JPS6012554B2 - Tunnel furnace control method for reduction firing - Google Patents
Tunnel furnace control method for reduction firingInfo
- Publication number
- JPS6012554B2 JPS6012554B2 JP22460682A JP22460682A JPS6012554B2 JP S6012554 B2 JPS6012554 B2 JP S6012554B2 JP 22460682 A JP22460682 A JP 22460682A JP 22460682 A JP22460682 A JP 22460682A JP S6012554 B2 JPS6012554 B2 JP S6012554B2
- Authority
- JP
- Japan
- Prior art keywords
- zone
- furnace
- reduction
- neutral
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Tunnel Furnaces (AREA)
Description
【発明の詳細な説明】
本発明は、トンネル状の炉体の長さ方向の中央部に構成
した焼成帯の一部に還元雰囲気に保った還元帯を設けた
トンネル炉の制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a tunnel furnace in which a reduction zone maintained in a reducing atmosphere is provided in a part of the firing zone formed in the longitudinal center of a tunnel-shaped furnace body.
還元焼成を行なうトンネル炉は、添付図面に示すように
、一端に被焼成物の搬入口2を、他端に搬出口3を夫々
形成したトンネル状の炉体1の長さ方向の中央部に多数
のバーナ4を列設した焼成帯Bを構成するとともに、搬
入口2の付近に設置したブ。ア5の吸引管6を炉体1内
に貫入し、かつ、搬出口3の付近に設置したブロア7の
吐出管8を炉体1内に貫入して、両ブロア5,7の駆動
により、搬出口3側が高く、搬入口2が低い圧力勾配が
形成されて、炉体1内に搬出口3側から搬入口2側に向
かう気流が生じ、焼成帯Bの搬入口2側には、焼成帯B
から流入する高温度のガスによって搬入直後の被焼成物
を子熱する予熱帯Aが、また、焼成帯Bの搬出口3側に
は、焼成帯Bにおいて最高温度に加熱された被焼成物を
炉外から吹き込んだ空気によって冷却する冷却帯Cが夫
々構成され、さらに、焼成帯B内には、搬出口3側から
搬入口2側に向って、中性雰囲気に保った中性帯B1、
還元雰囲気に保った還元帯B2、炉体1に吐出管10を
貫入したブロア9によって外気を吹き込んで還元帯B2
から流入する還元ガスを完全燃焼させる浄化帯B3及び
酸化雰囲気に保った酸化帯B4に順次に区分されており
、各帯域の雰囲気は、各バーナの空燃此によって決定さ
れ、還元帯B2または中性帯BIが最高温度に保たれて
いる。そして、各帯城毎に(還元帯B2にのみ図示し、
他は省略する)炉内温度を熱電対20で検出して温度演
算装置21に入力し「基準温度から外れた場合にはその
出力信号によりサーボモータ23を制御してダンパ22
の関度を調節し、バーナ4への空気の供給量を増減する
とともに、その圧力変動により圧力調整弁24を作動さ
せ、バーナ4に供V給する燃料を増減して基準温度に戻
し、かつ、空燃此を一定にして雰囲気温度を一定に保つ
ようにした自動制御が行なわれるのであるが、例えば、
還元帯B2または中性帯BIの炉内温度が基準値より高
くなって、バーナ4から噴出する空気と燃料を減少させ
る方向の制御が行なわれると、燃焼によって生成される
ガスの量が減少してその部分の圧力が低下し、炉体1の
長さ方向の気圧勾配が変化して温度分布及び雰囲気濃度
分布が乱れ、焼成条件が不安定となることがあり、逆に
、還元帯B2または中性帯BIの炉内温度が基準値より
低くなった場合には、空気と燃料の供孫舎量が増大し、
炉圧が上昇して同機に不安定となるのである。As shown in the attached drawing, a tunnel furnace for reduction firing has a tunnel-shaped furnace body 1 in the longitudinal center thereof, which has an inlet 2 for carrying in the materials to be fired at one end and an outlet 3 at the other end. A firing zone B is configured with a large number of burners 4 arranged in a row, and is installed near the entrance 2. The suction pipe 6 of the a 5 is inserted into the furnace body 1, and the discharge pipe 8 of the blower 7 installed near the outlet 3 is penetrated into the furnace body 1, and both blowers 5 and 7 are driven. A pressure gradient is formed that is high at the loading port 3 side and low at the loading port 2, and an airflow is generated in the furnace body 1 from the loading port 3 side toward the loading port 2 side. Obi B
There is a preheating zone A in which the objects to be fired immediately after being carried in are heated by high-temperature gas flowing in from the preheating zone A, and a preheating zone A in which the objects to be fired immediately after being carried in are heated, and a preheating zone A in which the objects to be fired which have been heated to the maximum temperature in the firing zone B are placed on the side of the outlet 3 of the firing zone B. Each cooling zone C is configured to be cooled by air blown in from outside the furnace, and within the firing zone B, from the loading port 3 side toward the loading port 2 side, a neutral zone B1 maintained in a neutral atmosphere,
The reduction zone B2 is kept in a reducing atmosphere, and outside air is blown into the furnace body 1 by the blower 9 inserted through the discharge pipe 10 to create the reduction zone B2.
The atmosphere in each zone is determined by the air/fuel ratio of each burner. Sexual zone BI is kept at maximum temperature. Then, for each belt castle (illustrated only in return belt B2,
The temperature inside the furnace is detected by the thermocouple 20 and inputted to the temperature calculation device 21. If the temperature deviates from the reference temperature, the servo motor 23 is controlled by the output signal and the damper 22 is
Adjusting the relationship between Automatic control is carried out to keep the air and fuel constant and the ambient temperature constant, for example:
When the furnace temperature in reduction zone B2 or neutral zone BI becomes higher than the reference value and control is performed to reduce the amount of air and fuel ejected from burner 4, the amount of gas generated by combustion will decrease. The pressure in that area decreases, the pressure gradient in the length direction of the furnace body 1 changes, the temperature distribution and the atmosphere concentration distribution are disturbed, and the firing conditions may become unstable.Conversely, the reduction zone B2 or If the temperature inside the neutral zone BI becomes lower than the standard value, the amount of air and fuel will increase,
The reactor pressure rose and the aircraft became unstable.
本発明は、このような欠点を除去し、安定した還元焼成
を行なうことを目的とするものであって、その一例を添
付図面に基づいて説明すると、還元帯B2及び中性帯B
Iにおいて炉体1内に貫入した圧力検出管11,15の
検出圧力を電気信号に変換する発信器12,16の出力
が炉圧演算装置13に入力され、その演算装置13の演
算結果によって制御装置14から発せられる信号により
ブロア9の回転数が制御されるようになっている。The present invention aims to eliminate such drawbacks and perform stable reduction firing, and an example thereof will be explained based on the attached drawings.
At I, the outputs of the transmitters 12 and 16 that convert the pressure detected by the pressure detection tubes 11 and 15 that have penetrated into the furnace body 1 into electrical signals are input to the furnace pressure calculation device 13, and the furnace pressure calculation device 13 controls the pressure based on the calculation results of the calculation device 13. The rotation speed of the blower 9 is controlled by a signal issued from the device 14.
そして、還元帯B2または中性帯BIの炉内圧力の上昇
が検出されるとブロア9の回転速度が低下して浄化帯B
3に吹き込まれる風量が減少し、逆に、炉内圧力が低下
するとプロア9の回転速度が上昇して風量が増大し、還
元帯B2付近における炉内圧力が略一定に保たれる。When an increase in the pressure inside the furnace in the reduction zone B2 or the neutral zone BI is detected, the rotation speed of the blower 9 is reduced and the
When the amount of air blown into B2 decreases and the pressure inside the furnace decreases, the rotational speed of the proir 9 increases and the amount of air increases, and the pressure inside the furnace near the reduction zone B2 is kept substantially constant.
前記において、還元帯B2または中性帯BIの気圧変動
を検出してブロア9の回転数を制御する代わりに、ダン
パ22の粥度を調節するサーボモータ23に対する温度
演算装置21の出力信号または、燃料供V給量を検出す
る流量計25の出力信号を圧力演算装置13に入力し、
バーナ4に供給される燃料または空気の流量の変動によ
り炉圧の変動を予知し、これに基づいてブロア9の回転
数を制御することにより、遅れ時間を解消し、より安定
した制御を行なうことができる。In the above, instead of detecting pressure fluctuations in the reduction zone B2 or the neutral zone BI and controlling the rotation speed of the blower 9, the output signal of the temperature calculation device 21 to the servo motor 23 that adjusts the greasy degree of the damper 22, or The output signal of the flow meter 25 that detects the fuel supply amount is inputted to the pressure calculation device 13,
By predicting fluctuations in furnace pressure due to fluctuations in the flow rate of fuel or air supplied to burner 4 and controlling the rotation speed of blower 9 based on this, delay time is eliminated and more stable control is performed. Can be done.
なお、ブロア9の回転数は一定として、吐出管101こ
介設したダンパの開度を調節して浄化帯B3に吹き込む
空気の流量を制御してもよい。Note that the rotation speed of the blower 9 may be kept constant, and the opening degree of a damper provided through the discharge pipe 101 may be adjusted to control the flow rate of air blown into the purification zone B3.
また、炉圧の変動が著しく大きい場合には、浄化帯B3
に吹き込む空気の流量制御に併せて、搬入口2及び搬出
口3に設置したブロア5,7による炉体1の長さ方向全
体にわたるガス流を制御することが好ましい。上記実施
例によって具体的に説明したように、本発明のトンネル
炉の還元焼成における炉圧制御方法は、トンネル状の炉
体の長さ方向の中央部にバーナを列設して焼成帯を構成
し、かつ、前記炉体内の気圧を搬出口側が搬入口側より
高くなるように保って搬出口側から搬入口側に向かう気
流を生じさせることにより、前記焼成帯の搬入口側に予
熱帯を、搬出口側に冷却帯を夫々構成するとともに、前
記焼成帯内を、搬出口側から搬入口側に向って順次、中
性雰囲気に保った中性帯、還元雰囲気に保った還元帯、
炉内へ空気を吹き込んで前記還元帯から流入する還元ガ
スを完全燃焼させる浄化帯及び酸化雰囲気に保った酸化
帯に区分したトンネル炉において、前記還元帯または前
記中性帯の気圧変動に対応して前記浄化帯への空気の吹
き込み量を変動させることを要旨とするものであって、
還元帯付近における炉圧を略一定に保つことができ、温
度分布及び雰囲気濃度分布を安定化し得る効果を奏する
。In addition, if the furnace pressure fluctuates significantly, purification zone B3
In addition to controlling the flow rate of air blown into the furnace, it is preferable to control the gas flow over the entire length of the furnace body 1 using blowers 5 and 7 installed at the carry-in port 2 and the carry-out port 3. As specifically explained in the above embodiments, the furnace pressure control method for reduction firing in a tunnel furnace according to the present invention comprises arranging burners in a row in the longitudinal center of a tunnel-shaped furnace body to form a firing zone. In addition, by maintaining the pressure inside the furnace so that the pressure on the carry-in port side is higher than that on the carry-in port side and generating an airflow from the carry-in port side to the carry-in port side, a pre-heating zone is formed on the carry-in port side of the firing zone. , a cooling zone is formed on the carry-out port side, and the inside of the firing zone is sequentially maintained in a neutral atmosphere from the carry-in port side toward the carry-in port side; a neutral zone kept in a neutral atmosphere; and a reduction zone kept in a reducing atmosphere;
In a tunnel furnace divided into a purification zone where air is blown into the furnace to completely burn the reducing gas flowing in from the reduction zone, and an oxidation zone where an oxidizing atmosphere is maintained, the tunnel furnace is configured to respond to pressure fluctuations in the reduction zone or the neutral zone. The gist is to vary the amount of air blown into the purification zone,
The furnace pressure near the reduction zone can be kept substantially constant, and the temperature distribution and atmosphere concentration distribution can be stabilized.
添付図面は炉体の断面図に制御回路のブロック図を併記
したものである。
1:炉体、2:搬入口、3:搬出口、4:バーナ、5,
7,9:ブロア、11,15:圧力検出管、13:炉圧
演算装置、14:制御装置、A:予熱帯、B:焼成帯、
C:冷却帯、BI:中性帯、B2:還元帯、B3:浄化
帯、B4:酸化帯。The attached drawing shows a cross-sectional view of the furnace body and a block diagram of the control circuit. 1: Furnace body, 2: Loading port, 3: Loading port, 4: Burner, 5,
7, 9: Blower, 11, 15: Pressure detection tube, 13: Furnace pressure calculation device, 14: Control device, A: Pre-preparation zone, B: Firing zone,
C: cooling zone, BI: neutral zone, B2: reduction zone, B3: purification zone, B4: oxidation zone.
Claims (1)
設して焼成帯を構成し、かつ、前記炉体内の気圧を搬出
口側が搬入口側より高くなるように保って搬出口側から
搬入口側に向かう気流を生じさせることにより、前記焼
成帯の搬入口側に予熱帯を、搬出口側に冷却帯を夫々構
成するとともに、前記焼成帯内を、搬出口側から搬入口
側に向って順次に、中性雰囲気に保った中性帯、還元雰
囲気に保った還元帯、炉内へ空気を吹き込んで前記還元
帯から流入する還元ガスを完全燃焼させる浄化帯及び酸
化雰囲気に保った酸化帯に区分したトンネル炉において
、前記還元帯または前記中性帯の気圧変動に対応して前
記浄化帯への空気の吹き込み量を変動させることを特徴
とするトンネル炉の制御方法。 2 前記還元帯または前記中性帯における前記バーナへ
の燃料または空気の供給量の変動によって前記還元帯の
気圧変動を予知し、これに基づいて前記浄化帯への空気
の吹き込み量を変動させることを特徴とする特許請求の
範囲第1項記載のトンネル炉の制御方法。[Claims] 1. Burners are arranged in a row in the longitudinal center of a tunnel-shaped furnace body to form a firing zone, and the pressure inside the furnace body is made higher on the outlet side than on the entrance side. By maintaining the air flow from the carrying-out port side to the carrying-in port side, a preheating zone is formed on the carrying-in port side of the firing zone, and a cooling zone is formed on the carrying-out port side. From the outlet side to the entrance side, the neutral zone kept in a neutral atmosphere, the reduction zone kept in a reducing atmosphere, and purification by blowing air into the furnace to completely burn the reducing gas flowing from the reduction zone. A tunnel furnace divided into an oxidation zone and an oxidation zone maintained in an oxidation atmosphere, characterized in that the amount of air blown into the purification zone is varied in response to pressure fluctuations in the reduction zone or the neutral zone. control method. 2. Forecasting atmospheric pressure fluctuations in the reduction zone based on fluctuations in the amount of fuel or air supplied to the burner in the reduction zone or the neutral zone, and varying the amount of air blown into the purification zone based on this. A method for controlling a tunnel furnace according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22460682A JPS6012554B2 (en) | 1982-12-20 | 1982-12-20 | Tunnel furnace control method for reduction firing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22460682A JPS6012554B2 (en) | 1982-12-20 | 1982-12-20 | Tunnel furnace control method for reduction firing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59115977A JPS59115977A (en) | 1984-07-04 |
JPS6012554B2 true JPS6012554B2 (en) | 1985-04-02 |
Family
ID=16816355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22460682A Expired JPS6012554B2 (en) | 1982-12-20 | 1982-12-20 | Tunnel furnace control method for reduction firing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6012554B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3510800C1 (en) * | 1985-03-25 | 1986-06-12 | Ludwig Riedhammer GmbH, 8500 Nürnberg | Device and method for ensuring the separation of gas streams of different atmospheres |
-
1982
- 1982-12-20 JP JP22460682A patent/JPS6012554B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS59115977A (en) | 1984-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02302503A (en) | Method and device for controlling generation of nox due to contamination | |
US3947237A (en) | Method and apparatus for controlling the air volume in a tunnel kiln according to the batch density | |
US4235591A (en) | Continuous flow oven | |
US4691898A (en) | Continuous annealing furnace for metallic strip | |
JP3489240B2 (en) | Floating furnace | |
JP2859987B2 (en) | Temperature control device for continuous firing furnace | |
JPH09502012A (en) | Continuous heating furnace | |
JPS6012554B2 (en) | Tunnel furnace control method for reduction firing | |
US3448969A (en) | Fluid pressure sealing system for processing oven | |
JPS6012553B2 (en) | Tunnel furnace control method for reduction firing | |
JP2001343104A (en) | Heating equipment and method for operating heating furnace | |
US3035824A (en) | Furnace with cooled and recirculated atmosphere | |
JPS6012551B2 (en) | Tunnel furnace pressure control method | |
JP3321947B2 (en) | Tunnel type continuous firing furnace | |
US3463469A (en) | Kilns with atmosphere propulsion | |
JPH06281364A (en) | Temperature control method for heating furnace | |
JPS61190281A (en) | Method of controlling tunnel furnace in reduction baking | |
JPS59115975A (en) | Controller for kiln pressure of tunnel kiln | |
JP2000105082A (en) | Atmosphere continuous heating furnace | |
JP2001263949A (en) | Method and apparatus for controlling supply and discharge of air in drying device | |
JPH04124585A (en) | Cooling device utilizing nitrogen gas for continuous furnace | |
JPS5594442A (en) | Heat treating furnace of upset pipe | |
JPS61119987A (en) | Method of controlling furnace pressure of continuous type heating furnace | |
JPH085255A (en) | Continuous kiln | |
US2451349A (en) | Continuous heating furnace and method of operating the same |