JPH08136341A - Pyroelectric element - Google Patents

Pyroelectric element

Info

Publication number
JPH08136341A
JPH08136341A JP27126394A JP27126394A JPH08136341A JP H08136341 A JPH08136341 A JP H08136341A JP 27126394 A JP27126394 A JP 27126394A JP 27126394 A JP27126394 A JP 27126394A JP H08136341 A JPH08136341 A JP H08136341A
Authority
JP
Japan
Prior art keywords
pyroelectric
crystal film
film
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27126394A
Other languages
Japanese (ja)
Inventor
Hiroyuki Futai
裕之 二井
Keigo Nagao
圭吾 長尾
Kazuo Hashimoto
和生 橋本
Takayuki Kimura
隆幸 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP27126394A priority Critical patent/JPH08136341A/en
Publication of JPH08136341A publication Critical patent/JPH08136341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE: To improve a response speed and pyroelectric sensitivity in relation to infrared rays at a low cost of manufacture by forming a pyroelectric crystal film on the surface of a conductive substrate by a hydrothermal crystallization method. CONSTITUTION: A pyroelectric crystal film 2 such as a lead titanate zirconate series crystal film or a PLZT crystal film, for instance, is formed on the surface of a thin titanium metal substrate (conductive substrate) 3 by a hydrothermal crystallization method and further an electrode 1 for sensing light is formed on the crystal film 2. As for the electrode 1 used when the pyroelectric film 2 is made an element, Ni or an Ni-Cr alloy by a sputtering method, Ni by an electroless plating method, Ag of a baking type or the like, for instance, is used selectively. Since a pyroelectric element can be formed without a poling process and also a film thickness can be made thin relatively by this method, the pyroelectric element for an infrared detector being excellent in a response speed and sensitivity can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線を検出して電気
信号を出力する赤外線検出器等に使用される焦電体素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric element used in an infrared detector or the like which detects infrared rays and outputs an electric signal.

【0002】[0002]

【従来技術およびその問題点】従来より、焦電型赤外線
検出器は、被検知物体から離れて赤外線を検出できるた
め、非接触赤外線センサーとして侵入者検出器や火災報
知器等に実用化されている。焦電型赤外線検出器用の焦
電体素子の材料としては、通常、セラミックスが使用さ
れている。例えば、チタン酸鉛系、チタンジルコン酸鉛
系などの厚さ50μm程度のセラミックス板からなる焦
電体素子を使用した場合、セラミックス板は、分極処理
された後、電極としてニッケル−クロム等が蒸着され、
該電極はFET(電界効果トランジスタ)等に接続され
焦電型赤外線検出器が構成されている。そして、例えば
被検知物体から赤外線が放射された場合には、焦電体素
子が該赤外線を吸収し、該素子の温度変化による分極の
変化を信号として取り出している。しかしながら、セラ
ミックスは、加工性、量産性に富むという利点を有する
反面、性能的に劣り、また信頼性に欠けるという問題点
がある。
2. Description of the Related Art Conventionally, pyroelectric infrared detectors have been put to practical use as intruder detectors, fire alarms, etc. as non-contact infrared sensors because they can detect infrared rays far from the object to be detected. There is. Ceramics are usually used as the material of the pyroelectric element for the pyroelectric infrared detector. For example, when a pyroelectric element made of a ceramic plate having a thickness of about 50 μm, such as lead titanate-based or lead titanium zirconate-based, is used, the ceramic plate is polarized and then nickel-chromium or the like is vapor-deposited as an electrode. Is
The electrode is connected to a FET (field effect transistor) or the like to form a pyroelectric infrared detector. Then, for example, when infrared rays are emitted from the object to be detected, the pyroelectric element absorbs the infrared rays, and the change in polarization due to the temperature change of the element is taken out as a signal. However, while ceramics have the advantage of being excellent in workability and mass productivity, they have problems of poor performance and lack of reliability.

【0003】セラミックス以外の焦電材料としては、L
iTaO3 等の単結晶やポリフッ化ビニリデン(PVF
2 )等の高分子材料の強誘電体が知られている。単結晶
は、単結晶特有の完全性、均一性という大きな長所を持
ち、焦電特性の再現性、信頼性に優れているという利点
があるが、量産性が悪く製造コストが高いという問題点
がある。また、高分子材料の場合、シート状の大面積の
ものが容易に量産できるなど製造コストが安いという利
点があるが焦電性能が劣るという問題点がある。
As a pyroelectric material other than ceramics, L
Single crystals such as iTaO 3 and polyvinylidene fluoride (PVF
2 ) Ferroelectric materials such as polymer materials are known. Single crystals have the great advantages of perfection and uniformity peculiar to single crystals, and have the advantage of excellent reproducibility and reliability of pyroelectric characteristics, but have the problem of poor mass production and high manufacturing costs. is there. Further, in the case of the polymer material, there is an advantage that the manufacturing cost is low such that a sheet-shaped material having a large area can be easily mass-produced, but there is a problem that the pyroelectric performance is poor.

【0004】一方、薄膜ハンドブック(オーム社;198
3)pp.541−547 にも記載されているように、焦電型赤
外線検出素子に用いられる焦電材料は、膜厚の薄いもの
ほど赤外線に対する応答速度や感度が良好なため、通
常、焦電材料のセラミックスや単結晶のブロックを切断
および研磨し薄板に加工して使用されているが、100
μm以下にするためには、薄板の加工が難しくなり、製
造時の歩留りが著しく低下し量産上の問題点があった。
On the other hand, a thin film handbook (Ohm Co .; 198
3) As described in pp.541-547, the pyroelectric material used for the pyroelectric infrared detection element usually has a better response speed and sensitivity to infrared rays as the film thickness is smaller. It is used by cutting and polishing electric material ceramics and single crystal blocks into thin plates.
If the thickness is less than μm, it becomes difficult to process the thin plate, and the yield at the time of manufacturing is remarkably reduced, which causes a problem in mass production.

【0005】その問題点を解決する方法として、特開昭
60−127719号公報には導電性を有する基板上に
非晶質酸化物薄膜を形成し、該非晶質酸化物薄膜を加熱
処理することにより再結晶化して100μm以下の膜厚
で焦電性を有する多結晶強誘電体酸化物薄膜を得る方法
が提案されている。しかしながら、該公報の方法による
と、製膜後の再結晶化のために700℃での熱処理工程
が必要であるため、この熱処理温度において多結晶強誘
電体薄膜材料との相互拡散のない基板を選ぶと共に、多
結晶強誘電体薄膜材料にクラックが入るのを防ぐため
に、強誘電体酸化物と同じ熱膨張係数を有する基板を選
択する必要があった。
As a method for solving the problem, Japanese Patent Laid-Open No. 60-127719 discloses that an amorphous oxide thin film is formed on a conductive substrate and the amorphous oxide thin film is heat-treated. Has been proposed to obtain a polycrystalline ferroelectric oxide thin film having a pyroelectric property with a film thickness of 100 μm or less. However, according to the method of this publication, a heat treatment step at 700 ° C. is required for recrystallization after film formation. Therefore, at this heat treatment temperature, a substrate that does not interdiffuse with the polycrystalline ferroelectric thin film material can be formed. In addition to choosing, it was necessary to select a substrate having the same coefficient of thermal expansion as the ferroelectric oxide in order to prevent cracking of the polycrystalline ferroelectric thin film material.

【0006】一方、さらに性能の良い薄膜を形成するた
めに、例えば Journal of Scienceand Technology , Vo
l.A(8),pp.1382-1390(1990)には、RFマグネトロンス
パッタリング法によるPbTiO3 単結晶強誘電体薄膜
について提案されている。しかしながら、該方法による
と成膜時の基板温度を550〜600℃に保持し、さら
に、単結晶膜の成長を促進させるために基板として(1
00)配向したPt薄膜を必要としている。このため基
板が限定され、しかも製法が困難であり、製造コストが
高いといった問題点があった。
On the other hand, in order to form a thin film with better performance, for example, Journal of Science and Technology, Vo
In lA (8), pp.1382-1390 (1990), a PbTiO 3 single crystal ferroelectric thin film by RF magnetron sputtering method is proposed. However, according to this method, the substrate temperature during film formation is kept at 550 to 600 ° C., and further, as a substrate (1
00) Oriented Pt thin film is required. Therefore, there are problems that the substrate is limited, the manufacturing method is difficult, and the manufacturing cost is high.

【0007】[0007]

【発明の目的】本発明は、上記従来技術の課題を解決
し、赤外線に対する応答速度や焦電感度に優れた焦電体
素子を得ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to obtain a pyroelectric element having excellent infrared response speed and pyroelectric sensitivity.

【0008】[0008]

【問題点を解決するための手段】本発明は、導電性基
板、該導電性基板の表面に水熱合成法によって形成され
た焦電体結晶膜、および該焦電体結晶膜表面上に配置さ
れた電極とからなることを特徴とする焦電体素子に関す
る。
The present invention is directed to a conductive substrate, a pyroelectric crystal film formed on the surface of the conductive substrate by a hydrothermal synthesis method, and an arrangement on the surface of the pyroelectric crystal film. And a pyroelectric element.

【0009】本発明に使用される導電性基板としては、
金属板、表面を酸化処理した金属板、および金属コーテ
ィングされた樹脂基板又は絶縁体基板等を挙げることが
できる。金属板としては、チタン基板、ステンレス、F
e−Ni合金等が用いられる。また、樹脂基板として
は、ポリイミドフィルムやポリフェニレンサルファイド
等の耐熱性の樹脂基板が好ましい。コーティング用金属
としてはPt、Ti等が用いられる。
As the conductive substrate used in the present invention,
Examples thereof include a metal plate, a metal plate whose surface is oxidized, and a metal-coated resin substrate or insulating substrate. As the metal plate, titanium substrate, stainless steel, F
An e-Ni alloy or the like is used. Further, as the resin substrate, a heat resistant resin substrate such as a polyimide film or polyphenylene sulfide is preferable. Pt, Ti, or the like is used as the coating metal.

【0010】水熱合成法によって形成される焦電体結晶
膜としては、チタン酸鉛系結晶膜、チタン酸ジルコン酸
鉛系結晶膜、PLZT結晶膜等の水熱合成法を適用して
得られる焦電体結晶膜を挙げることができる。
The pyroelectric crystal film formed by the hydrothermal synthesis method is obtained by applying a hydrothermal synthesis method such as a lead titanate-based crystal film, a lead zirconate titanate-based crystal film, a PLZT crystal film or the like. A pyroelectric crystal film can be mentioned.

【0011】本発明において、導電性基板として1〜1
00μmの厚さのチタン金属箔等の金属基板を使用し、
50μm以下、好ましくは10μm以下の厚さの焦電体
結晶膜からなる焦電体層を水熱合成法等により基板上に
形成した場合には、熱容量が小さく、高感度の赤外線検
出器用焦電体素子を得ることができる。
In the present invention, the conductive substrate is 1 to 1
Using a metal substrate such as a titanium metal foil with a thickness of 00 μm,
When a pyroelectric layer composed of a pyroelectric crystal film having a thickness of 50 μm or less, preferably 10 μm or less is formed on a substrate by a hydrothermal synthesis method or the like, the pyroelectric layer for infrared detector has a small heat capacity and high sensitivity. Body elements can be obtained.

【0012】本発明の焦電体素子の好適な製造例とし
て、Pb(ZrTi)O3 系の焦電体結晶膜層を導電性
基板上に形成する方法について詳述する。導電性基板と
して、Ti基板あるいはTiをコーティングした基板を
選択し、前記基板上に水熱合成によって焦電体層を作製
する。また、焦電体結晶膜を水熱法により形成する際に
使用されるPb、Zr、Ti等の構成元素を含有する原
料化合物としては、塩化物、オキシ塩化物、硝酸塩、ア
ルコキシド、酢酸塩、水酸化物、酸化物等が好ましい。
As a preferred manufacturing example of the pyroelectric element of the present invention, a method of forming a Pb (ZrTi) O 3 -based pyroelectric crystal film layer on a conductive substrate will be described in detail. A Ti substrate or a Ti-coated substrate is selected as the conductive substrate, and a pyroelectric layer is formed on the substrate by hydrothermal synthesis. In addition, as the raw material compounds containing constituent elements such as Pb, Zr, and Ti used when forming the pyroelectric crystal film by the hydrothermal method, chloride, oxychloride, nitrate, alkoxide, acetate, Hydroxides and oxides are preferred.

【0013】まずPb(NO3 2 水溶液50mmol/l〜
500mmol/l、ZrOCl2 水溶液20mmol/l〜500
mmol/l、TiCl4 水溶液0.002mmol/l〜50mmol
/lおよびKOH水溶液1mol/l 〜8mol/l の混合溶液中
に、前記基板を溶液上部に設置固定し、レイノルズ数が
2000以下の状態、すなわち乱流にならない状態で、
150〜190℃の温度で、1〜24時間水熱による表
面処理を行い、Pb(ZrX Ti1-X )O3 (0≦x≦
1)からなる結晶核を形成する。結晶核形成時にTi化
合物を加えることにより、核発生量の増加に伴う微小か
つ緻密な結晶核が得られる。
First, a Pb (NO 3 ) 2 aqueous solution of 50 mmol / l
500 mmol / l, ZrOCl 2 aqueous solution 20 mmol / l-500
mmol / l, TiCl 4 aqueous solution 0.002 mmol / l to 50 mmol
/ l and a KOH aqueous solution 1 mol / l to 8 mol / l in a mixed solution, the substrate was placed and fixed on the upper part of the solution, and the Reynolds number was 2000 or less, that is, turbulence-free,
Surface treatment by hydrothermal treatment is performed at a temperature of 150 to 190 ° C. for 1 to 24 hours, and Pb (Zr X Ti 1-X ) O 3 (0 ≦ x ≦
A crystal nucleus consisting of 1) is formed. By adding a Ti compound during the formation of crystal nuclei, fine and dense crystal nuclei can be obtained with an increase in the amount of nucleation.

【0014】次に結晶を成長させるため、Pb(N
3 2 水溶液50mmol/l〜500mmol/l、ZrOCl
2 水溶液10mmol/l〜500mmol/l、TiCl4 水溶液
10mmol/l〜500mmol/lおよびKOH水溶液2mol/l
〜8mol/l の混合溶液中に、前記結晶核が形成された基
板を入れて100〜140℃、1〜96時間水熱処理を
行う。これにより導電性基板上に焦電体層が形成され
る。水熱処理における加熱方法は油浴や電気炉などによ
る。その後一般的な洗浄を行う。例えば、純水中で超音
波洗浄を行い、ついで酢酸水溶液中で超音波洗浄を行
い、さらに純水中で超音波洗浄を行い、100〜120
℃で12時間程度乾燥させる。こうして形成された焦電
体層の組成は主としてPb(ZrX Ti1-X )O3 (0
≦x≦1)からなる。
Next, in order to grow a crystal, Pb (N
O 3 ) 2 aqueous solution 50 mmol / l to 500 mmol / l, ZrOCl
2 aqueous solution 10 mmol / l to 500 mmol / l, TiCl 4 aqueous solution 10 mmol / l to 500 mmol / l and KOH aqueous solution 2 mol / l
The substrate on which the crystal nuclei are formed is placed in a mixed solution of ˜8 mol / l, and hydrothermal treatment is performed at 100 to 140 ° C. for 1 to 96 hours. As a result, a pyroelectric layer is formed on the conductive substrate. The heating method in the hydrothermal treatment is an oil bath or an electric furnace. After that, general cleaning is performed. For example, ultrasonic cleaning is performed in pure water, then ultrasonic cleaning in an acetic acid aqueous solution, and then ultrasonic cleaning in pure water.
Dry at ℃ for about 12 hours. The composition of the pyroelectric layer thus formed is mainly Pb (Zr x Ti 1-x ) O 3 (0
≦ x ≦ 1).

【0015】本発明で得られる焦電体層を素子化する場
合に使用される電極としては、特に限定されないがコス
トや量産性を考慮し最適なものが選定される。例えば、
スパッタリング法によるNi、Ni−Cr合金、無電解
メッキ法によるNi、焼付けタイプのAg等が選択使用
される。その他、蒸着によるAl、スパッタリング法に
よるPtあるいはAu等も用いられる。なお、基板に樹
脂を用いる場合には、高温に加熱できないので焼付けタ
イプのAg電極は好ましくない。
The electrode used when the pyroelectric layer obtained in the present invention is formed into an element is not particularly limited, but an optimum electrode is selected in consideration of cost and mass productivity. For example,
Ni by a sputtering method, Ni—Cr alloy, Ni by an electroless plating method, baking type Ag, etc. are selectively used. In addition, Al by vapor deposition, Pt or Au by sputtering method, etc. are also used. When a resin is used for the substrate, the baking type Ag electrode is not preferable because it cannot be heated to a high temperature.

【0016】[0016]

【実施例】以下、図面を参照しながら本発明の具体的実
施例を説明する。 実施例1 図1は本発明の一実施例を示す焦電型赤外線検出器の検
出部分である焦電体素子の縦断面図である。図中、3は
薄いチタン金属基板であり、2はその金属基板上に水熱
合成法で形成したチタンジルコン酸鉛系の焦電体層であ
る。1は焦電体層上に形成された受光用の電極である。
図1に示すような赤外線検出器用焦電体素子を以下のよ
うな方法により製造した。チタン金属基板3として厚さ
25μmのものを使用し、該チタン金属基板上に水熱合
成法によりチタンジルコン酸鉛の焦電体結晶膜を形成し
た。焦電体層の形成は具体的には、次のようにして行っ
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings. Example 1 FIG. 1 is a vertical cross-sectional view of a pyroelectric element which is a detection portion of a pyroelectric infrared detector showing an example of the present invention. In the figure, 3 is a thin titanium metal substrate, and 2 is a lead titanium zirconate-based pyroelectric layer formed on the metal substrate by a hydrothermal synthesis method. Reference numeral 1 is an electrode for receiving light formed on the pyroelectric layer.
The infrared detector pyroelectric element as shown in FIG. 1 was manufactured by the following method. A titanium metal substrate 3 having a thickness of 25 μm was used, and a pyroelectric crystal film of lead titanium zirconate was formed on the titanium metal substrate by a hydrothermal synthesis method. Specifically, the formation of the pyroelectric layer was performed as follows.

【0017】Pb(NO3 2 水溶液16mmol、Z
rOCl2 水溶液8mmol、TiCl4 水溶液0.8
mmolおよびKOH水溶液0.2molの混合溶液
(溶液合計量87ml、充填率64%)中にチタン金属
基板を浸漬し、180℃で10時間水熱処理を行った。
このようにして得られたPb(ZrTi)O3 の結晶が
析出した基板をさらに、Pb(NO3 2 水溶液16m
mol、ZrOCl2 水溶液1.6mmol、TiCl
4 水溶液14.4mmolおよびKOH水溶液2.3m
olの混合溶液(溶液合計量640ml)中に入れ、1
30℃、48時間の水熱処理を行いPb(ZrX Ti
1-X )O3 (ただし、x=0.1)の膜を形成した。洗
浄、乾燥後、RFスパッタリング法により所定の位置に
約0.5μmの厚みのNi−Cr合金電極を形成し焦電
体素子を作製した。この焦電体素子を分極処理を施すこ
となくの焦電特性を測定したところ、焦電係数は4.0
C/cm2 ・Kであり、焦電感度は10Hz以下(人体検
知に対応する。)で2×10-6A/Wと従来のPZT系
のセラミックス薄板(厚さ〜50μm)からなる焦電体
素子の約2倍であり、4000Hz以上では1×10-5
A/Wと約10倍以上であった。
16 mmol of Pb (NO 3 ) 2 aqueous solution, Z
rOCl 2 aqueous solution 8 mmol, TiCl 4 aqueous solution 0.8
The titanium metal substrate was immersed in a mixed solution of mmol and 0.2 mol of a KOH aqueous solution (total solution amount: 87 ml, filling rate: 64%), and hydrothermal treatment was performed at 180 ° C. for 10 hours.
The substrate on which the Pb (ZrTi) O 3 crystals thus obtained were deposited was further added with a 16 m Pb (NO 3 ) 2 aqueous solution.
mol, ZrOCl 2 aqueous solution 1.6 mmol, TiCl
4 aqueous solution 14.4 mmol and KOH aqueous solution 2.3 m
1 ol mixed solution (total solution volume 640 ml)
After hydrothermal treatment at 30 ° C for 48 hours, Pb (Zr X Ti
A film of 1-X ) O 3 (where x = 0.1) was formed. After washing and drying, a Ni-Cr alloy electrode having a thickness of about 0.5 μm was formed at a predetermined position by the RF sputtering method to manufacture a pyroelectric element. When the pyroelectric characteristics of this pyroelectric element were measured without polarization treatment, the pyroelectric coefficient was 4.0.
C / cm 2 · K, pyroelectric sensitivity of 10 Hz or less (corresponding to human body detection), 2 × 10 -6 A / W and conventional PZT ceramic thin plate (thickness ~ 50 μm). It is about twice as large as a body element, and 1 × 10 -5 at 4000 Hz or higher.
A / W was about 10 times or more.

【0018】実施例2 基板として樹脂を用いた場合について説明する。まず、
ポリイミドフィルムをアルカリ溶液でエッチングし、洗
浄した。次に電極形成および種結晶形成のため、Pt膜
をスパッタリング法により形成し、さらに、焦電体結晶
膜の成分であるTiをスパッタリングし導電性基板を作
製した。水熱合成については実施例1と同様に行い、ま
ず種結晶を形成させた後、結晶を成長させPb(ZrX
Ti1-X)O3 (ただし、x=0.1)膜を形成した。
結晶膜表面にRFスパッタリング法により約0.5μm
の厚みのNi電極を形成した後、分極処理を施すことな
く焦電特性を測定したところ、焦電係数は4.0C/cm
2 ・Kであり、焦電感度は10Hz以下で3×10-6
/Wと従来のPZT系のセラミックス薄板(厚さ〜50
μm)からなる焦電体素子の約3倍であり、4000H
z以上では1.5×10-5A/Wと約15倍以上であっ
た。
Example 2 A case where a resin is used as the substrate will be described. First,
The polyimide film was etched with an alkaline solution and washed. Next, a Pt film was formed by a sputtering method for electrode formation and seed crystal formation, and Ti, which is a component of the pyroelectric crystal film, was sputtered to prepare a conductive substrate. The hydrothermal synthesis was performed in the same manner as in Example 1. First, a seed crystal was formed and then the crystal was grown to obtain Pb (Zr X
A Ti 1-X ) O 3 (where x = 0.1) film was formed.
Approximately 0.5 μm on the crystal film surface by RF sputtering
After forming a Ni electrode with a thickness of 1 mm, the pyroelectric characteristics were measured without polarization treatment, and the pyroelectric coefficient was 4.0 C / cm.
A 2 · K, pyroelectric sensitivity 3 × 10 -6 A at 10Hz or less
/ W and conventional PZT ceramic thin plate (thickness ~ 50
μH), which is about 3 times that of a pyroelectric element made of
It was 1.5 × 10 −5 A / W at z or more, which was about 15 times or more.

【0019】[0019]

【発明の効果】本発明は、導電性基板の表面に水熱法に
より焦電体結晶膜を形成した焦電体素子であり、分極処
理工程なしに焦電体素子を形成することができる。さら
に、膜厚も従来のセラミックスと比較して薄くできるた
め、応答速度や感度に優れた赤外線検出器用等に使用さ
れる焦電体素子を作製することができる。
The present invention is a pyroelectric element in which a pyroelectric crystal film is formed on the surface of a conductive substrate by a hydrothermal method, and the pyroelectric element can be formed without a polarization treatment step. Further, since the film thickness can be made thinner than that of conventional ceramics, it is possible to manufacture a pyroelectric element used for an infrared detector or the like having excellent response speed and sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の赤外線検出器用焦電体素子の一実施例
を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing an embodiment of a pyroelectric element for infrared detector of the present invention.

【符号の説明】[Explanation of symbols]

1 電極 2 焦電体結晶膜 3 導電性基板(チタン) 1 electrode 2 pyroelectric crystal film 3 conductive substrate (titanium)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 隆幸 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Kimura 5 1978, Kozugushi, Ube City, Yamaguchi Prefecture Ube Kosan Co., Ltd. Ube Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性基板、該導電性基板の表面に水
熱合成法によって形成された焦電体結晶膜、および該焦
電体結晶膜表面上に配置された電極とからなることを特
徴とする焦電体素子。
1. A conductive substrate, a pyroelectric crystal film formed on the surface of the conductive substrate by a hydrothermal synthesis method, and an electrode arranged on the surface of the pyroelectric crystal film. And a pyroelectric element.
JP27126394A 1994-11-04 1994-11-04 Pyroelectric element Pending JPH08136341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27126394A JPH08136341A (en) 1994-11-04 1994-11-04 Pyroelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27126394A JPH08136341A (en) 1994-11-04 1994-11-04 Pyroelectric element

Publications (1)

Publication Number Publication Date
JPH08136341A true JPH08136341A (en) 1996-05-31

Family

ID=17497649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27126394A Pending JPH08136341A (en) 1994-11-04 1994-11-04 Pyroelectric element

Country Status (1)

Country Link
JP (1) JPH08136341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633428B2 (en) * 2000-10-04 2003-10-14 Mitsubishi Denki Kabushiki Kaisha Optical module
CN102557477A (en) * 2010-12-24 2012-07-11 中国科学院兰州化学物理研究所 Preparation method of in-situ vertically grown titanium dioxide nanosheet film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633428B2 (en) * 2000-10-04 2003-10-14 Mitsubishi Denki Kabushiki Kaisha Optical module
CN102557477A (en) * 2010-12-24 2012-07-11 中国科学院兰州化学物理研究所 Preparation method of in-situ vertically grown titanium dioxide nanosheet film

Similar Documents

Publication Publication Date Title
US5519235A (en) Polycrystalline ferroelectric capacitor heterostructure employing hybrid electrodes
US20090148347A1 (en) Nano-crystalline composite-oxide thin film, environmental gas sensor using the thin film, and method of manufacturing the environmental gas sensor
JPH06350154A (en) Piezoelectric thin film element
JPS6382100A (en) Piezoelectric element and its manufacture
JPH08136341A (en) Pyroelectric element
JPH08136342A (en) Pyroelectric element for infrared detector
JP2004292218A (en) Ferroelectric film
JPH08330639A (en) Pyroelectric element
JPS61191954A (en) Metal oxide thin film gas sensor element
US20050087689A1 (en) Pyroelectric device, method for manufacturing same and infrared sensor
JPH0792025A (en) Infrared sensor
Zhou et al. In‐Plane Polarized 0.7 Pb (Mg1/3Nb2/3) O3–0.3 PbTiO3 Thin Films
JP3198701B2 (en) Method for manufacturing dielectric crystal film
JPH08133734A (en) Dielectric crystal film
JPH09315857A (en) Perovskite type oxide film and its production
JPH08133733A (en) Production of ferroelectric crystal film
JPH08133738A (en) Production of pyroelectric crystal film
Sidorkin et al. Synthesis and study of dielectric properties of PbTiO 3 thin films
JPH08277196A (en) Ferroelectric thin film, its production, semiconductor non-volatile memory element, ferroelectric gate-type fet element and sensor
JP4147640B2 (en) Method for manufacturing composite titanium oxide film element unit
JP2727327B2 (en) Pyroelectric material
JPH04357888A (en) Pyroelectric infrared ray detecting element
JPH10260090A (en) Strain sensor for membrane structure
JPH10257785A (en) Actuator with sensor function
JP4066518B2 (en) Piezoelectric crystal thin film, method for manufacturing the same, and piezoelectric element