JP3894112B2 - Piezoelectric / electrostrictive membrane element - Google Patents

Piezoelectric / electrostrictive membrane element Download PDF

Info

Publication number
JP3894112B2
JP3894112B2 JP2002351694A JP2002351694A JP3894112B2 JP 3894112 B2 JP3894112 B2 JP 3894112B2 JP 2002351694 A JP2002351694 A JP 2002351694A JP 2002351694 A JP2002351694 A JP 2002351694A JP 3894112 B2 JP3894112 B2 JP 3894112B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrostrictive film
ceramic substrate
bonding layer
electrostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002351694A
Other languages
Japanese (ja)
Other versions
JP2004186436A (en
Inventor
伸夫 高橋
浩文 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002351694A priority Critical patent/JP3894112B2/en
Publication of JP2004186436A publication Critical patent/JP2004186436A/en
Application granted granted Critical
Publication of JP3894112B2 publication Critical patent/JP3894112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電/電歪膜型素子に係り、中でも屈曲変位を利用するアクチュエータや、流体特性や音圧、微小重量、加速度等のセンサとして、例えばマイクロホンや粘度センサに用いられる圧電/電歪膜型素子に関する。
【0002】
【従来の技術】
圧電/電歪膜型素子は、従来よりアクチュエータや各種センサとして用いられている。出願人は、特許文献1のように、厚肉部を周縁部に持つ薄肉なダイヤフラム部を有するセラミックスからなる基板に、下部電極及び補助電極と、圧電/電歪膜と、上部電極とを順次積層させた圧電/電歪膜型素子であって、下部電極と補助電極間に、絶縁体からなる結合層を設けることにより、セラミックス基板と圧電/電歪膜とを完全結合状態とした圧電/電歪膜型素子を開発している。
【0003】
【特許文献1】
特開2002−004135号公報
【0004】
【発明が解決しようとする課題】
この圧電/電歪膜素子の製造過程では、結合層の結合状態を完全結合とするために、焼成条件を厳密に制御する必要があった。そして、微調整の手間をかけることにより、初期の電気的定数を素子個体間でバラツキが無く、電気的定数の経時変化が生じないようにしていた。
【0005】
【課題を解決するための手段】
そこで、より結合層の結合状態を完全結合とするために、請求項1に係る本発明は、厚肉部を周縁部に持つ薄肉ダイヤフラム部を有するセラミックスからなる基板に、下部電極及び補助電極と、圧電/電歪膜と、上部電極とを順次積層させるとともに、下部電極と補助電極間に、(Bi0.5Na0.5)TiOまたはこれを主成分とする材料で形成される結合層を設けた圧電/電歪膜型素子であって、
前記セラミックス基板を、ジルコニアを主成分とする材料で形成すると共に、前記結合層を、(Bi 0.5 Na 0.5 )TiO またはこれを主成分とする材料に、SiO 、Y 、アルカリ土類金属酸化物又は希土類金属酸化物から選ばれた少なくとも1種類を添加してなる材料で形成する一方、
前記セラミックス基板と前記結合層との間に、前記セラミックス基板に含まれる成分及び/または前記結合層に含まれる成分の一部が偏在する偏在層を、1〜5μmの厚みで形成したことを特徴とする圧電/電歪膜型素子である。
これにより、基板材料及び/又は結合層材料との反応性が高まり、結合状態がより安定的に完全結合が得られた。
ここで、セラミックス基板に含まれる成分及び/または結合層に含まれる成分の一部が偏在する偏在層とは、セラミックス基板に含まれる成分の一部が、結合層に偏在している場合、結合層に含まれる成分の一部が、セラミックス基板に偏在している場合、及び前記2つの場合が連続的に若しくは接触して形成されている場合をいう。
また、偏在層の厚みは、1μm以上、5μm以下であることが好ましい。1μm未満では、セラミックス基板と結合層とで完全な結合状態が得られず、結果として素子全体の耐久性が低いものとなってしまい、5μmを越えると、結合層の上部にある圧電膜に悪影響を及ぼし、時間経過により初期の素子性能が得られなくなるからである。
【0006】
また、本発明では、SiOはガラス成分を形成して結合力が高くなり、添加量も微量であるため、セラミックス基板や圧電/電歪膜に悪影響を及ぼすことはない。一方、基板材料がジルコニアを主成分とするので、ジルコニアに固溶しやすいY、アルカリ土類金属酸化物又は希土類金属酸化物の成分は結合力を高めることができる。なお、アルカリ土類金属酸化物は、基板材料がアルミナの場合、アルミナと反応してスピネル形化合物を形成して結合力を高める。
なお、SiO、Y、アルカリ土類金属酸化物又は希土類金属酸化物の各添加量は、酸化物換算で0.05wt%から0.3wt%であることが好ましい。0.05wt%より小さい場合は、結合力を向上させる効果が無く、0.3wt%より多い場合は、基板材料や圧電電歪膜材料に変質を引き起こし、素子特性の変化や素子の強度を低下させるからである。
【0007】
【発明の実施の形態】
図1には、本発明の圧電/電歪膜型素子の実施形態が、(a)平面と(b)A−A線での縦断面と(c)結合層部分の拡大図とで示されている。かかる圧電/電歪膜型素子は、薄肉のダイヤフラム部3と厚肉部2からなるセラミックス基板1の上に、下部電極4及び補助電極8と、圧電/電歪膜5と、上部電極6とが、通常の膜形成法によって順次積層されてなる一体構造で形成されている。下部電極4と補助電極8との間は、絶縁体からなる結合層7により、圧電/電歪膜5とセラミックス基板1とが完全結合状態で結合され、セラミックス基板1と結合層7との間には、セラミックス基板1に含まれる成分及び/または結合層7に含まれる成分の一部が偏在する偏在層7Aが、1〜5μmの厚みで形成されている。
【0008】
セラミックス基板1の材質としては、耐熱性、化学的安定性、絶縁性を有する材質が好ましい。これは、後述するように下部電極4、圧電/電歪膜5、上部電極6を一体化する際に、熱処理する場合があること、センサ素子としての圧電/電歪膜型素子が液体の特性をセンシングする場合、その液体が導電性や、腐食性を有する場合があるためである。
かかる観点から使用できるセラミックスとしては、安定化された酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、ムライト、窒化アルミニウム、窒化珪素及びガラス等を例示することができる。これらの内、安定化された酸化ジルコニウムは薄肉ダイヤフラム部3を薄く形成した場合にも機械的強度を高く保てること、靭性に優れることなどから、好適に使用することができる。
【0009】
セラミックス基板1の薄肉ダイヤフラム部3の厚さとしては、圧電/電歪膜の振動を妨げないために、一般に50μm以下、好ましくは30μm以下、さらに好ましくは15μm以下とされる。また、薄肉ダイヤフラム部の表面形状としては、長方形、正方形、三角形、楕円形、真円形等いかなる形状もとりうるが、励起される共振モードを単純化させる必要のあるセンサ素子の応用では、長方形や真円形が必要に応じて選択される。
【0010】
下部電極4は、セラミックス基板1の一方の端から、薄肉ダイヤフラム部3上の、圧電/電歪膜5が形成されるべき大きさと同等に形成されているが、より小さい又はより大きいどちらであっても所定の大きさで形成されればよい。下部電極4の一方の端は、リード用端子として用いられる。一方、補助電極8は、セラミックス基板1の下部電極4とは反対側の端部から、薄肉ダイヤフラム3の上となる所定の位置まで延設されている。補助電極8の一方の端部は、リード用端子として用いられる。
【0011】
下部電極4及び補助電極8は、異なる材質でも、同一の材質でもよく、セラミックス基板1と圧電/電歪膜5とのいずれとも接合性のよい導電性材料が用いられる。具体的には、白金、パラジウム、ロジウム、銀、あるいはこれらの合金を主成分とする電極材料が好適に用いられ、特に、圧電/電歪膜を形成する際に焼結のための熱処理が行われる場合には、白金、及びこれを主成分とする合金が好適に用いられる。
【0012】
下部電極4と補助電極8の形成には、公知の各種の膜形成手法が用いられる。具体的には、イオンビーム、スパッタリング、真空蒸着、CVD、イオンプレーティング、メッキ等の薄膜形成手法や、スクリーン印刷、スプレー、ディッピング等の厚膜形成手法が適宜選択されるが、その中でも特にスパッタリング法及びスクリーン印刷法が好適に選択される。
【0013】
そして、圧電/電歪膜5の形成に先立ち、下部電極4と補助電極8間で、完全結合状態とするための絶縁体からなる結合層7が形成される。絶縁体からなる結合層7としては、(Bi0.5Na0.5)TiO3またはこれを主成分とする材料、例えば(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0.08≦x≦0.5)などに、SiO2、Y2、アルカリ土類金属酸化物又は希土類金属酸化物から選ばれた少なくとも 1種類が添加されてなる材料が好適である。これらの系の場合は、NaやKが遊離し、膜の絶縁性を損なわないようにするために、NaやKを化学量論組成よりも減じた組成とすることが好ましい。たとえばモル比で、1.01≦Bi/Na≦1.08であり、且つ0.92≦(Bi+Na)/Ti≦0.98の範囲にあることが好ましい。また、この範囲にあることにより、圧電膜の異相の生成を抑制できるとともに、素子の特性発現に最適な粒径とすることができる。
結合層7は、酸化ビスマス 酒石酸水素ナトリウム 酸化チタン、酸化ニオブ酒石酸水素カリウムを原料とし、更に添加物成分の酸化物や炭酸塩等を結合層の所定の組成になるように秤量し、エタノール中で、2φのジルコニア玉石を用い、ボールミルで16時間混合した。得られた泥漿を乾燥後、900℃2時間大気中で仮焼し、さらにエタノール中で、2φのジルコニア玉石を用い、ボールミルで粉砕した。粉砕時間は、粉砕後の粉末の比表面積が5〜10m/gになるよう選択される。ここで、5m/gより小さい場合には、粉末の活性が低いために、ジルコニアとの反応が進まず偏在層が形成されない。10m/gより大きい場合には、活性が高すぎ、粉末同士の凝集が生じるため、偏在層が均一に形成できない。
得られた粉末は、バインダー成分としてポリビニルブチラールやエチルセルロースを用い、溶剤としてテルピネオールやブチルカルビトールを加え、トリロールミルで混練し、印刷用ペーストとされる。
【0014】
さらに、圧電/電歪膜5が、後述の(Bi0.5Na0.5)TiO3またはこれを主成分とする材料、または(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0≦x≦0.06)またはこれを主成分とする材料で構成される場合には、(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0.08≦x≦0.5)を主成分とする材料で構成された結合層7が、圧電/電歪膜5とセラミックス基板1の双方との密着性が高く、熱処理の際の圧電/電歪膜5及びセラミックス基板1への悪影響を抑制できることから、より好適に用いられる。すなわち、結合層7を(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0.08≦x≦0.5)とすることで、圧電/電歪膜5と同様の成分を有することから、圧電/電歪膜5との密着性が高くなる。また、ガラスを用いた場合に生じ易い異種元素の拡散による問題が少なく、KNbO3を多く含むことから、セラミックス基板との反応性が高く強固な結合が可能となる。また、(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0.08≦x≦0.5)は、圧電特性をほとんど示さないので、使用時に下部電極4と補助電極8に生じる電界に対し、振動や変位及び応力を発生しないため、安定した素子特性を得ることができる。
【0015】
これらの結合層7の形成には、通常の厚膜手法が用いられ、特にスタンピング法、スクリーン印刷法、あるいは形成すべき部分の大きさが数十μm〜数100μm程度の場合にはインクジェット法が好適に用いられる。また、結合層7の熱処理が必要な場合には、次の圧電/電歪膜5の形成前に熱処理されてもよいし、圧電/電歪膜5の形成後同時に熱処理されてもよい。
【0016】
圧電/電歪膜5は、下部電極4、補助電極8及び結合層7に跨るようにして、また、下部電極4を覆う大きさで形成されている。圧電/電歪膜の材料としては、圧電/電歪効果を示す材料であればいずれの材料でもよく、このような材料として、ジルコン酸鉛、チタン酸鉛、チタン酸ジルコン酸鉛(PZT)等の鉛系セラミック圧電/電歪材料や、チタン酸バリウム及びこれを主成分とするチタバリ系セラミック強誘電体や、ポリ弗化ビニリデン(PVDF)に代表される高分子圧電体、あるいは(Bi0.5Na0.5)TiO3に代表されるBi系セラミック圧電体、Bi層状セラミックを挙げることができる。もちろん、圧電/電歪特性を改善した、これらの混合物や、固溶体及び、これらに添加物を添加せしめたものが用いられうることは言うまでもない。PZT系圧電体は、圧電特性が高く、高感度検出が可能なセンサの材料として好適に用いられる。また、特に、チタン酸鉛、ジルコン酸鉛、マグネシウムニオブ酸鉛、ニッケルニオブ酸鉛から選ばれた少なくとも1種以上を主成分とする材料で構成されることが、セラミックス基板を構成する材料との反応性が低く、熱処理中の成分の偏析が起き難く、組成を保つための処理が良好に行われ得、目的とする組成、結晶構造が得られやすいことから、より好適に用いられる。
【0017】
また、下部電極4及び補助電極8に白金または白金を主成分とする合金が用いられる場合には、これらとの接合性がより高く、素子の特性ばらつきを少なくし、高い信頼性が得られることから、圧電/電歪材料には(Bi0.5Na0.5)TiO3またはこれを主成分とする材料が好適に用いられる。これらの中でも、特に、(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0≦x≦0.06)またはこれを主成分とする材料が、比較的高い圧電特性を有することから、より好適に用いられる。
【0018】
このような圧電/電歪材料は、圧電/電歪膜5として、下部電極4と補助電極8と同様に公知の各種膜形成法により形成される。中でも、低コストの観点からスクリーン印刷が好適に用いられる。
【0019】
これにより形成された圧電/電歪膜5は必要に応じて熱処理され、下部電極4、補助電極8及び結合層7と、一体化される。本発明にあっては、素子の特性ばらつきを抑え、信頼性を高くするために、圧電/電歪膜5と下部電極4及び補助電極8、結合層7の接合性を強固にする必要があるため、(Bi0.5Na0.5)TiO3またはこれを主成分とする材料、特に、(1−x)(Bi0.5Na0.5)TiO3−xKNbO3(xはモル分率で0≦x≦0.06)またはこれを主成分とする材料を用い、900℃から1400℃好ましくは1000℃から1300℃の温度で熱処理されることが好ましい。PZT系材料を用いた場合にも同様である。この際、高温時に圧電/電歪膜5が不安定にならないように、圧電/電歪材料の蒸発源とともに雰囲気制御を行いながら熱処理することが好ましい。
そして、この熱処理後に、セラミックス基板1と結合層7との間に、セラミックス基板1に含まれる成分及び/または結合層7に含まれる成分の一部が偏在する偏在層7Aを、図1(c)のように1〜5μmの厚みで形成することができる。
【0020】
さらに、このようにして形成された圧電/電歪膜5の上に、上部電極6が、圧電/電歪膜5から補助電極8にまで跨って連続的に形成されている。なお、上部電極6の大きさは、下部電極4及び補助電極8より大きい大きさであってもよいし、同じ大きさでも、又はより小さくてもよい。
この上部電極6の材質としては、圧電/電歪膜5との接合性の高い導電性材料が用いられ、下部電極4及び補助電極8と同様の膜形成法により形成される。
さらに、上部電極6は、膜形成後必要に応じて熱処理され、圧電/電歪膜5及び補助電極8と接合され、一体構造とされる。このような熱処理がかならずしも必要でないことは下部電極4と同様である。
【0021】
なお、下部電極4、結合層7、圧電/電歪膜5、上部電極6が熱処理により接合される場合には、それぞれを形成の都度熱処理してもよいし、それぞれを順次膜形成後、同時に熱処理してもよい。熱処理する際、良好な接合性や構成元素の拡散による変質を抑制するために、熱処理温度が適切に選ばれるのは言うまでもない。また、焼成したセラミックス基板1に、下部電極4等を積層しているが、焼成前のセラミックス基板1に、下部電極4及び結合層7等を積層して焼成することも可能である。これにより、セラミックス基板に含まれる成分の一部が、結合層に偏在している場合と、結合層に含まれる成分の一部が、セラミックス基板に偏在している場合とが連続的に若しくは接触して偏在層を形成することができる。
さらに、図1では空洞部10に貫通孔9を形成しているが、素子が流体に接触する空洞部10以下の構造は、蓋部の無い単純なキャビティ構造等、どのような構造でもよく、限定しない。
【0022】
【実施例】
素子に対し、オフセット+5V、10Vp−p、周波数1kHzの正弦波を、温度40℃、湿度85%の環境条件で印加し、240時間後の故障率を測定した。
【0023】
【表1】

Figure 0003894112
【0024】
基板材料がジルコニアを主成分とし、結合層添加物がSiO2の場合は、添加量を調整し偏在層の厚みが1μm以上、5μm以下であると、300時間後の素子の故障率を低減することできる。
また、基板材料がジルコニアを主成分とし、結合層添加物がY、アルカリ土類金属酸化物であるCaO、希土類金属酸化物であるLaの各場合も、添加量0.1wt%で偏在層の厚みが2μmであると、300時間後の素子の故障率は充分に低減されている。
更に、SiO2とY2とを添加量0.1wt%ずつ混合した結合層添加物であっても、300時間後の素子の故障率は充分に低減されている。
また、SiO2、Y2、アルカリ土類金属酸化物又は希土類金属酸化物の各添加量がは、酸化物換算で0.05wt%から0.3wt%であることが好ましい。0.05wt%より小さい場合は、結合力を向上させる効果が無く、0.3wt%より多い場合、基板材料や圧電電歪幕材料に変質を引き起こし、素子特性の変化や素子の強度を低下させる。
【0025】
【発明の効果】
本発明による圧電/電歪膜型素子にあっては、基板材料と結合層材料との反応性が高まり、セラミックス基板と圧電/電歪膜との結合状態がより安定的な完全結合となる。よって、素子としての耐久性が高まり、振動のばらつきや経時変化が無く、振動における電気的定数の検知により流体特性や液体/気体を判別する素子、あるいは音圧や微小重量、加速度等の測定素子、さらにはアクチュエータ素子として、好適な素子が継続的に得られることとなる。
【図面の簡単な説明】
【図1】本発明のセンサ用圧電/電歪膜型素子の実施形態を示す説明図である。
【符号の説明】
1・・セラミックス基板、2・・厚肉部、3・・薄肉ダイヤフラム部、4・・下部電極、5・・圧電/電歪膜、6・・上部電極、7・・結合層、7A・・偏在層、8・・補助電極、9・・貫通孔、10・・空洞部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric / electrostrictive film type element, and in particular, an actuator that utilizes bending displacement, and a piezoelectric / electrostrictive used in, for example, a microphone or a viscosity sensor as a sensor for fluid characteristics, sound pressure, minute weight, acceleration, etc. The present invention relates to a membrane element.
[0002]
[Prior art]
Piezoelectric / electrostrictive membrane elements have been conventionally used as actuators and various sensors. The applicant, as in Patent Document 1, sequentially forms a lower electrode, an auxiliary electrode, a piezoelectric / electrostrictive film, and an upper electrode on a substrate made of ceramics having a thin diaphragm portion with a thick portion at the periphery. A laminated piezoelectric / electrostrictive film type element, in which a bonding layer made of an insulator is provided between a lower electrode and an auxiliary electrode so that the ceramic substrate and the piezoelectric / electrostrictive film are in a completely coupled state. We are developing electrostrictive membrane elements.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-004135
[Problems to be solved by the invention]
In the process of manufacturing the piezoelectric / electrostrictive film element, it is necessary to strictly control the firing conditions in order to make the bonding state of the bonding layer completely bond. Further, by taking the effort of fine adjustment, there is no variation in the initial electrical constant among the individual elements so that the electrical constant does not change with time.
[0005]
[Means for Solving the Problems]
Therefore, in order to make the bonding state of the bonding layer more complete, the present invention according to claim 1 is directed to a substrate made of ceramics having a thin diaphragm portion having a thick portion at a peripheral portion, a lower electrode and an auxiliary electrode. In addition, the piezoelectric / electrostrictive film and the upper electrode are sequentially laminated, and a bond formed of (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component between the lower electrode and the auxiliary electrode. A piezoelectric / electrostrictive film type element provided with a layer,
The ceramic substrate is formed of a material containing zirconia as a main component, and the bonding layer is made of (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component with SiO 2 , Y 2 O. 3. While formed of a material formed by adding at least one selected from alkaline earth metal oxides or rare earth metal oxides,
An uneven distribution layer in which a component contained in the ceramic substrate and / or a part of a component contained in the bonding layer is unevenly distributed is formed between the ceramic substrate and the bonding layer with a thickness of 1 to 5 μm. This is a piezoelectric / electrostrictive film type element.
As a result, the reactivity with the substrate material and / or the bonding layer material was increased, and a complete bond was obtained in a more stable bond state.
Here, the uneven distribution layer in which a component contained in the ceramic substrate and / or a part of the component contained in the bonding layer is unevenly distributed means that when a part of the component included in the ceramic substrate is unevenly distributed in the bonding layer, This refers to the case where a part of the components contained in the layer is unevenly distributed on the ceramic substrate and the case where the two cases are formed continuously or in contact with each other.
Further, the thickness of the uneven distribution layer is preferably 1 μm or more and 5 μm or less. If the thickness is less than 1 μm, a completely bonded state cannot be obtained between the ceramic substrate and the bonding layer. As a result, the durability of the entire device is low. If the thickness exceeds 5 μm, the piezoelectric film above the bonding layer is adversely affected. This is because the initial device performance cannot be obtained over time.
[0006]
Further, in the present invention, SiO 2 forms a glass component to increase the bonding force, and the addition amount is very small, so that the ceramic substrate and the piezoelectric / electrostrictive film are not adversely affected. On the other hand, since the substrate material is mainly composed of zirconia, components of Y 2 O 3 , alkaline earth metal oxide, or rare earth metal oxide, which are easily dissolved in zirconia, can increase the binding force. Note that, when the substrate material is alumina, the alkaline earth metal oxide reacts with alumina to form a spinel compound, thereby increasing the bonding strength.
Incidentally, SiO 2, Y 2 O 3 , each addition amount of the alkaline earth metal oxide or rare earth metal oxide is preferably 0.3 wt% from 0.05 wt% in terms of oxide. If it is less than 0.05 wt%, there is no effect of improving the bonding force, and if it is more than 0.3 wt%, the substrate material and the piezoelectric electrostrictive film material are deteriorated, and the device characteristics change and the device strength decreases. It is because it makes it.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a piezoelectric / electrostrictive film type element of the present invention in (a) a plane, (b) a longitudinal section taken along line AA, and (c) an enlarged view of a coupling layer portion. ing. Such a piezoelectric / electrostrictive film type element has a lower electrode 4 and an auxiliary electrode 8, a piezoelectric / electrostrictive film 5, and an upper electrode 6 on a ceramic substrate 1 composed of a thin diaphragm portion 3 and a thick portion 2. However, it is formed in an integral structure that is sequentially laminated by a normal film forming method. Between the lower electrode 4 and the auxiliary electrode 8, the piezoelectric / electrostrictive film 5 and the ceramic substrate 1 are coupled in a completely coupled state by the coupling layer 7 made of an insulator, and the ceramic substrate 1 and the coupling layer 7 are coupled to each other. Is formed with a thickness of 1 to 5 μm in an unevenly distributed layer 7A in which a component included in the ceramic substrate 1 and / or a part of a component included in the bonding layer 7 is unevenly distributed.
[0008]
The material of the ceramic substrate 1 is preferably a material having heat resistance, chemical stability, and insulation. This is because, as will be described later, when the lower electrode 4, the piezoelectric / electrostrictive film 5 and the upper electrode 6 are integrated, heat treatment may be performed, and the piezoelectric / electrostrictive film type element as the sensor element has liquid characteristics. This is because the liquid may be conductive or corrosive when sensing.
Examples of ceramics that can be used from this viewpoint include stabilized zirconium oxide, aluminum oxide, magnesium oxide, mullite, aluminum nitride, silicon nitride, and glass. Among these, stabilized zirconium oxide can be preferably used because the mechanical strength can be kept high and the toughness is excellent even when the thin diaphragm portion 3 is formed thin.
[0009]
The thickness of the thin diaphragm portion 3 of the ceramic substrate 1 is generally 50 μm or less, preferably 30 μm or less, and more preferably 15 μm or less so as not to hinder the vibration of the piezoelectric / electrostrictive film. In addition, the surface shape of the thin diaphragm portion may be any shape such as a rectangle, square, triangle, ellipse, or perfect circle, but in the application of a sensor element that needs to simplify the excited resonance mode, it may be a rectangle or true. A circle is selected as needed.
[0010]
The lower electrode 4 is formed from one end of the ceramic substrate 1 to be equal to the size on which the piezoelectric / electrostrictive film 5 is to be formed on the thin diaphragm portion 3, but is smaller or larger. However, it may be formed in a predetermined size. One end of the lower electrode 4 is used as a lead terminal. On the other hand, the auxiliary electrode 8 extends from the end of the ceramic substrate 1 opposite to the lower electrode 4 to a predetermined position on the thin diaphragm 3. One end of the auxiliary electrode 8 is used as a lead terminal.
[0011]
The lower electrode 4 and the auxiliary electrode 8 may be made of different materials or the same material, and a conductive material having good bonding property to both the ceramic substrate 1 and the piezoelectric / electrostrictive film 5 is used. Specifically, an electrode material mainly composed of platinum, palladium, rhodium, silver, or an alloy thereof is preferably used. In particular, when forming a piezoelectric / electrostrictive film, a heat treatment for sintering is performed. In this case, platinum and an alloy containing this as a main component are preferably used.
[0012]
Various known film forming techniques are used to form the lower electrode 4 and the auxiliary electrode 8. Specifically, thin film formation methods such as ion beam, sputtering, vacuum deposition, CVD, ion plating, plating, and thick film formation methods such as screen printing, spraying, and dipping are appropriately selected. A method and a screen printing method are preferably selected.
[0013]
Prior to the formation of the piezoelectric / electrostrictive film 5, a coupling layer 7 made of an insulator for forming a completely coupled state is formed between the lower electrode 4 and the auxiliary electrode 8. As the bonding layer 7 made of an insulator, (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component, for example, (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is a mole fraction) A material obtained by adding at least one selected from SiO 2 , Y 2 O 3 , alkaline earth metal oxides, or rare earth metal oxides to 0.08 ≦ x ≦ 0.5) is preferable. In the case of these systems, it is preferable that Na or K is less than the stoichiometric composition so that Na and K are liberated and the insulating properties of the film are not impaired. For example, it is preferable that the molar ratio is 1.01 ≦ Bi / Na ≦ 1.08 and 0.92 ≦ (Bi + Na) /Ti≦0.98. Moreover, by being in this range, the generation of a heterogeneous phase of the piezoelectric film can be suppressed, and the particle diameter can be optimized for the expression of the element characteristics.
The bonding layer 7 is made of bismuth oxide sodium hydrogen tartrate, titanium oxide, potassium niobium hydrogen tartrate, and further weighed the oxides and carbonates of the additive components to a predetermined composition of the bonding layer, and in ethanol. , 2φ zirconia boulders were used and mixed for 16 hours in a ball mill. The obtained slurry was dried, calcined in the atmosphere at 900 ° C. for 2 hours, and further pulverized in ethanol using 2φ zirconia boulders. The pulverization time is selected so that the specific surface area of the pulverized powder is 5 to 10 m 2 / g. Here, when it is smaller than 5 m 2 / g, the activity of the powder is low, and therefore the reaction with zirconia does not proceed and an uneven distribution layer is not formed. When it is larger than 10 m 2 / g, the activity is too high and the powders are aggregated, so that the uneven distribution layer cannot be formed uniformly.
The obtained powder uses polyvinyl butyral or ethyl cellulose as a binder component, terpineol or butyl carbitol as a solvent, and is kneaded with a tri-roll mill to form a printing paste.
[0014]
Further, the piezoelectric / electrostrictive film 5 is made of (Bi 0.5 Na 0.5 ) TiO 3 described later or a material containing this as a main component, or (1-x) (Bi 0.5 Na 0.5 ) TiO 3 -xKNbO 3 (x is mol (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is a molar fraction of 0.08 ≦ 0.06) or a material mainly composed of this. The bonding layer 7 made of a material having x ≦ 0.5) as a main component has high adhesion between the piezoelectric / electrostrictive film 5 and the ceramic substrate 1, and the piezoelectric / electrostrictive film 5 and ceramics during the heat treatment. Since the bad influence to the board | substrate 1 can be suppressed, it uses more suitably. That is, the same component as the piezoelectric / electrostrictive film 5 is obtained by setting the bonding layer 7 to (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is 0.08 ≦ x ≦ 0.5 in terms of molar fraction). Therefore, the adhesiveness with the piezoelectric / electrostrictive film 5 is enhanced. In addition, there are few problems due to the diffusion of different elements that are likely to occur when glass is used, and since KNbO 3 is contained in a large amount, it has high reactivity with the ceramic substrate and enables strong bonding. In addition, (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is 0.08 ≦ x ≦ 0.5 in terms of mole fraction) shows almost no piezoelectric properties, and therefore the lower electrode 4 and the auxiliary electrode 8 are not used during use. Therefore, stable element characteristics can be obtained because no vibration, displacement, or stress is generated with respect to the generated electric field.
[0015]
A normal thick film method is used to form these bonding layers 7, and in particular, a stamping method, a screen printing method, or an inkjet method when the size of a portion to be formed is about several tens to several hundreds of μm. Preferably used. Further, when the bonding layer 7 needs to be heat-treated, it may be heat-treated before the next piezoelectric / electrostrictive film 5 is formed, or may be simultaneously heat-treated after the piezoelectric / electrostrictive film 5 is formed.
[0016]
The piezoelectric / electrostrictive film 5 is formed so as to straddle the lower electrode 4, the auxiliary electrode 8, and the coupling layer 7 and to cover the lower electrode 4. The material of the piezoelectric / electrostrictive film may be any material that exhibits a piezoelectric / electrostrictive effect, such as lead zirconate, lead titanate, lead zirconate titanate (PZT), etc. Lead-based ceramic piezoelectric / electrostrictive materials, barium titanate and titavari-based ceramic ferroelectrics based on it, polymer piezoelectric materials represented by polyvinylidene fluoride (PVDF), or (Bi 0.5 Na 0.5 ) Bi ceramic ceramics represented by TiO 3 and Bi layered ceramics can be mentioned. Of course, it is needless to say that a mixture, a solid solution, or a material obtained by adding an additive to these, which has improved piezoelectric / electrostrictive characteristics, can be used. The PZT-based piezoelectric body is suitably used as a sensor material having high piezoelectric characteristics and capable of high sensitivity detection. In particular, the material comprising at least one selected from lead titanate, lead zirconate, lead magnesium niobate and lead nickel niobate is a material constituting the ceramic substrate. Since the reactivity is low, segregation of components during the heat treatment hardly occurs, the treatment for maintaining the composition can be performed satisfactorily, and the intended composition and crystal structure are easily obtained, so that the composition is more preferably used.
[0017]
Further, when platinum or an alloy containing platinum as a main component is used for the lower electrode 4 and the auxiliary electrode 8, the bondability with these is higher, the characteristic variation of the element is reduced, and high reliability is obtained. Therefore, for the piezoelectric / electrostrictive material, (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component is preferably used. Among these, in particular, (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is a molar fraction, 0 ≦ x ≦ 0.06) or a material having this as a main component has relatively high piezoelectric characteristics. Since it has, it is used more suitably.
[0018]
Such a piezoelectric / electrostrictive material is formed as the piezoelectric / electrostrictive film 5 by various known film forming methods in the same manner as the lower electrode 4 and the auxiliary electrode 8. Among these, screen printing is preferably used from the viewpoint of low cost.
[0019]
The piezoelectric / electrostrictive film 5 thus formed is heat-treated as necessary, and integrated with the lower electrode 4, the auxiliary electrode 8 and the coupling layer 7. In the present invention, it is necessary to strengthen the bondability between the piezoelectric / electrostrictive film 5, the lower electrode 4, the auxiliary electrode 8, and the coupling layer 7 in order to suppress variations in element characteristics and increase reliability. Therefore, (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component, in particular, (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is a molar fraction, 0 ≦ x ≦ 0.06) Alternatively, heat treatment is preferably performed using a material mainly composed of this at a temperature of 900 ° C. to 1400 ° C., preferably 1000 ° C. to 1300 ° C. The same applies when using PZT-based materials. At this time, it is preferable to perform heat treatment while controlling the atmosphere together with the evaporation source of the piezoelectric / electrostrictive material so that the piezoelectric / electrostrictive film 5 does not become unstable at a high temperature.
Then, after this heat treatment, an unevenly distributed layer 7A in which a component contained in the ceramic substrate 1 and / or a part of the component contained in the bonded layer 7 is unevenly distributed between the ceramic substrate 1 and the bonded layer 7 is shown in FIG. ) To a thickness of 1 to 5 μm.
[0020]
Further, the upper electrode 6 is continuously formed on the piezoelectric / electrostrictive film 5 thus formed so as to extend from the piezoelectric / electrostrictive film 5 to the auxiliary electrode 8. Note that the size of the upper electrode 6 may be larger than the lower electrode 4 and the auxiliary electrode 8, or may be the same size or smaller.
As the material of the upper electrode 6, a conductive material having high bondability with the piezoelectric / electrostrictive film 5 is used, and the upper electrode 6 is formed by the same film forming method as the lower electrode 4 and the auxiliary electrode 8.
Further, the upper electrode 6 is heat-treated as necessary after the film is formed, and is joined to the piezoelectric / electrostrictive film 5 and the auxiliary electrode 8 to form an integral structure. It is the same as that of the lower electrode 4 that such a heat treatment is not always necessary.
[0021]
When the lower electrode 4, the bonding layer 7, the piezoelectric / electrostrictive film 5, and the upper electrode 6 are bonded by heat treatment, they may be heat-treated each time they are formed, You may heat-process. Needless to say, the heat treatment temperature is appropriately selected in order to suppress the deterioration due to good bondability and diffusion of constituent elements during the heat treatment. Moreover, although the lower electrode 4 etc. are laminated | stacked on the baked ceramic substrate 1, it is also possible to laminate | stack and bake the lower electrode 4, the bonding layer 7, etc. on the ceramic substrate 1 before baking. As a result, a case where a part of the components contained in the ceramic substrate is unevenly distributed in the bonding layer and a case where a part of the components contained in the bonding layer are unevenly distributed in the ceramic substrate are continuously or contacted. Thus, an uneven distribution layer can be formed.
Further, in FIG. 1, the through hole 9 is formed in the cavity 10, but the structure below the cavity 10 where the element contacts the fluid may be any structure such as a simple cavity structure without a lid, Not limited.
[0022]
【Example】
A sine wave with an offset of +5 V, 10 Vp-p, and a frequency of 1 kHz was applied to the device under environmental conditions of a temperature of 40 ° C. and a humidity of 85%, and the failure rate after 240 hours was measured.
[0023]
[Table 1]
Figure 0003894112
[0024]
When the substrate material is zirconia as the main component and the bonding layer additive is SiO 2 , the failure rate of the device after 300 hours is reduced when the addition amount is adjusted and the thickness of the uneven distribution layer is 1 μm or more and 5 μm or less. I can.
In addition, when the substrate material is mainly composed of zirconia, the bonding layer additive is Y 2 O 3 , CaO which is an alkaline earth metal oxide, and La 2 O 3 which is a rare earth metal oxide, the addition amount is also 0. When the thickness of the uneven distribution layer is 2 μm at 1 wt%, the failure rate of the element after 300 hours is sufficiently reduced.
Furthermore, even in the case of a tie layer additive in which SiO 2 and Y 2 O 3 are mixed in increments of 0.1 wt%, the failure rate of the device after 300 hours is sufficiently reduced.
Further, SiO 2, Y 2 O 3 , is in the amount of the alkaline earth metal oxide or rare earth metal oxide is preferably 0.3 wt% from 0.05 wt% in terms of oxide. If it is less than 0.05 wt%, there is no effect of improving the bonding force, and if it is more than 0.3 wt%, the substrate material or the piezoelectric electrostrictive curtain material is deteriorated, and the device characteristics change or the device strength is reduced. .
[0025]
【The invention's effect】
In the piezoelectric / electrostrictive film type element according to the present invention, the reactivity between the substrate material and the bonding layer material is increased, and the bonding state between the ceramic substrate and the piezoelectric / electrostrictive film becomes a more stable complete bond. Therefore, the durability as an element is increased, there is no variation in vibration or change with time, and an element for discriminating fluid characteristics and liquid / gas by detecting an electrical constant in vibration, or a measuring element for sound pressure, minute weight, acceleration, etc. In addition, suitable elements can be continuously obtained as actuator elements.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a piezoelectric / electrostrictive membrane element for a sensor according to the present invention.
[Explanation of symbols]
1 .... Ceramic substrate 2 .... Thick part 3 .... Thin diaphragm part 4 .... Lower electrode 5 .... Piezoelectric / electrostrictive film 6 .... Upper electrode 7 .... Binding layer 7A ... Unevenly distributed layer, 8 ... auxiliary electrode, 9 ... through hole, 10 ... cavity.

Claims (1)

厚肉部を周縁部に持つ薄肉ダイヤフラム部を有するセラミックスからなる基板に、下部電極及び補助電極と、圧電/電歪膜と、上部電極とを順次積層させるとともに、下部電極と補助電極間に、(Bi0.5Na0.5)TiOまたはこれを主成分とする材料で形成される結合層を設けた圧電/電歪膜型素子であって、
前記セラミックス基板を、ジルコニアを主成分とする材料で形成すると共に、前記結合層を、(Bi 0.5 Na 0.5 )TiO またはこれを主成分とする材料に、SiO 、Y 、アルカリ土類金属酸化物又は希土類金属酸化物から選ばれた少なくとも1種類を添加してなる材料で形成する一方、
前記セラミックス基板と前記結合層との間に、前記セラミックス基板に含まれる成分及び/または前記結合層に含まれる成分の一部が偏在する偏在層を、1〜5μmの厚みで形成したことを特徴とする圧電/電歪膜型素子。
A lower electrode and an auxiliary electrode, a piezoelectric / electrostrictive film, and an upper electrode are sequentially laminated on a substrate made of a ceramic having a thin diaphragm portion having a thick portion at the peripheral portion, and between the lower electrode and the auxiliary electrode, A piezoelectric / electrostrictive film type element provided with a bonding layer formed of (Bi 0.5 Na 0.5 ) TiO 3 or a material mainly composed thereof,
The ceramic substrate is formed of a material containing zirconia as a main component, and the bonding layer is made of (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component with SiO 2 , Y 2 O. 3. While formed of a material formed by adding at least one selected from alkaline earth metal oxides or rare earth metal oxides,
An uneven distribution layer in which a component contained in the ceramic substrate and / or a part of a component contained in the bonding layer is unevenly distributed is formed between the ceramic substrate and the bonding layer with a thickness of 1 to 5 μm. A piezoelectric / electrostrictive film type element.
JP2002351694A 2002-12-03 2002-12-03 Piezoelectric / electrostrictive membrane element Expired - Fee Related JP3894112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351694A JP3894112B2 (en) 2002-12-03 2002-12-03 Piezoelectric / electrostrictive membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351694A JP3894112B2 (en) 2002-12-03 2002-12-03 Piezoelectric / electrostrictive membrane element

Publications (2)

Publication Number Publication Date
JP2004186436A JP2004186436A (en) 2004-07-02
JP3894112B2 true JP3894112B2 (en) 2007-03-14

Family

ID=32753535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351694A Expired - Fee Related JP3894112B2 (en) 2002-12-03 2002-12-03 Piezoelectric / electrostrictive membrane element

Country Status (1)

Country Link
JP (1) JP3894112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306472B1 (en) * 2009-12-16 2013-09-09 울산대학교 산학협력단 Lead-free piezoelectric ceramic composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001063A1 (en) * 2005-06-29 2007-01-04 Ngk Insulators, Ltd. Piezoelectric/electrostriction film type element
JP4805788B2 (en) * 2006-10-31 2011-11-02 日本碍子株式会社 Piezoelectric / electrostrictive membrane sensor
EP2037251A4 (en) * 2006-07-04 2012-10-24 Ngk Insulators Ltd Piezoelectric/electrostrictive film type sensor
WO2008004700A1 (en) 2006-07-04 2008-01-10 Ngk Insulators, Ltd. Piezoelectric film sensor
JP4805787B2 (en) * 2006-10-31 2011-11-02 日本碍子株式会社 Piezoelectric / electrostrictive membrane sensor
EP2037252A4 (en) * 2006-07-04 2012-10-24 Ngk Insulators Ltd Piezoelectric film sensor
JP4800989B2 (en) * 2006-11-15 2011-10-26 日本碍子株式会社 Piezoelectric / electrostrictive material, piezoelectric / electrostrictive body, and piezoelectric / electrostrictive element
DE102008021827B9 (en) * 2008-04-30 2022-04-07 Tdk Electronics Ag Ceramic material, method for producing the ceramic material, component with the ceramic material and its use
JP2011201741A (en) * 2010-03-26 2011-10-13 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic, method for producing piezoelectric/electrostrictive ceramic, piezoelectric/electrostrictive element, and method for manufacturing piezoelectric/electrostrictive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306472B1 (en) * 2009-12-16 2013-09-09 울산대학교 산학협력단 Lead-free piezoelectric ceramic composition

Also Published As

Publication number Publication date
JP2004186436A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP3344888B2 (en) Piezoelectric / electrostrictive film element and method of manufacturing the same
JP3320596B2 (en) Piezoelectric / electrostrictive film element and method of manufacturing the same
EP0561616B1 (en) Piezoelectric/electrostrictive element having auxiliary electrode disposed between piezoelectric/electrostrictive layer and substrate
US5940947A (en) Method of making a piezoelectric/electrostrictive film element with a diaphragm having at least one stress releasing end section
JPH06260694A (en) Piezoelectric/electrostrictive film type element
JP3465675B2 (en) Piezoelectric / electrostrictive film type element
US8476805B2 (en) Piezoelectric/electrostrictive element having a specific coverage area of electrode on substrate, and manufacturing method of the same
WO2003061023A1 (en) Piezoelectric/ electrostrictive device and its production method
JP4980905B2 (en) Method for manufacturing piezoelectric / electrostrictive element
JP3894112B2 (en) Piezoelectric / electrostrictive membrane element
JP4015820B2 (en) Wiring board and manufacturing method thereof
JP3126212B2 (en) Piezoelectric / electrostrictive film type element
JP3482101B2 (en) Piezoelectric film type element
JP3728623B2 (en) Piezoelectric / electrostrictive membrane element
JP3999473B2 (en) Integral piezoelectric / electrostrictive membrane element having excellent durability and method for manufacturing the same
JP3009945B2 (en) Piezoelectric / electrostrictive film type element
JPH0851241A (en) Piezoelectric/electrostrictive film element and its manufacture
JPH07131086A (en) Piezoelectric film type element and its treatment method and drive method
JP4067491B2 (en) Method for manufacturing piezoelectric / electrostrictive device
JP3207315B2 (en) Piezoelectric / electrostrictive film type element
JP4756013B2 (en) Piezoelectric / electrostrictive device
JP4842523B2 (en) Wiring board
JP4015909B2 (en) Piezoelectric / electrostrictive device
JP4914745B2 (en) Wiring board and manufacturing method thereof
JP2004304028A (en) Piezoelectric displacement element and piezoelectric actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees