JPH10257785A - Actuator with sensor function - Google Patents

Actuator with sensor function

Info

Publication number
JPH10257785A
JPH10257785A JP9056566A JP5656697A JPH10257785A JP H10257785 A JPH10257785 A JP H10257785A JP 9056566 A JP9056566 A JP 9056566A JP 5656697 A JP5656697 A JP 5656697A JP H10257785 A JPH10257785 A JP H10257785A
Authority
JP
Japan
Prior art keywords
aqueous solution
substrate
piezoelectric
piezoelectric crystal
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9056566A
Other languages
Japanese (ja)
Inventor
Taketo Fukuda
武人 福田
Takayuki Kimura
隆幸 木村
Kazuo Hashimoto
和生 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9056566A priority Critical patent/JPH10257785A/en
Publication of JPH10257785A publication Critical patent/JPH10257785A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the strain of a structure by forming a piezoelectric crystal membrane on a titan metal surface provided on a substrate by means of a hydrothermal synthesis means, and giving the electrodes for voltage driving and strain detection to the piezoelectric crystal membrane. SOLUTION: A Ti substrate 1 is fixed in a mixed solution of Pb(NO3 )2 aqueous solution 200mmol/l, ZrOCl2 aqueous solution 100mmol/l, TiCl4 aqueous solution 2.0mmol/l and KOH aqueous solution 2.1mmol/l and is subjected to surface treatment with hydrothermal surface treatment for 12 hours at 180 deg.C. To grow crystal obtained Pb(ZrxTi1- X)O3 further, the Ti substrate 1 is subjected to hydrothermal treatment in a mixed solution of Pb(NO3 )2 aqueous solution 94mmol/l, ZrOCl2 aqueous solution 38mmol/l TiCl4 aqueous solution 37mmol/l and KOH aqueous solution 3.8mmol/l for 48 hours at 130 deg.C to generate a piezoelectric crystal membrane 2 of Pb(ZrxTi1- X)O3 (x=0.52). Ultrasonic cleaning is conducted in pure water for 3 minutes twice, and ultrasonic cleaning is conducted in 1mmol/l acetic acid aqueous solution for one minute twice. 12-hour drying is conducted at 100 deg.C, and a sensor electrode 3 and an actuator electrode 4 are separated from each other for vacuum evaporation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造物の歪みを検
出し、変位、応力、振動などを測定することができると
同時に歪みに対応した動きをするセンサー機能を有する
アクチュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an actuator having a sensor function capable of detecting distortion of a structure and measuring displacement, stress, vibration, and the like, and at the same time, performing a movement corresponding to the distortion.

【0002】[0002]

【従来の技術】従来、構造物の歪みを検出する手段と、
該歪みを補正する手段を兼ね備えた材料については種々
提案されているが、検出手段と補正のためのアクチュエ
ート機能は全く別の素子に分けざるを得なかった。構造
物の歪みを検出し、変位、応力、振動などを測定する方
法としては従来からチタン酸ジルコン酸鉛系などの圧電
材料を用いたセンサーが使用されている。例えばチタン
酸ジルコン酸鉛系等の厚さ50μm程度のセラミック板
からなる圧電体素子を使用した場合、セラミック板は分
極処理された後、電極としてニッケル−クロム、銅、銀
等が蒸着され、該電極は測定回路に接続されて圧電セン
サーが構成されている。しかしながら、セラミックスは
加工性、形状に制限があり、また、薄いセラミック板は
壊れ易いなど信頼性に難点がある。さらに、センサーの
歪み限度が小さく、ヤング率の小さく、形状変化が大き
な構造物の歪み測定には問題がある。
2. Description of the Related Art Conventionally, means for detecting a distortion of a structure,
There have been proposed various materials which also have a means for correcting the distortion, but the detection means and the actuating function for correction have to be completely separated. 2. Description of the Related Art As a method of detecting a strain of a structure and measuring displacement, stress, vibration, and the like, a sensor using a piezoelectric material such as lead zirconate titanate has been conventionally used. For example, when a piezoelectric element made of a ceramic plate having a thickness of about 50 μm, such as a lead zirconate titanate, is used, after the ceramic plate is polarized, nickel-chromium, copper, silver, or the like is deposited as an electrode. The electrodes are connected to a measurement circuit to form a piezoelectric sensor. However, ceramics have limitations in workability and shape, and thin ceramic plates are fragile and have poor reliability. Further, there is a problem in measuring the strain of a structure having a small strain limit of the sensor, a small Young's modulus, and a large shape change.

【0003】セラミックス以外の圧電材料としてはLi
TaO3 、水晶等の単結晶やポリフッ化ビニリデン(P
VF2)等の高分子材料の強誘電体が知られている。単
結晶は、単結晶特有の完全性、均一性という大きな長所
を持ち、圧電特性の再現性、信頼性に優れているという
利点があるが、量産性が悪く、製造コストが高いという
問題点がある。また、セラミックと同様にセンサーの歪
み限度が小さく、ヤング率の小さく、形状変化が大きな
構造物の歪み測定には問題がある。また、高分子材料の
場合シート状の大面積ものが容易に量産できるなど製造
コストが安いという利点があるが、圧電性能が劣るとい
う問題点がある。従って、特に大きな構造物の大きな歪
みを精度良く測定するためには、面積や自由度の大き
な、また、歪み限度の大きなセンサーが必要とされてい
る。一方、歪みに対応した補正をするためにはチタン酸
ジルコン酸鉛系の圧電材料が利用されるが、大面積で薄
い板が成形できないため、駆動する面積が大きい場合に
は圧電板を並べ、それぞれを電圧駆動する方法がとられ
ていた。
As a piezoelectric material other than ceramics, Li is used.
TaO 3 , single crystal such as quartz or polyvinylidene fluoride (P
A ferroelectric material of a polymer material such as VF2) is known. Single crystals have the great advantages of completeness and uniformity unique to single crystals, and have the advantage of excellent reproducibility and reliability of piezoelectric characteristics, but have the disadvantage of poor mass productivity and high manufacturing costs. is there. Also, similarly to ceramic, there is a problem in measuring the strain of a structure having a small distortion limit, a small Young's modulus, and a large change in shape of the sensor. Further, in the case of a polymer material, there is an advantage that the production cost is low, for example, a sheet-shaped large-area one can be easily mass-produced, but there is a problem that the piezoelectric performance is inferior. Therefore, in order to accurately measure a large distortion of a particularly large structure, a sensor having a large area and a large degree of freedom and a large distortion limit is required. On the other hand, a lead zirconate titanate-based piezoelectric material is used to correct for distortion, but since a thin plate with a large area cannot be formed, if the driving area is large, the piezoelectric plates are arranged. A method of driving each of them with a voltage has been adopted.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記課題を解
決するものであって、チタン金属面に形成された圧電結
晶膜を用いて、広い範囲にわたって歪みを検出し、変
位、応力、振動などを測定すると同時に、歪みの大きさ
に対応した補正のための駆動をしようとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and uses a piezoelectric crystal film formed on a titanium metal surface to detect strain over a wide range and to detect displacement, stress, vibration and the like. Is measured, and at the same time, driving for correction corresponding to the magnitude of distortion is attempted.

【0005】[0005]

【課題を解決するための手段】本発明は、基板上に設け
られたチタン金属面上に水熱合成法により圧電結晶膜が
形成されており、さらに前記圧電結晶膜上に電圧駆動用
の電極と歪み検知用の電極とが付与されていることを特
徴とするセンサー機能を有するアクチュエータに関す
る。
According to the present invention, a piezoelectric crystal film is formed on a titanium metal surface provided on a substrate by a hydrothermal synthesis method, and a voltage driving electrode is formed on the piezoelectric crystal film. And an electrode having a sensor function, wherein the actuator is provided with a strain detection electrode.

【0006】[0006]

【発明の実施の形態】基板として用いる材料としては、
チタン金属自身を使用することができるほか、チタンコ
ーティングされた金属や合金板、表面を酸化処理した金
属板、シリコンやガラス、樹脂基板または絶縁体基板等
を挙げることができる。金属板としてはチタンの他に、
ニッケル、銅、ステンレス、鉄・ニッケル合金、チタン
・ニッケル合金などを用いることができる。また、樹脂
基板としては、ポリイミドやポリフェニレンサルファイ
ドなどの耐熱性の樹脂基板が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As a material used for a substrate,
Titanium metal itself can be used, as well as a metal or alloy plate coated with titanium, a metal plate having a surface oxidized, silicon or glass, a resin substrate or an insulator substrate. In addition to titanium as a metal plate,
Nickel, copper, stainless steel, an iron / nickel alloy, a titanium / nickel alloy, or the like can be used. Further, as the resin substrate, a heat-resistant resin substrate such as polyimide or polyphenylene sulfide is preferable.

【0007】基板上にチタン金属を形成する方法として
は、通常のスパッタリング法や蒸着法を採用することが
できる。またチタン金属箔やチタン金属板を基板とする
場合には、そのまま水熱合成法により圧電結晶膜を形成
することができる。
As a method for forming titanium metal on a substrate, a usual sputtering method or vapor deposition method can be adopted. When a titanium metal foil or a titanium metal plate is used as a substrate, a piezoelectric crystal film can be formed as it is by a hydrothermal synthesis method.

【0008】水熱合成法によって形成される圧電結晶膜
としては、チタン酸ジルコン酸鉛系膜、ニオブ酸マグネ
シウム鉛系膜などの水熱合成法を適用して得られる圧電
結晶膜を挙げることができる。
Examples of the piezoelectric crystal film formed by the hydrothermal synthesis method include a piezoelectric crystal film obtained by applying a hydrothermal synthesis method, such as a lead zirconate titanate-based film and a magnesium lead niobate-based film. it can.

【0009】本発明において、基板上のチタン金属面に
1〜50μmの厚さの圧電結晶膜を水熱合成法により形
成した場合には、面積や形状の自由度の大きな高感度の
圧電結晶膜を得ることができる。圧電結晶膜の膜厚が過
度に薄いと絶縁性が損なわれ、十分な出力が得られな
い。また、過度に厚いと可堯性が失われ、大きな歪みに
対応できず、マイクロクラックが発生して出力が小さく
なる。本発明において、基板に金属箔を用いた場合、セ
ンサーとしての歪み限度が大きく、5%以上の歪みにも
対応できる。また、アクチュエータとしての変位もセラ
ミックの薄板に比べて大きく、低電圧駆動することがで
きる。
In the present invention, when a piezoelectric crystal film having a thickness of 1 to 50 μm is formed on a titanium metal surface on a substrate by a hydrothermal synthesis method, a highly sensitive piezoelectric crystal film having a large degree of freedom in area and shape is provided. Can be obtained. If the thickness of the piezoelectric crystal film is excessively small, the insulating property is impaired, and a sufficient output cannot be obtained. On the other hand, if the thickness is excessively large, flexibility is lost, and it is impossible to cope with large distortion, and micro cracks are generated to reduce the output. In the present invention, when a metal foil is used for the substrate, the strain limit of the sensor is large, and the sensor can cope with a strain of 5% or more. In addition, the displacement as an actuator is larger than that of a ceramic thin plate, and low voltage driving can be performed.

【0010】本発明の圧電結晶膜の好適な製造方法とし
ては、例えば特開平05−058634号公報、特開平
07−092025号公報等に記載されているような水
熱合成法を採用することができる。本発明の圧電膜の好
適な製造例として、チタン酸ジルコン酸鉛系の圧電結晶
膜を基板上のチタン金属面に形成する方法について詳述
する。基板として、チタン金属あるいはチタンをコーテ
ィングした基板を選択し、前記基板上に水熱合成によっ
て圧電結晶膜を形成する。また、また、圧電結晶膜を水
熱合成法により形成する際に使用される鉛、ジルコニウ
ム、チタン等の構成元素を含有する原料化合物として
は、塩化物、オキシ塩化物、硝酸塩、水酸化物、酸化物
等が好ましい。
As a preferred method of manufacturing the piezoelectric crystal film of the present invention, for example, a hydrothermal synthesis method described in JP-A-05-058634, JP-A-07-092025, etc. may be employed. it can. As a preferred example of manufacturing the piezoelectric film of the present invention, a method of forming a lead zirconate titanate-based piezoelectric crystal film on a titanium metal surface on a substrate will be described in detail. As the substrate, a titanium metal or a substrate coated with titanium is selected, and a piezoelectric crystal film is formed on the substrate by hydrothermal synthesis. Further, as a raw material compound containing constituent elements such as lead, zirconium, and titanium used when forming a piezoelectric crystal film by hydrothermal synthesis, chloride, oxychloride, nitrate, hydroxide, Oxides and the like are preferred.

【0011】まずPb(NO3)2水溶液50mmol/l〜500mmol/l
、ZrOCl2水溶液20mmol/l〜500mmol/l 、TiCl4 水溶液
0.002mmol/l 〜50mmol/lおよびKOH 水溶液0.1mol/l〜8.
0mol/lの混合溶液中に、前記基板を任意の場所に設置固
定し、レイノルズ数が2000以下の状態、すなわち乱流に
ならない状態で、150 〜190 ℃の温度で、0.25〜24時間
水熱による表面処理を行ない、 Pb(ZrX Ti1-X )O3 (た
だし、0 ≦x≦1 である。)からなる結晶核を形成す
る。
First, an aqueous Pb (NO 3 ) 2 solution of 50 mmol / l to 500 mmol / l
, ZrOCl 2 aqueous solution 20 mmol / l to 500 mmol / l, TiCl 4 aqueous solution
0.002 mmol / l to 50 mmol / l and KOH aqueous solution 0.1 mol / l to 8.
In a mixed solution of 0 mol / l, the substrate is placed and fixed at an arbitrary place, and the hydrothermal condition is at a temperature of 150 to 190 ° C. for 0.25 to 24 hours at a Reynolds number of 2000 or less, that is, in a turbulent state. To form a crystal nucleus composed of Pb (Zr X Ti 1 -X ) O 3 (where 0 ≦ x ≦ 1).

【0012】次に結晶を成長させるため、Pb(NO3)2水溶
液50mmol/l〜500mmol/l 、ZrOCl2水溶液1.0mmol/l 〜50
0mmol/l 、TiCl4 水溶液10mmol/l〜500mmol/l およびKO
H 水溶液0.2mol/l〜8.0mol/lの混合溶液中に、前記配向
性の結晶核が形成された基板を入れて100 〜140 ℃、1
〜96時間水熱処理を行なう。これにより基板上に圧電結
晶膜が形成される。水熱処理における加熱方法は油浴や
電気炉等による。その後一般的な洗浄を行なう。例え
ば、純水中で超音波洗浄を行ない、ついで酢酸水溶液中
で超音波洗浄を行ない、さらに純水中で超音波洗浄を行
ない、100 〜120℃で12時間程度乾燥させる。こうして
形成された圧電結晶膜の組成は、 Pb(ZrX Ti1-X )O3
(ただし、0 ≦x≦1 である。)からなっている。得ら
れた圧電結晶膜の結晶状態はX線回折等により確認され
る。
Next, in order to grow crystals, a Pb (NO 3 ) 2 aqueous solution of 50 mmol / l to 500 mmol / l and a ZrOCl 2 aqueous solution of 1.0 mmol / l to 50 mmol / l
0 mmol / l, 10 mmol / l to 500 mmol / l of TiCl 4 aqueous solution and KO
The substrate on which the oriented crystal nuclei are formed is put in a mixed solution of 0.2 mol / l to 8.0 mol / l of an aqueous solution of H.
Perform hydrothermal treatment for ~ 96 hours. As a result, a piezoelectric crystal film is formed on the substrate. The heating method in the hydrothermal treatment uses an oil bath, an electric furnace, or the like. Thereafter, general cleaning is performed. For example, ultrasonic cleaning is performed in pure water, then ultrasonic cleaning is performed in an acetic acid aqueous solution, and then ultrasonic cleaning is performed in pure water, followed by drying at 100 to 120 ° C. for about 12 hours. The composition of the piezoelectric crystal film thus formed is Pb (Zr X Ti 1-X ) O 3
(However, 0 ≦ x ≦ 1). The crystal state of the obtained piezoelectric crystal film is confirmed by X-ray diffraction or the like.

【0013】本発明で得られる誘電体結晶膜を素子化す
る場合に使用される電極としては、特に限定されないが
コストや量産性を考慮し、最適なものが選定される。例
えば、スパッタリング法によるNi、無電解メッキ法によ
るNi、焼きつけタイプのAg等も用いられる。なお、基板
に樹脂を用いる場合には、高温に加熱できないので焼付
けタイプのAgは好ましくない。一枚の圧電結晶膜上に電
極は歪みを検知するためのセンサー部分の電極と電圧駆
動させるためのアクチュエータ部分の電極とは別に形成
され、センサーの出力を理論回路を通してアクチュエー
タの駆動電圧とするものである。
The electrode used when the dielectric crystal film obtained by the present invention is made into an element is not particularly limited, but an optimum electrode is selected in consideration of cost and mass productivity. For example, Ni by sputtering, Ni by electroless plating, baking Ag, etc. are used. When a resin is used for the substrate, baking Ag is not preferable because it cannot be heated to a high temperature. Electrodes are formed on a single piezoelectric crystal film separately from the electrodes of the sensor part for detecting strain and the electrodes of the actuator part for voltage driving, and the output of the sensor is used as the actuator driving voltage through a theoretical circuit It is.

【0014】基板の材質、形状、また、圧電膜の厚み、
形状が目的に添って最適化が可能であり、さらに、電極
形状を最適化することにより歪みの検知とそれに対応し
た変位を加えることができる。圧電素子としては、圧電
バイモルフ素子や圧電ユニモルフ素子を使用することが
できる。また、圧電素子としては、1枚の基板からなる
圧電素子を使用することができ、さらに複数枚の圧電素
子を積層した構成として使用することもできる。
The material and shape of the substrate, the thickness of the piezoelectric film,
The shape can be optimized according to the purpose, and furthermore, by optimizing the electrode shape, distortion can be detected and a displacement corresponding thereto can be added. As the piezoelectric element, a piezoelectric bimorph element or a piezoelectric unimorph element can be used. Further, as the piezoelectric element, a piezoelectric element formed of a single substrate can be used, and a configuration in which a plurality of piezoelectric elements are stacked can also be used.

【0015】[0015]

【実施例】以下、図面を参照しながら本発明の具体的な
一実施例を挙げて説明する。 実施例1 図1は本発明の一実施例を示す圧電センサーの検出部分
とアクチュエータ部分である圧電バイモルフ素子の斜視
図である。また、図2は前記圧電バイモルフ素子のA−
A面での断面図である。図中、1はチタン基板であり、
2はその金属基板上に水熱合成法で形成したチタン酸ジ
ルコン酸鉛系圧電膜である。3は圧電膜上に形成された
センサー用の電極である。4はアクチュエータ用の電極
である。図1に示すような圧電結晶膜を以下の様な方法
により製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific embodiment of the present invention will be described with reference to the drawings. Embodiment 1 FIG. 1 is a perspective view of a piezoelectric bimorph element which is a detection portion and an actuator portion of a piezoelectric sensor according to an embodiment of the present invention. FIG. 2 shows the A-type piezoelectric bimorph element.
It is sectional drawing in A side. In the figure, 1 is a titanium substrate,
Reference numeral 2 denotes a lead zirconate titanate-based piezoelectric film formed on the metal substrate by a hydrothermal synthesis method. Reference numeral 3 denotes a sensor electrode formed on the piezoelectric film. Reference numeral 4 denotes an electrode for an actuator. A piezoelectric crystal film as shown in FIG. 1 was manufactured by the following method.

【0016】まずPb(NO3)2水溶液200mmol/l 、ZrOCl2
溶液100mmol/l 、TiCl4 水溶液2.0mmol/l およびKOH 水
溶液2.1mol/lの混合溶液(溶液合計量640ml )中に、Ti
基板を設置固定し、180 ℃、12時間水熱による表面処理
を行なった。このようにして得られた Pb(ZrX Ti1-X )O
3 結晶を次に結晶を成長させるため、該基板をPb(NO3)2
水溶液94mmol/l 、ZrOCl2水溶液38mmol/l、TiCl4 水溶
液37mmol/lおよびKOH 水溶液3.8mol/lの混合溶液(溶液
合計量640ml )中に設置固定し、130 ℃、48時間水熱処
理を行なって Pb(ZrX Ti1-X )O3 (ただし、x=0.52であ
る。)の膜を形成した。その後、純水中で超音波洗浄3
分間×2回、1mol/l酢酸水溶液中で超音波洗浄3分間×
2回、さらに純水中で超音波洗浄3分間×2回を行な
い、100 ℃で12時間乾燥させた。このようにして得られ
た圧電結晶膜上に金電極を蒸着法で形成した。なお、電
極形成時にメタルマスクにてセンサー電極とアクチュエ
ータ電極とを分離して蒸着している。
First, in a mixed solution (640 ml total solution) of 200 mmol / l of Pb (NO 3 ) 2 aqueous solution, 100 mmol / l of ZrOCl 2 aqueous solution, 2.0 mmol / l of TiCl 4 aqueous solution and 2.1 mol / l of KOH aqueous solution.
The substrate was placed and fixed, and subjected to surface treatment with hydrothermal heat at 180 ° C. for 12 hours. Pb (Zr X Ti 1-X ) O obtained in this way
In order to grow a crystal and then a crystal, the substrate is treated with Pb (NO 3 ) 2
An aqueous solution of 94 mmol / l, a ZrOCl 2 aqueous solution of 38 mmol / l, a TiCl 4 aqueous solution of 37 mmol / l and a KOH aqueous solution of 3.8 mol / l were fixed in a mixed solution (total amount of solution: 640 ml) and subjected to hydrothermal treatment at 130 ° C. for 48 hours. A film of Pb (Zr X Ti 1-X ) O 3 (where x = 0.52) was formed. Then, ultrasonic cleaning 3 in pure water
× 2 times for 3 minutes, ultrasonic cleaning in 1 mol / l acetic acid aqueous solution for 3 minutes ×
Ultrasonic cleaning was performed twice in pure water twice for 3 minutes and dried at 100 ° C. for 12 hours. A gold electrode was formed on the piezoelectric crystal film thus obtained by a vapor deposition method. In forming the electrodes, the sensor electrodes and the actuator electrodes are separated and vapor-deposited with a metal mask.

【0017】このようにして得られた Pb(ZrX Ti1-X )O
3 (ただし、x=0.52である。)からなる圧電素子は、長
さ30mm、幅10mmのバイモルフ素子の構成で分極処理を施
すことなく、電圧を印加したところ変位し、分極方向が
揃っていることが電気的にも確認された。この膜の誘電
率は約1000、誘電損失は約0.03であった。
The thus obtained Pb (Zr X Ti 1-X ) O
The piezoelectric element composed of 3 (where x = 0.52) is a bimorph element with a length of 30 mm and a width of 10 mm, and is displaced when a voltage is applied without polarization processing, and the polarization directions are aligned. This was also confirmed electrically. The dielectric constant of this film was about 1000, and the dielectric loss was about 0.03.

【0018】該圧電バイモルフ素子12と一方向ガラス
繊維強化樹脂(GFRP)プリプレグシート層11とを4層
重ね、センサー電極およびアクチュエータ電極にあたる
部分にスルーホール13,14を穿って中に導電性接着
剤を流し込み、さらに圧電バイモルフ素子12を載せ、
次に前記と同様なスルーホール13,14を開けた5層
目のプリプレグシート11を該圧電バイモルフ素子12
の上に重ねる。最後に両面から電極を取り出し、容器中
で加熱、加圧して成形し、片持ち梁構造とした。この試
験片の構造を図3に示した。
The piezoelectric bimorph element 12 and the unidirectional glass fiber reinforced resin (GFRP) prepreg sheet layer 11 are stacked in four layers, and through holes 13 and 14 are formed in portions corresponding to sensor electrodes and actuator electrodes, and a conductive adhesive is formed therein. , And the piezoelectric bimorph element 12 is further placed thereon.
Next, the fifth-layer prepreg sheet 11 having the same through holes 13 and 14 as described above was
On top of. Finally, the electrodes were taken out from both sides, and heated and pressed in a container to form a cantilever structure. FIG. 3 shows the structure of the test piece.

【0019】該一方向GFRPの固定端を正弦波強制変位加
振する。埋め込んだ該圧電バイモルフ素子12による歪
み応答電圧を検出し、論理回路で、極性を変換、電圧を
変圧してアクチュエータ電極に印加した。印加電圧を1
0、20、30、40、50Vと変えた場合の非固定端
の変位をレーザー変位測定装置で測定した結果を図4に
示した。アクチュエータ電圧に電圧を印加しなかった場
合には、先端の撓み量が大きくなることから、撓み量を
制御することができることがわかる。
The fixed end of the one-way GFRP is subjected to sine wave forced displacement excitation. The strain response voltage by the embedded piezoelectric bimorph element 12 was detected, and the polarity was converted and the voltage was changed by a logic circuit and applied to the actuator electrode. Set the applied voltage to 1
FIG. 4 shows the results of measuring the displacement of the non-fixed end with a laser displacement measuring device when the voltage was changed to 0, 20, 30, 40, and 50 V. When no voltage is applied to the actuator voltage, the amount of deflection at the tip increases, indicating that the amount of deflection can be controlled.

【0020】[0020]

【発明の効果】本発明は基板の表面に水熱合成法により
圧電結晶膜を形成した圧電素子であり、分極処理工程な
しに圧電素子を形成することができる。さらに膜厚も従
来のセラミックスと比較して薄くでき、大きな可撓性が
得られている。また、基板材料、形状の自由度が大き
く、電極の形状などを最適化することにより、効果的な
歪み検知と、それに対応した変位を加えることができ
る。本発明によると、正弦波を検知して、逆位相の変位
を加えることにより例えば構造材であるGFRPの振動
を効果的に制御できるため、センサーとアクチュエータ
との間の論理回路を適宜設定するすることにより、種々
のセンサー機能とアクチュエータ機能とが一つの圧電膜
で制御することができる。
The present invention relates to a piezoelectric element in which a piezoelectric crystal film is formed on the surface of a substrate by a hydrothermal synthesis method, and the piezoelectric element can be formed without a polarization step. Further, the film thickness can be made smaller than that of conventional ceramics, and a great flexibility is obtained. In addition, the degree of freedom of the substrate material and shape is large, and by optimizing the shape of the electrode and the like, effective strain detection and displacement corresponding thereto can be applied. According to the present invention, by detecting a sine wave and applying a displacement of the opposite phase, for example, the vibration of the GFRP, which is a structural material, can be effectively controlled. Therefore, a logic circuit between the sensor and the actuator is appropriately set. Thereby, various sensor functions and actuator functions can be controlled by one piezoelectric film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の圧電素子の一実施例を示す斜視図であ
る。
FIG. 1 is a perspective view showing one embodiment of a piezoelectric element of the present invention.

【図2】本発明の圧電素子一実施例を示す縦断面図であ
る。
FIG. 2 is a longitudinal sectional view showing one embodiment of the piezoelectric element of the present invention.

【図3】本発明のアクチュエータの試験片の構造を示す
斜視図である。
FIG. 3 is a perspective view showing a structure of a test piece of the actuator of the present invention.

【図4】本発明の印加電圧と撓み量との関係を示す図で
ある。
FIG. 4 is a diagram illustrating a relationship between an applied voltage and a deflection amount according to the present invention.

【符号の説明】[Explanation of symbols]

1:基板 2:圧電結晶膜 3:センサー電極 4:アクチュエータ電極 11:プリプレグシート 12:圧電バイモルフ素子 13,14:スルーホール 1: substrate 2: piezoelectric crystal film 3: sensor electrode 4: actuator electrode 11: prepreg sheet 12: piezoelectric bimorph element 13, 14: through hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に設けられたチタン金属面上に水
熱合成法により圧電結晶膜が形成されており、さらに前
記圧電結晶膜上に電圧駆動用の電極と歪み検知用の電極
とが付与されていることを特徴とするセンサー機能を有
するアクチュエータ。
1. A piezoelectric crystal film is formed on a titanium metal surface provided on a substrate by a hydrothermal synthesis method, and an electrode for voltage driving and an electrode for strain detection are formed on the piezoelectric crystal film. An actuator having a sensor function, which is provided.
【請求項2】 前記圧電結晶膜の厚みが1〜50μmで
あることを特徴とする請求項1記載のセンサー機能を有
するアクチュエータ。
2. The actuator according to claim 1, wherein the thickness of the piezoelectric crystal film is 1 to 50 μm.
JP9056566A 1997-03-11 1997-03-11 Actuator with sensor function Pending JPH10257785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9056566A JPH10257785A (en) 1997-03-11 1997-03-11 Actuator with sensor function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9056566A JPH10257785A (en) 1997-03-11 1997-03-11 Actuator with sensor function

Publications (1)

Publication Number Publication Date
JPH10257785A true JPH10257785A (en) 1998-09-25

Family

ID=13030694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9056566A Pending JPH10257785A (en) 1997-03-11 1997-03-11 Actuator with sensor function

Country Status (1)

Country Link
JP (1) JPH10257785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304027A (en) * 2003-03-31 2004-10-28 Kyocera Corp Piezoelectric actuator, ink jet recording head, method for adjusting piezoelectric characteristic and method for adjusting ink discharge
JP2005039995A (en) * 2003-06-26 2005-02-10 Eamex Co Flexible element and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304027A (en) * 2003-03-31 2004-10-28 Kyocera Corp Piezoelectric actuator, ink jet recording head, method for adjusting piezoelectric characteristic and method for adjusting ink discharge
JP2005039995A (en) * 2003-06-26 2005-02-10 Eamex Co Flexible element and use thereof

Similar Documents

Publication Publication Date Title
CN101981718B (en) Piezoelectric thin film, method for manufacturing the same, angular velocity sensor, method for measuring angular velocity by the angular velocity sensor, piezoelectric element, and method for generating electricity
US7530676B2 (en) Piezoelectric element, inkjet head, angular velocity sensor, methods for manufacturing them and inkjet recording device
US20060146097A1 (en) Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus
JP2000180250A (en) Mass sensor and mass detection method
JP2005203725A (en) Piezoelectric element, fabrication method therefor, and ink jet head, ink jet recording apparatus and angular velocity sensor including the same
JP2021515231A (en) Mechanical stress sensor and manufacturing method
JPH0330377A (en) Electric transducer device and manufacture thereof
CN104395087B (en) Piezoelectric device, piezo-activator, hard disk drive, ink-jet printer device and piezoelectric transducer
JP6049895B2 (en) Magnetoelectric sensor and method for manufacturing the sensor
JP2001318041A (en) Piezoelectric/electrostrictive film type element
CN102844901A (en) Piezoelectric membrane, inkjet head, method using an inkjet head to form images, angular-velocity sensor, method using an angular-velocity sensor to measure angular velocity, piezoelectric generation element, and electricity-generation method using piezoelectric generation element
JP6690193B2 (en) Piezoelectric layer, piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer device
CN102859736B (en) Piezoelectric film, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for determining angular velocity using angular velocity sensor, piezoelectric power generating element, and power generation method using pie
US6555886B1 (en) Device having two perovskite crystalline layers that shows hysteresis and piezoelectric behavior
JP3894112B2 (en) Piezoelectric / electrostrictive membrane element
JPH10257785A (en) Actuator with sensor function
US6171420B1 (en) Manufacturing process of functional film element
JPH10260090A (en) Strain sensor for membrane structure
JPH10253314A (en) Distortion sensor using piezoelectric crystal film by hydrothermal synthesis method
JP3106627B2 (en) Piezoelectric actuator and method of manufacturing the same
JP2007010361A (en) Voltage drive element
JP3198701B2 (en) Method for manufacturing dielectric crystal film
JP3106639B2 (en) Piezoelectric element and method of manufacturing the same
JPH11108951A (en) Piezoelectric element
JP2002362973A (en) Piezoelectric ceramic composition for piezoelectric vibratory gyroscope, and piezoelectric vibratory gyroscope