JP2006170895A - Manufacturing method for infrared detecting element - Google Patents

Manufacturing method for infrared detecting element Download PDF

Info

Publication number
JP2006170895A
JP2006170895A JP2004366019A JP2004366019A JP2006170895A JP 2006170895 A JP2006170895 A JP 2006170895A JP 2004366019 A JP2004366019 A JP 2004366019A JP 2004366019 A JP2004366019 A JP 2004366019A JP 2006170895 A JP2006170895 A JP 2006170895A
Authority
JP
Japan
Prior art keywords
substrate
mask
etching
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004366019A
Other languages
Japanese (ja)
Inventor
Takuya Ido
琢也 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004366019A priority Critical patent/JP2006170895A/en
Publication of JP2006170895A publication Critical patent/JP2006170895A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for an infrared detecting element of high productivity by making a side etching angle in etching of a MgO substrate as larger as possible. <P>SOLUTION: In this manufacturing method for an infrared detecting element D, a thin film pyroelectric substance 4 is provided in a condition sandwiched by a lower electrode 2 and an upper electrode 3 in a surface 1a side of the substrate 1 (1'), an infrared absorption film 6 is provided on the upper electrode 3 via an insulating film 5, and a cavity part 15 is provided in a substrate area R corresponding to the pyroelectric substance 4, by etching the substrate 1 (1') from a reverse face 1b side, using a mask 12. The mask 12 comprising a material having a satisfactory close-contacting property with the substrate 1 (1') is used in the manufacturing method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、赤外線検出素子の製造方法に関するものである。 The present invention relates to a method for manufacturing an infrared detection element.

焦電型赤外線検出素子の製造時において、基板の表面側に薄膜の焦電体を形成した後、マスクを用いて基板のエッチングを基板裏面側から行う方法が用いられている。例えば、図4(A)に示すように、MgO基板1の表面1a側に下部電極2および上部電極3に挟まれる状態で薄膜の焦電体4が設けられ、絶縁膜5を介して上部電極3上に赤外線吸収膜6が設けられ、マスク7を用いてMgO基板1のエッチングを基板裏面(パイロセンサ受光部面とは反対の面)1b側から行うことにより焦電体4に対応する基板領域Rに感度等向上のため空洞部(ダイアフラム)8を設けて焦電型赤外線検出素子が構成されている。空洞部8は、MgO基板1の裏面を所定形状になるようにマスク7を用いてエッチングにより除去して形成される。そして、例えば縦40mm×横40mm×厚さ300μmのウエハ状のMgO基板1’をダイシングして、個々のセンサチップ9〔図4(B)参照〕に分割することにより焦電型赤外線検出素子となる。 At the time of manufacturing a pyroelectric infrared detecting element, a method is used in which after a thin film pyroelectric body is formed on the front surface side of the substrate, the substrate is etched from the back surface side using a mask. For example, as shown in FIG. 4A, a thin pyroelectric body 4 is provided between the lower electrode 2 and the upper electrode 3 on the surface 1 a side of the MgO substrate 1, and the upper electrode is interposed via the insulating film 5. The substrate region corresponding to the pyroelectric body 4 is provided by performing the etching of the MgO substrate 1 from the substrate back surface (the surface opposite to the pyrosensor light receiving portion surface) 1b using the mask 7. A pyroelectric infrared detection element is configured by providing a cavity (diaphragm) 8 in R for improving sensitivity and the like. The cavity 8 is formed by removing the back surface of the MgO substrate 1 by etching using a mask 7 so as to have a predetermined shape. Then, for example, a wafer-like MgO substrate 1 ′ having a length of 40 mm × width of 40 mm × thickness of 300 μm is diced and divided into individual sensor chips 9 (see FIG. 4B). Become.

従来では、マスク材としてポリイミドを使用してウエハ状のMgO基板1’を基板裏面からエッチングしていた。しかし、この方法だと、基板エッチング端面1cの角度θ1 (以下、サイドエッチング角と呼ぶ)が緩やかになり、個々のセンサチップ9が大きくなり各センサチップ9に対するセンサ薄膜部(平面視円形で直径1.0mmのmembrane)の占める割合が小さくなる。すなわち、縦40mm×横40mm×厚さ300μmのウエハ状のMgO基板1’を用意し、この40mm四方のウエハ状のMgO基板1’から生産されるセンサチップ9の取り数が低下してしまうという欠点があった。 Conventionally, a wafer-like MgO substrate 1 ′ is etched from the back surface of the substrate using polyimide as a mask material. However, with this method, the angle θ 1 (hereinafter referred to as a side etching angle) of the substrate etching end face 1c becomes gentle, the individual sensor chip 9 becomes larger, and the sensor thin film portion (circular in plan view) with respect to each sensor chip 9 The proportion of the membrane having a diameter of 1.0 mm is reduced. That is, a wafer-like MgO substrate 1 ′ having a length of 40 mm × width of 40 mm × thickness of 300 μm is prepared, and the number of sensor chips 9 produced from this 40 mm square wafer-like MgO substrate 1 ′ is reduced. There were drawbacks.

例えば、ダイシング後の一つのセンサチップ9において、厚さdが300μmのMgO基板1上に平面視円形で直径1.0mmのセンサ薄膜部(membrane)を得ようとした場合(MgO基板のエッチング条件、燐酸 10%:80℃)、ポリイミド膜7をエッチングマスクに使用した場合MgO基板1の水平方向に対し30°のサイドエッチング角θ1 でサイドエッチングが進み、平面視正方形形状のセンサチップ9に求められる最小必要サイズb1 は2.04mm必要となる。 For example, in one sensor chip 9 after dicing, an attempt is made to obtain a sensor thin film having a circular shape in plan view and a diameter of 1.0 mm on an MgO substrate 1 having a thickness d of 300 μm (etching conditions of the MgO substrate) In the case where the polyimide film 7 is used as an etching mask, side etching proceeds at a side etching angle θ 1 of 30 ° with respect to the horizontal direction of the MgO substrate 1, and the sensor chip 9 having a square shape in plan view is formed. The required minimum required size b 1 is 2.04 mm.

この発明は、上述の事柄に留意してなされたもので、その目的は、MgO基板のエッチング時のサイドエッチング角をできるだけ大きくとれるようにし、生産性の高い赤外線検出素子の製造方法を提供することである。 The present invention has been made in consideration of the above-mentioned matters, and an object of the present invention is to provide a method for manufacturing an infrared detection element with high productivity by making a side etching angle as large as possible when etching an MgO substrate. It is.

上記目的を達成するために、この発明の赤外線検出素子の製造方法は、基板の表面側に下部電極および上部電極に挟まれる状態で薄膜の焦電体が設けられ、絶縁膜を介して上部電極上に赤外線吸収膜が設けられ、マスクを用いて基板のエッチングを裏面側から行うことにより焦電体に対応する基板領域に空洞部を設ける赤外線検出素子の製造方法において、基板に対して密着性の良い材料よりなるマスクを用いることを特徴とする(請求項1)。 In order to achieve the above object, a manufacturing method of an infrared detecting element according to the present invention includes a thin film pyroelectric body provided between a lower electrode and an upper electrode on the surface side of a substrate, and the upper electrode is interposed through an insulating film. In the method of manufacturing an infrared detecting element in which an infrared absorption film is provided and a cavity is formed in a substrate region corresponding to a pyroelectric body by etching the substrate from the back side using a mask, adhesion to the substrate A mask made of a good material is used (claim 1).

この発明では基板がMgOあるいはサファイアであり、マスク材がCrあるいはTiであるのが好ましい(請求項2)。   In the present invention, the substrate is preferably MgO or sapphire, and the mask material is preferably Cr or Ti.

この発明ではマスクとして金属スパッタ膜を使用するのが好ましい(請求項3)。   In the present invention, it is preferable to use a metal sputtered film as a mask.

この発明では、図2(A)に示すように、例えば、厚さdが300μmで40mm四方のウエハ状のMgO基板1’上に従来と同じエッチング条件(MgO基板のエッチング条件、燐酸 10%:80℃)にて、図4(B)に示したのと同一構成の直径が1.0mmのセンサ薄膜部(membrane)を得ようとした場合〔図2(B)参照〕、例えばCrの金属スパッタ膜をマスクとして使用するとCr膜はMgO基板に対して密着性が良いことから、サイドエッチング角が45°までとれることが判明したので、個々のセンサチップ19に求められる最小必要サイズb2 は1.6mmになる。 In the present invention, as shown in FIG. 2A, for example, on a wafer-like MgO substrate 1 ′ having a thickness d of 300 μm and a 40 mm square, the same etching conditions as those in the past (MgO substrate etching conditions, phosphoric acid 10%: In the case of obtaining a sensor thin film with a diameter of 1.0 mm having the same configuration as shown in FIG. 4B at 80 ° C. (see FIG. 2B), for example, a Cr metal Since the Cr film has good adhesion to the MgO substrate when the sputtered film is used as a mask, it has been found that the side etching angle can be up to 45 °. Therefore, the minimum required size b 2 required for each sensor chip 19 is 1.6mm.

この発明では、エッチング時のマスクとして、基板に対して密着性の良い材料よりなるものを用いることにより、基板エッチング時のサイドエッチングを抑えることができると考えられ、その結果、センサチップに求められる最小必要サイズを従来に比べて小さくでき、その分、赤外線検出素子の各基板サイズを小さくできてチップサイズに対する受光部面積を大きくとることができ、従来用いたのと同じ基板でのセンサチップの取り数を増加させることができる。   In the present invention, it is considered that side etching during substrate etching can be suppressed by using a mask made of a material having good adhesion to the substrate as a mask during etching. As a result, it is required for a sensor chip. The minimum required size can be reduced compared to the conventional one, and each substrate size of the infrared detection element can be reduced accordingly, and the light receiving area relative to the chip size can be increased. The number of picks can be increased.

以下、この発明の実施の形態を、図を参照しながら説明する。なお、それによってこの発明は限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited thereby.

図1〜図3はこの発明の一実施の形態を示す。図1はこの発明によって得られる焦電型赤外線検出素子を示し、図2はセンサチップに求められる最小必要サイズを示し、図3は焦電型赤外線検出素子の製造工程を示している。なお、図1〜図3において、図4に示した符号と同一のものは、同一または相当物である。   1 to 3 show an embodiment of the present invention. FIG. 1 shows a pyroelectric infrared detecting element obtained by the present invention, FIG. 2 shows a minimum required size required for the sensor chip, and FIG. 3 shows a manufacturing process of the pyroelectric infrared detecting element. 1 to 3, the same reference numerals as those shown in FIG. 4 are the same or equivalent.

この発明では、マスクとして、基板に対して密着性の良い材料よりなるものを用いることにより、センサチップに求められる最小必要サイズ(焦電体に対応する基板領域)を従来に比べて小さくできる点を特徴的構成としており、焦電型赤外線検出素子のその他の構成は図4に示した従来例と同一構成である。   In this invention, by using a mask made of a material having good adhesion to the substrate, the minimum required size required for the sensor chip (substrate region corresponding to the pyroelectric body) can be reduced as compared with the prior art. The other structure of the pyroelectric infrared detecting element is the same as that of the conventional example shown in FIG.

図1において、焦電型赤外線検出素子Dは、MgO基板1の表面1a側に薄膜の下部電極2および上部電極3に挟まれる状態で薄膜の焦電体4が設けられ、薄膜の絶縁膜5を介して上部電極2上に例えば金ブラックよりなる赤外線吸収膜6が設けられており、さらに、後述するマスク12を用いてMgO基板1のエッチングを裏面1b側から行うことにより焦電体4に対応する基板領域R〔図2(A)参照〕に空洞部15を設けてある。焦電体4は強誘電体の例えばPZT〔チタン酸ジルコン酸鉛〕よりなる(以下、焦電体4をPZTという)。絶縁膜5は例えばポリイミドよりなり、厚さ1.0〜5.0μm程度の薄膜である。下部電極2および上部電極3はそれぞれ例えば白金の薄膜よりなり、0.1〜0.5μm程度の厚みを有する。PZT4は1.0〜5.0μm程度の厚みである。赤外線吸収膜6は例えば金ブラックを真空蒸着することにより得られる薄膜よりなる。   In FIG. 1, a pyroelectric infrared detecting element D is provided with a thin pyroelectric body 4 sandwiched between a thin film lower electrode 2 and an upper electrode 3 on the surface 1a side of the MgO substrate 1, and a thin insulating film 5 An infrared absorption film 6 made of, for example, gold black is provided on the upper electrode 2 through the substrate, and further, the pyroelectric body 4 is formed by etching the MgO substrate 1 from the back surface 1b side using a mask 12 described later. A cavity 15 is provided in the corresponding substrate region R (see FIG. 2A). The pyroelectric material 4 is made of a ferroelectric material such as PZT [lead zirconate titanate] (hereinafter, the pyroelectric material 4 is referred to as PZT). The insulating film 5 is made of polyimide, for example, and is a thin film having a thickness of about 1.0 to 5.0 μm. Each of the lower electrode 2 and the upper electrode 3 is made of, for example, a platinum thin film and has a thickness of about 0.1 to 0.5 μm. PZT4 has a thickness of about 1.0 to 5.0 μm. The infrared absorption film 6 is made of a thin film obtained, for example, by vacuum deposition of gold black.

上記焦電型赤外線検出素子Dの形成方法について、図3を参照しながら説明する。なお、以下は、一つの焦電型赤外線検出素子Dを製作する場合を示している。   A method for forming the pyroelectric infrared detection element D will be described with reference to FIG. The following shows a case where one pyroelectric infrared detection element D is manufactured.

(1)複数の焦電型赤外線検出素子Dを同時に得るために、例えば縦40mm×横40mmで厚さdが300μmのウエハ状のMgO基板1’を用意する。図3(A)は、一つの焦電型赤外線検出素子DにおけるMgO基板1を示している。図3(B)において、まず、前記MgO基板1の表面1aに、適宜のマスクを用いて下部電極2をパターン形成する。このときの下部電極2の厚みは、0.1〜0.5μm程度である。次に、下部電極2表面に、減圧CVD法によって、焦電体として、その組成がPbx Lay Tiz Zrw 3 として表される薄膜のPZT4をエピタキシャル成長させて所定形状のPZT4を得る。このとき、適宜のマスクを用いて、PZT4を、図3(B)に示すような形状にする。PZT4の厚さは1.0〜5.0μm程度である。続いて、PZT4の表面に、適宜のマスクを用いて上部電極3をパターン形成し、下部電極2および上部電極3に挟まれる状態でPZT4が設けられる。このときの上部電極3の厚みは、0.1〜0.5μm程度である。 (1) In order to obtain a plurality of pyroelectric infrared detection elements D simultaneously, for example, a wafer-like MgO substrate 1 ′ having a length of 40 mm × width of 40 mm and a thickness d of 300 μm is prepared. FIG. 3A shows the MgO substrate 1 in one pyroelectric infrared detection element D. In FIG. 3B, first, the lower electrode 2 is patterned on the surface 1a of the MgO substrate 1 using an appropriate mask. The thickness of the lower electrode 2 at this time is about 0.1 to 0.5 μm. Next, the lower electrode 2 surface by low pressure CVD method, a pyroelectric, its composition to obtain a PZT4 of Pb x La y Ti z Zr w a O 3 PZT4 thin film expressed as by epitaxially growing a predetermined shape. At this time, the PZT 4 is shaped as shown in FIG. 3B using an appropriate mask. The thickness of PZT4 is about 1.0 to 5.0 μm. Subsequently, the upper electrode 3 is patterned on the surface of the PZT 4 using an appropriate mask, and the PZT 4 is provided between the lower electrode 2 and the upper electrode 3. The thickness of the upper electrode 3 at this time is about 0.1 to 0.5 μm.

(2)続いて、図3(C)に示すように、下部電極2、PZT4および上部電極3を含むMgO基板1の表面1aに絶縁膜5をパターン形成する。この絶縁膜5は、適宜のマスクを用いて上部電極3およびPZT4を覆うとともに、下部電極2およびMgO基板1の表面1aのそれぞれ一部を覆うように形成されている。絶縁膜5を形成した後、図3(C)に示すように、絶縁膜5にコンタクトホール5aを形成して上部電極3の表面を露出させる。   (2) Subsequently, as shown in FIG. 3C, an insulating film 5 is patterned on the surface 1a of the MgO substrate 1 including the lower electrode 2, the PZT 4, and the upper electrode 3. The insulating film 5 is formed so as to cover the upper electrode 3 and the PZT 4 using an appropriate mask and to cover a part of the lower electrode 2 and the surface 1 a of the MgO substrate 1. After forming the insulating film 5, as shown in FIG. 3C, a contact hole 5 a is formed in the insulating film 5 to expose the surface of the upper electrode 3.

(3)続いて、図3(D)に示すように、前記コンタクトホール5aを介して上部電極3に接続する引き出し電極11を形成する。引き出し電極11は例えばAu−Crの材料よりなり、適宜のマスクを用いて絶縁膜5の一部およびMgO基板1の表面1aの一部を覆うように形成されている。   (3) Subsequently, as shown in FIG. 3D, the lead electrode 11 connected to the upper electrode 3 through the contact hole 5a is formed. The extraction electrode 11 is made of, for example, Au—Cr material and is formed so as to cover a part of the insulating film 5 and a part of the surface 1 a of the MgO substrate 1 using an appropriate mask.

(4)続いて、図3(E)に示すように、MgO基板1の裏面1bに、等方性エッチングの際のマスクとなる薄膜のCr膜12をスパッタ法によって形成するとともに、開口部13を形成する。Cr膜12および開口部13は適宜のマスクを用いて形成される。   (4) Subsequently, as shown in FIG. 3E, a thin Cr film 12 serving as a mask for isotropic etching is formed on the back surface 1b of the MgO substrate 1 by sputtering, and the opening 13 is formed. Form. The Cr film 12 and the opening 13 are formed using an appropriate mask.

(5)続いて、図3(F)に示すように、絶縁膜5を介して上部電極3上に赤外線吸収膜6を形成する。この赤外線吸収膜6は上部電極3上の絶縁膜5とコンタクトホール5aを覆う引き出し電極11の部分とを覆うように設けられている。その後、図3(F)に示すように、ウエハ状のMgO基板1’における主表面側(パイロセンサ受光部側)にエッチング保護膜14を全面に形成する。エッチング保護膜14としては有機樹脂材(レジスト材)が用いられる。この状態で、ウエハ状のMgO基板1’における裏面(パイロセンサ受光部面とは反対の面)1bからCr膜12をマスクとして開口部13を通して等方性エッチングを行ってMgO基板1’を貫通し下部電極2の裏面2bにまで達する空洞部15を形成する。例えば、ウエハ状のMgO基板1’における裏面1bを、80℃で、10%の燐酸のエッチング液にて等方性エッチングにより掘り込み、図1に示すような空洞部15を形成する。   (5) Subsequently, as shown in FIG. 3F, an infrared absorption film 6 is formed on the upper electrode 3 with the insulating film 5 interposed therebetween. The infrared absorption film 6 is provided so as to cover the insulating film 5 on the upper electrode 3 and the portion of the extraction electrode 11 that covers the contact hole 5a. Thereafter, as shown in FIG. 3F, an etching protective film 14 is formed on the entire surface of the wafer-like MgO substrate 1 ′ (on the pyrosensor light-receiving portion side). An organic resin material (resist material) is used as the etching protective film 14. In this state, isotropic etching is performed through the opening 13 using the Cr film 12 as a mask from the back surface (the surface opposite to the pyrosensor light-receiving surface) 1b of the wafer-like MgO substrate 1 ′ to penetrate the MgO substrate 1 ′. A cavity 15 reaching the back surface 2b of the lower electrode 2 is formed. For example, the back surface 1b of the wafer-like MgO substrate 1 'is dug by isotropic etching with 10% phosphoric acid etchant at 80 ° C. to form the cavity 15 as shown in FIG.

(6)続いて、図3(G)に示すように、エッチング保護膜14を除去するとともに、Cr膜12を除去する。   (6) Subsequently, as shown in FIG. 3G, the etching protective film 14 is removed and the Cr film 12 is removed.

上述のようにして、一つのウエハ状のMgO基板1’上に複数の焦電型赤外線検出素子Dが得られる。これをダイシングすることにより、個々のセンサチップ19に分割し図1に示したような各焦電型赤外線検出素子Dとなる。   As described above, a plurality of pyroelectric infrared detection elements D are obtained on one wafer-like MgO substrate 1 '. By dicing this, each sensor chip 19 is divided into pyroelectric infrared detecting elements D as shown in FIG.

上述のようにして形成された焦電型赤外線検出素子Dは以下のような効果を奏する。
すなわち、従来では、ポリイミドをマスク材としてMgO基板1(1’)のエッチングを行っていたが、MgO基板1(1’)の水平方向に対し30°の角度でサイドエッチングが進んでしまっていたため、例えば厚さdが300μmのMgO基板1(1’)に直径が1.0mmのセンサ薄膜部を形成する場合、最低2.04mm四方(センサ薄膜部を1.0mmとした場合、サイドエッチングの縦横の長さが0.52×2mm必要)のセンサチップ面積が必要であった。しかし、この発明のように、マスクとしてCr膜12を用いると、Cr膜12はMgO基板1(1’)に対して密着性が良いことから、45°の角度のサイドエッチングに抑えられるため、直径が1.0mmのセンサ薄膜部を形成するためには、1.6mm四方のセンサチップ面積で焦電型赤外線検出素子Dを形成することが可能となる。すなわち、焦電型赤外線検出素子作成時の最小面積比が、45°:30°=1:1.63となり、従来用いたのと同じ縦40mm×横40mmで厚さdが300μmのウエハ状のMgO基板1’の面積内に1.63倍の焦電型赤外線検出素子Dを得ることができ、生産性の向上を図ることができる。
The pyroelectric infrared detection element D formed as described above has the following effects.
That is, conventionally, etching of the MgO substrate 1 (1 ′) was performed using polyimide as a mask material, but side etching progressed at an angle of 30 ° with respect to the horizontal direction of the MgO substrate 1 (1 ′). For example, when a sensor thin film portion having a diameter of 1.0 mm is formed on an MgO substrate 1 (1 ′) having a thickness d of 300 μm, a minimum of 2.04 mm square (when the sensor thin film portion is 1.0 mm, side etching is performed). A sensor chip area of 0.52 × 2 mm is required. However, when the Cr film 12 is used as a mask as in the present invention, the Cr film 12 has good adhesion to the MgO substrate 1 (1 ′), and therefore can be suppressed to side etching at an angle of 45 °. In order to form a sensor thin film portion having a diameter of 1.0 mm, the pyroelectric infrared detection element D can be formed with a sensor chip area of 1.6 mm square. That is, the minimum area ratio at the time of creating the pyroelectric infrared detection element is 45 °: 30 ° = 1: 1.63, which is the same as that of the conventional wafer-shaped wafer having a length of 40 mm × width of 40 mm and a thickness d of 300 μm. The pyroelectric infrared detection element D can be obtained 1.63 times in the area of the MgO substrate 1 ′, and productivity can be improved.

また、ポリイミドをマスク材としたことによりMgO基板裏面からのみのエッチングではチップサイズが大きくなるため、MgO基板両面からエッチングを実施していた比較例において生ずる問題点も解消できる。すなわち、MgO基板両面からエッチングを行う場合、MgO基板の表面と裏面の両方のパターニングが必要であり、工程の複雑化及びMgO基板表面からと裏面からとのエッチングのバラツキがあるため、空洞部サイズ(エッチングホールサイズ)のバラツキが大きかった。しかし、この発明では、Cr膜12をマスクとして適応することにより、MgO基板表面1aのみのパターニングで済むようになり、空洞部サイズ(エッチングホールサイズ)のバラツキも小さくなり、工数削減及びセンサ歩留りの向上に貢献できる。   Further, since polyimide is used as a mask material, the chip size is increased by etching only from the back surface of the MgO substrate, so that the problems that occur in the comparative example in which etching is performed from both surfaces of the MgO substrate can also be solved. That is, when etching is performed from both sides of the MgO substrate, patterning of both the front and back surfaces of the MgO substrate is necessary, and there is a process complexity and etching variation from the front and back surfaces of the MgO substrate. The variation in (etching hole size) was large. However, in the present invention, by using the Cr film 12 as a mask, patterning of only the MgO substrate surface 1a becomes possible, variation in the cavity size (etching hole size) is reduced, man-hours are reduced, and sensor yield is reduced. Can contribute to improvement.

さらに、ポリイミドをMgO基板裏面に設ける際、ポリイミド樹脂を塗布した後乾燥のためベークする必要があり、これに要する時間は約半日にも及んでいたが、この発明では、マスク12として金属スパッタ膜を使用しているので、スパッタ法によるマスク12の形成は1時間程度ですみ製造に要する時間を短縮できる利点を有する。また、CrあるいはTiのマスク材を蒸着法で形成するのに比べて、この発明で用いたスパッタ法の方がMgOあるいはサファイア基板に対して密着性が良いという利点もこの発明は有する。   Furthermore, when the polyimide is provided on the back surface of the MgO substrate, it is necessary to bake for drying after applying the polyimide resin, and this took about half a day. Therefore, the formation of the mask 12 by the sputtering method takes about one hour and has the advantage that the time required for manufacturing can be shortened. The present invention also has the advantage that the sputtering method used in the present invention has better adhesion to the MgO or sapphire substrate than the Cr or Ti mask material is formed by vapor deposition.

また、この発明は、上述した実施の形態に限られるものではなく、例えば、強誘電体薄膜としての焦電体4は、前記PZTに限られるものではない。   The present invention is not limited to the above-described embodiment. For example, the pyroelectric material 4 as a ferroelectric thin film is not limited to the PZT.

この発明の一実施の形態によって得られた赤外線検出素子を示す構成説明図である。It is composition explanatory drawing which shows the infrared detection element obtained by one Embodiment of this invention. (A)は、上記実施の形態における製造途中を示す構成説明図である。(B)は、上記実施の形態においてセンサチップの大きさを示す図である。(A) is composition explanatory drawing which shows the middle of manufacture in the said embodiment. (B) is a figure which shows the magnitude | size of a sensor chip in the said embodiment. 上記実施の形態を示す製造工程説明図である。It is manufacturing process explanatory drawing which shows the said embodiment. (A)は、従来例における製造途中を示す構成説明図である。(B)は、従来例においてセンサチップの大きさを示す図である。(A) is composition explanatory drawing which shows the middle of manufacture in a prior art example. (B) is a figure which shows the magnitude | size of a sensor chip in a prior art example.

符号の説明Explanation of symbols

1(1’) 基板
1a 基板表面
1b 基板裏面
2 下部電極
2b 下部電極裏面
3 上部電極
4 焦電体
5 絶縁膜
6 赤外線吸収膜
12 マスク
15 空洞部
R 基板領域
D 赤外線検出素子
1 (1 ') Substrate 1a Substrate surface 1b Substrate back surface 2 Lower electrode 2b Lower electrode back surface
3 Upper electrode 4 Pyroelectric body 5 Insulating film 6 Infrared absorbing film 12 Mask 15 Cavity R Substrate region D Infrared detector

Claims (3)

基板の表面側に下部電極および上部電極に挟まれる状態で薄膜の焦電体が設けられ、絶縁膜を介して上部電極上に赤外線吸収膜が設けられ、マスクを用いて基板のエッチングを裏面側から行うことにより焦電体に対応する基板領域に空洞部を設ける赤外線検出素子の製造方法において、基板に対して密着性の良い材料よりなるマスクを用いることを特徴とする赤外線検出素子の製造方法。   A thin film pyroelectric body is provided on the surface side of the substrate sandwiched between the lower electrode and the upper electrode, an infrared absorption film is provided on the upper electrode through an insulating film, and etching of the substrate is performed on the back side using a mask. In a method for manufacturing an infrared detection element in which a cavity is provided in a substrate region corresponding to a pyroelectric material by using a mask, a mask made of a material having good adhesion to the substrate is used. . 基板がMgOあるいはサファイアであり、マスク材がCrあるいはTiである請求項1に記載の赤外線検出素子の製造方法。   The method for manufacturing an infrared detection element according to claim 1, wherein the substrate is MgO or sapphire, and the mask material is Cr or Ti. マスクとして金属スパッタ膜を使用している請求項1または請求項2に記載の赤外線検出素子の製造方法。
The manufacturing method of the infrared detection element of Claim 1 or Claim 2 which uses the metal sputtered film as a mask.
JP2004366019A 2004-12-17 2004-12-17 Manufacturing method for infrared detecting element Pending JP2006170895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004366019A JP2006170895A (en) 2004-12-17 2004-12-17 Manufacturing method for infrared detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366019A JP2006170895A (en) 2004-12-17 2004-12-17 Manufacturing method for infrared detecting element

Publications (1)

Publication Number Publication Date
JP2006170895A true JP2006170895A (en) 2006-06-29

Family

ID=36671806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366019A Pending JP2006170895A (en) 2004-12-17 2004-12-17 Manufacturing method for infrared detecting element

Country Status (1)

Country Link
JP (1) JP2006170895A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026934A (en) * 2010-07-26 2012-02-09 Seiko Epson Corp Thermal type photodetector, thermal type photodetection device and electronic equipment
JP2012173186A (en) * 2011-02-23 2012-09-10 Seiko Epson Corp Pyroelectric type detector, pyroelectric type detection device, and electronic apparatus
JP2015052606A (en) * 2014-10-23 2015-03-19 セイコーエプソン株式会社 Thermal type photodetector, thermal type photodetection device and electronic equipment
JP2017123391A (en) * 2016-01-06 2017-07-13 ローム株式会社 Substrate with hole and manufacturing method thereof, and infrared sensor and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235428A (en) * 1992-02-21 1993-09-10 Murata Mfg Co Ltd Ferroelectric thin film element and manufacture thereof
JPH1145892A (en) * 1997-05-28 1999-02-16 Sony Corp Semiconductor device and manufacture of the same
JP2000121431A (en) * 1998-10-14 2000-04-28 Mitsubishi Materials Corp Pyroelectric infrared sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235428A (en) * 1992-02-21 1993-09-10 Murata Mfg Co Ltd Ferroelectric thin film element and manufacture thereof
JPH1145892A (en) * 1997-05-28 1999-02-16 Sony Corp Semiconductor device and manufacture of the same
JP2000121431A (en) * 1998-10-14 2000-04-28 Mitsubishi Materials Corp Pyroelectric infrared sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026934A (en) * 2010-07-26 2012-02-09 Seiko Epson Corp Thermal type photodetector, thermal type photodetection device and electronic equipment
JP2012173186A (en) * 2011-02-23 2012-09-10 Seiko Epson Corp Pyroelectric type detector, pyroelectric type detection device, and electronic apparatus
JP2015052606A (en) * 2014-10-23 2015-03-19 セイコーエプソン株式会社 Thermal type photodetector, thermal type photodetection device and electronic equipment
JP2017123391A (en) * 2016-01-06 2017-07-13 ローム株式会社 Substrate with hole and manufacturing method thereof, and infrared sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8765615B1 (en) Quartz-based MEMS resonators and methods of fabricating same
US7380320B2 (en) Piezoelectric device and method of manufacturing the device
JP2008227146A (en) Piezoelectric element and its manufacturing method
US10829364B2 (en) MEMS transducer and method for manufacturing the same
JP3766799B2 (en) Manufacturing method of semiconductor device
CN108183163A (en) A kind of manufacturing method of ultrasonic sensor
KR20060034223A (en) Fabrication of silicon microphones
JP3514207B2 (en) Ferroelectric thin film element and sensor, and method of manufacturing ferroelectric thin film element
JP2006170895A (en) Manufacturing method for infrared detecting element
JP2005028504A (en) Micro electromechanical system (mems) element and method for manufacturing the same
CN116684798A (en) Structure and manufacturing method of piezoelectric microphone
US20070126072A1 (en) Surface acoustic wave pressure sensors
US20190172721A1 (en) Insulator semiconductor device-structure
JP2003302222A (en) Manufacturing method for thin film micro-mechanical resonator gyro
JP2000133817A (en) Semiconductor pressure sensor and its manufacture
EP3712973B1 (en) Method for producing oscillator substrate and oscillator substrate
RU2677491C1 (en) Method of manufacturing microneedles and microneedles array
JP2007043233A (en) Piezoelectric sound wave sensor
JP2011082483A (en) Diaphragm element and method of manufacturing the same
JPH07169736A (en) Preparation of silicon structure
CN208111486U (en) A kind of ultrasonic sensor
JP3831650B2 (en) Pressure sensor and manufacturing method thereof
JPH07274288A (en) Silicon cantilever and ultrasonic sensor using it
JP2000138401A (en) Piezoelectric detector and its manufacture
JP4461972B2 (en) Thin film piezoelectric filter and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102