった。すなわ
ち、強誘電体単結晶薄膜を用い強誘電体薄膜素子を製造
しようとした場合、基板材料の制約が非常に厳しかっ
た。
As described above, when a ferroelectric thin film element is formed using a ferroelectric single crystal thin film, a specific crystal orientation is determined according to the crystallinity of the ferroelectric single crystal thin film. Had to choose a substrate material. That is, when an attempt was made to manufacture a ferroelectric thin film element using a ferroelectric single crystal thin film, the restrictions on the substrate material were very severe.

【0005】本発明の目的は、基板材料の結晶性につい
ての制約を緩和することができ、従来は用い得なかった
基板材料を用いて強誘電体単結晶薄膜が形成されている
強誘電体薄膜素子及びその製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to reduce a restriction on crystallinity of a substrate material, and to form a ferroelectric single-crystal thin film using a substrate material which has not been conventionally used. An object of the present invention is to provide an element and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】また、本発明の強誘電体
薄膜素子は、幅a及び長さbであり、かつb/a≧5で
ある矩形板状の基板と、キュリー点における熱膨張係数
が前記基板を構成する材料の熱膨張係数と異なる強誘電
体材料からなり、前記基板上に直接または間接にスパッ
タリングにより形成された強誘電体単結晶薄膜とを備え
る、強誘電体薄膜素子である。
According to another aspect of the present invention, there is provided a ferroelectric thin film element comprising: a rectangular plate-like substrate having a width a and a length b and b / a ≧ 5; A ferroelectric thin-film element comprising a ferroelectric material having a coefficient different from the thermal expansion coefficient of a material constituting the substrate, and a ferroelectric single-crystal thin film formed directly or indirectly by sputtering on the substrate. is there.

【0007】本発明の強誘電体薄膜素子の製造方法は、
幅a及び長さbであり、かつb/a≧5である矩形板状
の基板を用意する工程と、キュリー点における熱膨張係
数が上記基板を構成する材料の同じ温度における熱膨張
係数と異なる強誘電体材料を、前記基板上にスパッタリ
ングすることにより強誘電体単結晶薄膜を形成する工程
とを備えることを特徴とする。
The method for manufacturing a ferroelectric thin film element of the present invention comprises:
A step of preparing a rectangular plate-shaped substrate having a width a and a length b and b / a ≧ 5, wherein the coefficient of thermal expansion at the Curie point is different from the coefficient of thermal expansion of the material constituting the substrate at the same temperature Forming a ferroelectric single crystal thin film by sputtering a ferroelectric material on the substrate.

【0008】[0008]

【作用】前述した先行技術に記載されているように、強
誘電体単結晶薄膜の形成に際しては、基板材料の熱膨張
係数と単結晶薄膜との熱膨張係数との差が大きく影響す
る。すなわち、この先行技術には、PbTiO3 セラミ
ックスを主成分とするターゲットを用いて石英ガラス基
板上にPbTiO3 単結晶薄膜をスパッタリングにより
形成した例、並びにMgO単結晶基板上にPbTiO3
単結晶薄膜を形成した例が開示されている。そして、P
bTiO3 のキュリー点におけるPbTiO3 、MgO
単結晶及び石英ガラスの熱膨張係数は、MgO単結晶≧
PbTiO 3 強誘電体単結晶薄膜≧石英ガラスの関係に
あるため、石英ガラス基板上ではa軸に配向された強誘
電体単結晶薄膜が形成され、MgO単結晶基板上ではc
軸に配向された強誘電体単結晶薄膜が形成されるとして
いる。
As described in the prior art described above,
When forming a dielectric single crystal thin film, the thermal expansion of the substrate material
Coefficient and thermal expansion coefficient of single-crystal thin film greatly affect
You. That is, this prior art includes PbTiO.ThreeCerami
Using a quartz glass-based target
PbTiO on boardThreeSingle crystal thin film by sputtering
Example of formation and PbTiO on MgO single crystal substrateThree
An example in which a single crystal thin film is formed is disclosed. And P
bTiOThreePbTiO at Curie pointThree, MgO
The thermal expansion coefficient of single crystal and quartz glass is MgO single crystal ≧
PbTiO ThreeFerroelectric single crystal thin film ≧ quartz glass
For this reason, on a quartz glass substrate, the ferromagnetic crystals oriented in the a-axis
An electric single crystal thin film is formed, and on the MgO single crystal substrate, c
Assuming that an axially oriented ferroelectric single crystal thin film is formed
I have.

【0009】すなわち、図1(a)に示すように、石英
ガラス基板1上でPbTiO3 単結晶薄膜2を形成した
場合には、熱膨張係数がPbTiO3 単結晶薄膜2の方
が大きいため、薄膜形成後にキュリー点を通過して冷却
されるに際し、引張応力が強誘電体薄膜2側に加えられ
る。その結果、強誘電体薄膜2がa軸配向の単結晶薄膜
となることが示されている。また、図1(b)に示すよ
うに、MgO単結晶基板3上にPbTiO3 薄膜4を形
成した場合には、キュリー点を通過して室温に冷却され
るに際し、上記熱膨張係数差により図示の矢印で示すよ
うに強誘電体薄膜4に圧縮応力が加わり、それによって
c軸配向の単結晶薄膜が形成されることが報告されてい
る。
That is, as shown in FIG. 1A, when a PbTiO 3 single crystal thin film 2 is formed on a quartz glass substrate 1, the thermal expansion coefficient of the PbTiO 3 single crystal thin film 2 is larger. Upon cooling after passing through the Curie point after the formation of the thin film, a tensile stress is applied to the ferroelectric thin film 2 side. As a result, it is shown that the ferroelectric thin film 2 becomes an a-axis oriented single crystal thin film. Further, as shown in FIG. 1B, when a PbTiO 3 thin film 4 is formed on a MgO single crystal substrate 3, when the PbTiO 3 thin film 4 is cooled to room temperature after passing through the Curie point, it is illustrated by the above-mentioned difference in thermal expansion coefficient. It is reported that a compressive stress is applied to the ferroelectric thin film 4 as shown by an arrow, thereby forming a c-axis oriented single crystal thin film.

【0010】本発明者らは、上記のように強誘電体単結
晶薄膜の結晶配向性が、基板材料との熱膨張係数差によ
って制御されることに着目し、基板材料と強誘電体単結
晶薄膜との熱膨張係数差を積極的に利用すれば従来使用
し得なかった基板材料と組み合わせた場合でも、a軸ま
たはc軸配向の強誘電体単結晶薄膜を形成し得るのでは
ないかと考え、鋭意検討した。その結果、基板材料の形
状を工夫することにより所望の結晶配向性を有する強誘
電体単結晶薄膜が得られることを見出した。
The present inventors have paid attention to the fact that the crystal orientation of the ferroelectric single crystal thin film is controlled by the difference in thermal expansion coefficient between the substrate material and the ferroelectric single crystal. We believe that if the thermal expansion coefficient difference with the thin film is positively utilized, a ferroelectric single crystal thin film with a-axis or c-axis orientation can be formed even when combined with a substrate material that could not be used conventionally. , Studied diligently. As a result, they have found that a ferroelectric single crystal thin film having a desired crystal orientation can be obtained by devising the shape of the substrate material.

【0011】すなわち、本発明では、基板が幅a及び長
さbを有し、b/a≧5とされているため、基板上に強
誘電体単結晶薄膜をスパッタリングにより形成した場
合、冷却に際して上記熱膨張係数差に起因する引張応力
または圧縮応力が基板の寸法異方性による応力と相まっ
て強誘電体薄膜に効果的に加えられる。従って、従来使
用できなかった組み合わせの基板材料を用いた場合であ
っても、a軸またはc軸配向の強誘電体単結晶薄膜を製
造することができる。なお、基板の厚みtについては、
上記幅aに対して、t≦a/2の内側にあることが好ま
しい。厚みtがa/2を超えると、図1に示した矢印の
引張応力や圧縮応力が十分な大きさとなり難いからであ
る。
That is, in the present invention, since the substrate has a width a and a length b and b / a ≧ 5, when a ferroelectric single crystal thin film is formed on a substrate by sputtering, The tensile stress or the compressive stress resulting from the difference in the thermal expansion coefficient is effectively applied to the ferroelectric thin film in combination with the stress due to the dimensional anisotropy of the substrate. Therefore, even when a combination of substrate materials that cannot be used conventionally is used, an a-axis or c-axis oriented ferroelectric single crystal thin film can be manufactured. In addition, about the thickness t of a board | substrate,
Preferably, the width a is inside t ≦ a / 2. If the thickness t exceeds a / 2, it is difficult for the tensile stress and the compressive stress indicated by the arrows in FIG. 1 to become sufficiently large.

【0012】[0012]

【実施例の説明】実験1 まず、図2に示す基板5として、下記の表1に示す5種
類の寸法の石英ガラスよりなる基板を用意した。石英ガ
ラスの熱膨張係数は、室温から後述のPbTiO3 系材
料のキュリー温度を含む広い温度範囲にわたり、ほぼ0
である。
EXPLANATION OF EXPERIMENT 1 First, as the substrate 5 shown in FIG. 2, a substrate made of quartz glass having five kinds of dimensions shown in Table 1 below was prepared. The thermal expansion coefficient of quartz glass ranges from room temperature to a wide temperature range including the Curie temperature of the PbTiO 3 -based material described later, and is almost zero.
It is.

【0013】[0013]

【表1】 [Table 1]

【0014】次に、上記基板5上に、下記の条件でPb
TiO3 をスパッタリングし、膜厚1.5μmの強誘電
体薄膜を形成した。スパッタリング条件 使用した装置…RFマグネトロンスパッタ装置 ターゲット…PbTiO3 セラミックス(c/a
比:1.032、キュリー点:320℃及びキュリー点
における熱膨張係数:100×10-7/℃) 基板温度…650℃ スパッタリング・ガス圧…20mTorr スパッタリングガス…ArO2 を容量比で90対1
0の割合で含有する混合ガス RFパワー…200W/(径4インチのターゲット
当たり) スパッタリング時間…2時間
Next, Pb is formed on the substrate 5 under the following conditions.
TiO 3 was sputtered to form a 1.5 μm thick ferroelectric thin film. Equipment using sputtering conditions : RF magnetron sputtering equipment Target: PbTiO 3 ceramics (c / a
Ratio: 1.032, Curie point: 320 ° C. and thermal expansion coefficient at the Curie point: 100 × 10 −7 / ° C.) Substrate temperature: 650 ° C. Sputtering gas pressure: 20 mTorr Sputtering gas: ArO 2 in a volume ratio of 90: 1.
Mixed gas containing 0 ratio RF power: 200 W / (per 4 inch diameter target) Sputtering time: 2 hours

【0015】上記スパッタリングにより、表1に示すよ
うに、b/a≧5を満たす試料番号4及び5の基板を用
いた場合には、a軸に配向したPbTiO3 単結晶薄膜
が形成された。すなわち、図3に試料番号4の場合に形
成された薄膜のX線回折パターンを示すように、a軸配
向PbTiO3 が形成されており、反射高速電子回折
(RHEED)でスポット状を示し、単結晶薄膜である
ことが確認された。
As shown in Table 1, when the substrates of Sample Nos. 4 and 5 satisfying b / a ≧ 5 were used by the above-mentioned sputtering, a PbTiO 3 single crystal thin film oriented in the a-axis was formed. That is, as shown in the X-ray diffraction pattern of the thin film formed in the case of the sample No. 4 in FIG. 3, the a-axis oriented PbTiO 3 is formed, the spot shape is shown by the reflection high-energy electron diffraction (RHEED), It was confirmed that it was a crystalline thin film.

【0016】これに対して、b/a<5である試料番号
1〜3の基板を用いた場合には、a軸配向PbTiO3
であったが、反射高速電子回折(RHEED)ではリン
グ状を示し、多結晶薄膜であった。これは、以下の理由
によると考えられる。PbTiO3 のキュリー点におけ
る熱膨張係数は100×10-7/℃であり、同温度にお
ける石英ガラスよりなる基板の熱膨張係数よりも大きい
ため、スパッタリング後の冷却に際し強誘電体薄膜が引
張応力を受ける。試料番号4,5では、上記b/a≧5
であるため基板5の長辺側と短辺側における上記引張応
力に大きな差が生じ、それによって基板5内で2次元的
な2方向の引張応力が働き、単結晶化が進行したものと
考えられる。すなわち、使用する基板の長さの幅に対す
る比b/aを5以上とすることにより基板5上に形成さ
れる強誘電体薄膜の長辺側と短辺側に加えられるひずみ
量に大きな差が生じ、それによって単結晶薄膜が得られ
ていると考えられる。
On the other hand, when the substrates of sample numbers 1 to 3 where b / a <5 are used, the a-axis orientation PbTiO 3
However, reflection high-energy electron diffraction (RHEED) showed a ring shape and was a polycrystalline thin film. This is considered for the following reason. Since the thermal expansion coefficient at the Curie point of PbTiO 3 is 100 × 10 −7 / ° C., which is larger than the thermal expansion coefficient of the substrate made of quartz glass at the same temperature, the ferroelectric thin film exerts a tensile stress upon cooling after sputtering. receive. In sample numbers 4 and 5, the above b / a ≧ 5
Therefore, it is considered that a large difference occurs in the tensile stress between the long side and the short side of the substrate 5, whereby two-dimensional two-directional tensile stress acts in the substrate 5, and single crystallization progresses. Can be That is, by setting the ratio b / a to the width of the length of the substrate to be used to be 5 or more, a large difference occurs in the amount of strain applied to the long side and the short side of the ferroelectric thin film formed on the substrate 5. It is considered that a single crystal thin film was obtained.

【0017】実験2 次に、上記石英ガラス基板に代えて、下記の表2に示す
各寸法のα−クオーツまたはα−クリストバライトを主
成分とする結晶化ガラス(熱膨張係数は150×10-7
/℃)基板を用い、実験1と同様の条件でPbTiO3
薄膜をスパッタリングにより形成した。その結果、表2
に示すように試料番号6〜8では、c軸配向多結晶膜が
形成されたのに対し、試料番号9,10ではc軸配向単
結晶薄膜が形成された。
Experiment 2 Next, in place of the quartz glass substrate, crystallized glass containing α-quartz or α-cristobalite as the main component (having a coefficient of thermal expansion of 150 × 10 −7) having the dimensions shown in Table 2 below.
/ ° C.) using the substrate, PbTiO 3 under the same conditions as in Experiment 1
A thin film was formed by sputtering. As a result, Table 2
As shown in (a), in samples 6 to 8, c-axis oriented polycrystalline films were formed, whereas in samples 9 and 10, c-axis oriented single crystal thin films were formed.

【0018】[0018]

【表2】 [Table 2]

【0019】例えば上記試料番号9において基板上に形
成された薄膜では、図4にX線回折パターン図で示すよ
うに、c軸配向PbTiO3 が形成されており、反射高
速電子回折(RHEED)でスポット状を示し、単結晶
薄膜であることが確認された。これは、上記結晶化ガラ
スのキュリー点における熱膨張係数が150×10-7
℃であり、PbTiO3 に比べて大きいため、スパッタ
リング後の冷却時に図1(b)に示したような矢印方向
に大きな圧縮応力が加わり、強誘電体薄膜がひずんだこ
とによるものと考えられる。そして、試料番号9,10
ではb/a≧5の基板を用いているため強誘電体薄膜の
長辺側と短辺側においてひずみの大きさに大きな差があ
るため、基板内で2次元的な2方向の圧縮応力が働き、
c軸配向単結晶薄膜が形成されたのに対し、試料番号6
〜8では上記長辺側と短辺側のひずみ量の差が小さいた
め単結晶化には至らなかったものと考えられる。
For example, in the thin film formed on the substrate in sample No. 9, c-axis oriented PbTiO 3 is formed as shown in the X-ray diffraction pattern diagram in FIG. It showed a spot shape and was confirmed to be a single crystal thin film. This is because the crystallized glass has a coefficient of thermal expansion at the Curie point of 150 × 10 −7 /
° C, which is larger than that of PbTiO 3 , and it is considered that a large compressive stress was applied in the direction of the arrow shown in FIG. 1B during cooling after sputtering, and the ferroelectric thin film was distorted. Then, sample numbers 9 and 10
Since a substrate with b / a ≧ 5 is used, there is a large difference in the magnitude of strain between the long side and the short side of the ferroelectric thin film. Working,
While a c-axis oriented single crystal thin film was formed, sample number 6
In Nos. To 8, it is probable that single crystallization did not occur because the difference in strain amount between the long side and the short side was small.

【0020】なお、上記実験1及び実験2では、それぞ
れ、石英ガラス及びα−クォーツガラスを用いたが、本
発明の強誘電体薄膜素子及びその製造方法では、これら
の材料以外の基板材料を用いることができる。また、強
誘電体材料についても、PbTiO3 以外の材料、例え
ばPb(Ti 1-x Zrx )O3 等を用いることもでき
る。要するに、基板寸法比を考慮して強誘電体材料のキ
ュリー点における熱膨張係数>基板材料の同一温度にお
ける熱膨張係数の関係にある強誘電体材料及び基板材料
を用いればa軸に配向された強誘電体単結晶薄膜を形成
することができ、キュリー点における強誘電体材料の熱
膨張係数<基板材料の同じ温度における熱膨張係数の関
係にある組み合わせを用いた場合にはc軸に配向された
強誘電体単結晶薄膜を形成することができる。
In the above Experiments 1 and 2,
Used quartz glass and α-quartz glass.
In the ferroelectric thin film element of the invention and the method of manufacturing the same,
Substrate materials other than the above materials can be used. Also strong
As for the dielectric material, PbTiOThreeMaterials other than
If Pb (Ti 1-xZrx) OThreeEtc. can also be used
You. In short, the key of the ferroelectric material should be
Coefficient of thermal expansion at Curie point> at the same temperature of substrate material
Material and substrate material in relation of thermal expansion coefficient
Uses to form ferroelectric single crystal thin film oriented in a-axis
The heat of the ferroelectric material at the Curie point
Expansion coefficient <thermal expansion coefficient of substrate material at the same temperature
In the case of using the relevant combination, it was oriented to the c-axis.
A ferroelectric single crystal thin film can be formed.

【0021】従って、本発明では、従来用い得なかった
基板材料を用いてa軸またはc軸に配向された強誘電体
単結晶薄膜を形成することができる。上記実験1及び実
験2では、基板上に直接強誘電体単結晶薄膜を形成して
いたが、基板上に電極を形成し、しかる後強誘電体単結
晶薄膜を形成してもよい。
Therefore, according to the present invention, a ferroelectric single crystal thin film oriented in the a-axis or the c-axis can be formed by using a substrate material which has not been conventionally used. In Experiments 1 and 2, the ferroelectric single crystal thin film was formed directly on the substrate. However, an electrode may be formed on the substrate, and then the ferroelectric single crystal thin film may be formed.

【0022】本発明は、強誘電体薄膜素子及びその製造
方法に関するものであるが、強誘電体薄膜素子として
は、基板上に直接または間接的に上記強誘電体単結晶薄
膜が形成された構造を備える限り、その他の構造につい
ては特に限定されない。すなわち、図5に示すように、
基板11上に電極12を形成し、電極12上に強誘電体
単結晶薄膜13を形成し、さらに強誘電体単結晶薄膜1
3上に電極14を形成した構造等、用途に応じて任意の
構造とすることができる。同様に、本発明の強誘電体薄
膜素子の製造方法においても、基板上に直接または間接
的に強誘電体単結晶薄膜を形成する工程以外について
は、従来より公知の強誘電体薄膜素子の製造方法に従っ
て行い得る。
The present invention relates to a ferroelectric thin-film element and a method of manufacturing the same. The ferroelectric thin-film element has a structure in which the ferroelectric single-crystal thin film is formed directly or indirectly on a substrate. The other structure is not particularly limited as long as it is provided. That is, as shown in FIG.
An electrode 12 is formed on a substrate 11, a ferroelectric single crystal thin film 13 is formed on the electrode 12, and a ferroelectric single crystal thin film 1 is further formed.
Any structure, such as a structure in which the electrode 14 is formed on 3, can be adopted according to the application. Similarly, in the method of manufacturing a ferroelectric thin film element of the present invention, except for the step of directly or indirectly forming a ferroelectric single crystal thin film on a substrate, a conventionally known method of manufacturing a ferroelectric thin film element is used. It can be done according to the method.

【0023】[0023]

【発明の効果】以上のように、本発明の強誘電体薄膜素
子の製造方法によれば、基板として上記b/a≧5の関
係にある形状を有し、かつ強誘電体材料と熱膨張係数の
異なる材料からなる基板を用いて強誘電体薄膜が形成さ
れるため、a軸またはc軸に配向した強誘電体単結晶薄
膜が基板材料の結晶性に制約されずに形成され得る。よ
って、従来用いることができなかった材料からなる基板
を有する強誘電体単結晶薄膜素子を提供することが可能
となる。
As described above, according to the method of manufacturing a ferroelectric thin-film element of the present invention, the substrate has a shape satisfying the relationship of b / a ≧ 5, and is thermally expanded with the ferroelectric material. Since the ferroelectric thin film is formed using substrates made of materials having different coefficients, a ferroelectric single crystal thin film oriented in the a-axis or the c-axis can be formed without being restricted by the crystallinity of the substrate material. Therefore, it is possible to provide a ferroelectric single crystal thin film element having a substrate made of a material that could not be used conventionally.

【0024】また、本発明の強誘電体薄膜素子では、基
板が上記特定の形状を有し、強誘電体材料と上記のよう
な熱膨張係数差を有するため、従来用い得なかった基板
材料からなる基板を用いた強誘電体薄膜素子を得ること
ができるため、基板材料の選択の範囲を広げることが可
能となる。
Further, in the ferroelectric thin film element of the present invention, the substrate has the above specific shape, and has the above-mentioned difference in thermal expansion coefficient from the ferroelectric material. Since a ferroelectric thin-film element using a substrate made of such a material can be obtained, it is possible to widen the range of selection of a substrate material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)は、それぞれ、基板と強誘電
体薄膜との熱膨張係数差に基づく応力が加わる方向を説
明するための断面図。
FIGS. 1A and 1B are cross-sectional views for explaining directions in which stress is applied based on a difference in thermal expansion coefficient between a substrate and a ferroelectric thin film.

【図2】実施例で用いられた基板の形状を説明するため
の斜視図。
FIG. 2 is a perspective view for explaining the shape of a substrate used in the embodiment.

【図3】実験1で形成された強誘電体単結晶薄膜のX線
回折パターン図。
FIG. 3 is an X-ray diffraction pattern diagram of a ferroelectric single crystal thin film formed in Experiment 1.

【図4】実験2で形成された強誘電体単結晶薄膜のX線
回折パターン図。
FIG. 4 is an X-ray diffraction pattern diagram of a ferroelectric single crystal thin film formed in Experiment 2.

【図5】本発明が適用される強誘電体薄膜素子の一例を
示す断面図。
FIG. 5 is a sectional view showing an example of a ferroelectric thin film element to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1…基板 2…強誘電体薄膜 3…基板 4…強誘電体薄膜 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Ferroelectric thin film 3 ... Substrate 4 ... Ferroelectric thin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 41/24 H01L 41/18 101A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI H01L 41/24 H01L 41/18 101A

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 幅a及び長さbであり、b/a≧5であ
る矩形板状の基板と、キュリー点における熱膨張係数が
同じ温度における前記基板材料の熱膨張係数と異なる強
誘電体材料により構成されており、かつ前記基板上に直
接または間接的にスパッタリングにより形成された強誘
電体単結晶薄膜とを備えることを特徴とする、強誘電体
薄膜素子。
1. A rectangular plate-like substrate having a width a and a length b and b / a ≧ 5, and a ferroelectric material having a coefficient of thermal expansion at the Curie point different from the coefficient of thermal expansion of the substrate material at the same temperature A ferroelectric single-crystal thin film made of a material and formed directly or indirectly by sputtering on the substrate.
【請求項2】 幅a及び長さbであり、かつb/a≧5
である矩形板状の基板を用意する工程と、 キュリー点における熱膨張係数が同じ温度における前記
基板を構成する材料の熱膨張係数と異なる強誘電体材料
を、前記基板上にスパッタリングして強誘電体単結晶薄
膜を形成する工程とを備えることを特徴とする、強誘電
体薄膜素子の製造方法。
2. A width a and a length b, and b / a ≧ 5.
A step of preparing a rectangular plate-shaped substrate which is a ferroelectric material having a coefficient of thermal expansion at the Curie point different from the coefficient of thermal expansion of the material constituting the substrate at the same temperature, which is ferroelectrically sputtered on the substrate. Forming a ferroelectric thin film element.
JP3524492A 1992-02-21 1992-02-21 Ferroelectric thin film element and method of manufacturing the same Expired - Fee Related JP3214031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3524492A JP3214031B2 (en) 1992-02-21 1992-02-21 Ferroelectric thin film element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3524492A JP3214031B2 (en) 1992-02-21 1992-02-21 Ferroelectric thin film element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05235428A JPH05235428A (en) 1993-09-10
JP3214031B2 true JP3214031B2 (en) 2001-10-02

Family

ID=12436428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3524492A Expired - Fee Related JP3214031B2 (en) 1992-02-21 1992-02-21 Ferroelectric thin film element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3214031B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170895A (en) * 2004-12-17 2006-06-29 Horiba Ltd Manufacturing method for infrared detecting element
EP2525423B1 (en) 2010-01-12 2016-03-02 Konica Minolta Holdings, Inc. Method for manufacturing piezoelectric element, and piezoelectric element manufactured by the method
WO2013084787A1 (en) * 2011-12-05 2013-06-13 日本碍子株式会社 Infrared detection element, infrared detection module, and method for manufacturing infrared detection module

Also Published As

Publication number Publication date
JPH05235428A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
Taguchi et al. Raman scattering from PbTiO3 thin films prepared on silicon substrates by radio frequency sputtering and thermal treatment
Messing et al. Templated grain growth of textured piezoelectric ceramics
Gao et al. Microstructure of PbTiO 3 thin films deposited on (001) MgO by MOCVD
US3808674A (en) Epitaxial growth of thermically expandable films and particularly anisotropic ferro-electric films
JPH0763101B2 (en) Piezoelectric transducer and manufacturing method thereof
WO2007144892A2 (en) Super-pyroelectric films and process of their preparation
JPH08253324A (en) Ferroelectric thin film constitution body
JP3214031B2 (en) Ferroelectric thin film element and method of manufacturing the same
JP3127245B1 (en) Multilayer electronic material, method of manufacturing the same, sensor and storage device using the same
Kushida et al. Ferroelectric properties of c-axis oriented PbTiO3 films Thin films, surfaces, and small particles
US5331187A (en) Ferroelectric thin film element with (III) orientation
JPH08186182A (en) Ferroelectric thin-film element
JP2834355B2 (en) Method of manufacturing ferroelectric thin film construct
Shiosaki et al. Properties of sputter-deposited PbTiO3, Pb (Zr, Ti) O3, Pb2KNb5O15 films
JPH0451407A (en) Manufacture of ferroelectric thin film
Park et al. Fabrication and annealing effect of c-axis orientated potassium lithium niobate thin film on glass substrate
JPH0967193A (en) Production of thin ferroelectric film
JPH10245298A (en) Crystal orientated ceramic substrate and device
JPH026394A (en) Superconductive thin layer
JPH01117376A (en) Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof
Wasa Sputter deposition technology as a materials engineering
Ogawa et al. Ferroelectricity of Lanthanum-Modified Lead-Titanate Thin Films Deposited on Nickel Alloy Electrodes
JPH1093029A (en) Thin-film dielectric element
Teowee et al. Pyroelectric properties of sol-gel derived PZT thin films with various Zr/Ti ratios
US6699521B1 (en) Method of fabricating a ferroelectric/pyroelectric infrared detector using a crystallographically oriented electrode and a rock salt structure material substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees