JPS6012553B2 - Tunnel furnace control method for reduction firing - Google Patents

Tunnel furnace control method for reduction firing

Info

Publication number
JPS6012553B2
JPS6012553B2 JP22460582A JP22460582A JPS6012553B2 JP S6012553 B2 JPS6012553 B2 JP S6012553B2 JP 22460582 A JP22460582 A JP 22460582A JP 22460582 A JP22460582 A JP 22460582A JP S6012553 B2 JPS6012553 B2 JP S6012553B2
Authority
JP
Japan
Prior art keywords
zone
furnace
carrying
furnace body
port side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22460582A
Other languages
Japanese (ja)
Other versions
JPS59115976A (en
Inventor
佳彦 千村
忠明 勝股
昌文 中川
浩司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Industry Co Ltd
Original Assignee
Takasago Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Industry Co Ltd filed Critical Takasago Industry Co Ltd
Priority to JP22460582A priority Critical patent/JPS6012553B2/en
Publication of JPS59115976A publication Critical patent/JPS59115976A/en
Publication of JPS6012553B2 publication Critical patent/JPS6012553B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Tunnel Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、トンネル状の炉体の長さ方向の中央部に構成
した焼成帯の一部に還元雰囲気に保った還元帯を設けた
トンネル炉の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a tunnel furnace in which a reduction zone maintained in a reducing atmosphere is provided in a part of the firing zone formed in the longitudinal center of a tunnel-shaped furnace body.

還元焼成を行なうトンネル炉は、第1図に示すように、
一端に被焼成物の搬入口2を、他端に搬出口3を夫々形
成したトンネル状の炉体1の長さ方向の中央部に多数の
バーナ4を列設した焼成帯Bを構成するとともに、搬入
口2の付近に設置したプロア5の吸引管6を炉体1内に
貫入し、かつ、搬出口3の付近に設置したブロア7の吐
出管8を炉体1内に貫入して、両ブロア5,7の駆動に
より、搬出口3側が高く、搬入口2が低い圧力勾配が形
成されて、炉体1内に搬出口3側から搬入口2側に向か
う気流が生じ、焼成帯Bの搬入口2側には、焼成帯Bか
ら流入する高温度のガスによって搬入直後の被焼成物を
子熱する予熱帯Aが、また、焼成帯Bの搬出口3側には
、焼成帯Bにおいて最高温度に加熱された被焼成物を炉
外から吹き込んだ空気によって冷却する冷却帯Cが夫々
構成され、さらに、焼成帯B内には、搬出口3側から搬
入口2側に向かって、中性雰囲気に保った中性帯B1、
還元雰囲気に保った還元帯B2、炉体1に吐出管10を
貫入したブロア9によつて外気を吹き込んで還元帯B2
から流入する還元ガスを完全燃焼させる浄化帯B3及び
酸化雰囲気に保った酸化帯B4に順次に区分されており
、各帯城の雰囲気は、各バーナの空燃此によって決定さ
れ、還元帯B2または中性帯BIが最高温度に保たれて
いる。そして、各帯城毎に炉内温度を検出し、基準温度
から外れた場合にはバーナ4に供給する燃料を増減して
基準温度に戻すとともに、燃料に比例して空気の供給量
を増減して雰囲気温度を一定に保つようにした自動制御
が行なわれるのであるが、炉体1内を搬出口3側から搬
入口2側に向かう気流は、被焼成物の上面と炉体1の天
井面の間に構成された空間を勢いよく流れるのに対し、
炉体竃内の下方部は被焼成物の台車などに邪魔されて流
れ難いため「還元帯B2においては、中性帯BIから熱
風の流入量の多い炉体1の上部と、バーナ4を装置した
炉体1の下部との間で還元雰囲気濃度に大きな差が生ず
るのであって、バーナ4の空燃比を制御するだけでは炉
体1内の上部と下部の雰囲気濃度を基準値に維持するこ
とは困難である。
The tunnel furnace that performs reduction firing is as shown in Figure 1.
A firing zone B is constructed in which a large number of burners 4 are arranged in a row at the center of a tunnel-shaped furnace body 1 in the longitudinal direction, which has an inlet 2 for carrying in the materials to be fired at one end and an outlet 3 at the other end. , by penetrating the suction pipe 6 of the blower 5 installed near the carry-in port 2 into the furnace body 1, and by penetrating the discharge pipe 8 of the blower 7 installed near the carry-out port 3 into the furnace body 1, By driving both blowers 5 and 7, a pressure gradient is formed where the pressure gradient is high on the carry-out port 3 side and low at the carry-in port 2, and an airflow is generated in the furnace body 1 from the carry-in port 3 side toward the carry-in port 2 side, and the firing zone B On the carry-in port 2 side of the firing zone B, there is a preheating zone A that uses high-temperature gas flowing in from the firing zone B to pre-heat the materials to be fired immediately after being carried in, and on the carry-in port 3 side of the firing zone B Cooling zones C are formed in which the objects to be fired heated to the maximum temperature are cooled by air blown in from outside the furnace, and in the firing zone B, from the carry-out port 3 side toward the carry-in port 2 side, Neutral band B1 maintained in a neutral atmosphere,
The reduction zone B2 is maintained in a reducing atmosphere, and outside air is blown into the furnace body 1 by the blower 9 that penetrates the discharge pipe 10 to create the reduction zone B2.
The atmosphere in each zone is determined by the air/fuel ratio of each burner, and the atmosphere in each zone is determined by the air/fuel ratio of each burner. Neutral band BI is kept at the highest temperature. Then, the temperature inside the furnace is detected for each zone, and if it deviates from the standard temperature, the fuel supplied to the burner 4 is increased or decreased to return it to the standard temperature, and the amount of air supplied is increased or decreased in proportion to the fuel. Automatic control is performed to keep the ambient temperature constant, but the airflow inside the furnace body 1 from the carry-out port 3 side to the carry-in port 2 side is caused by the upper surface of the object to be fired and the ceiling surface of the furnace body 1. While it flows vigorously through the space constructed between
Since the lower part of the furnace body is difficult to flow because it is obstructed by the trolley etc. of the materials to be fired, in the reduction zone B2, the upper part of the furnace body 1 where there is a large amount of inflow of hot air from the neutral zone BI, and the burner 4 are There is a large difference in reducing atmosphere concentration between the lower part of the furnace body 1 and the lower part of the furnace body 1, and it is not possible to maintain the atmosphere concentration in the upper and lower parts of the furnace body 1 at the standard value by simply controlling the air-fuel ratio of the burner 4. It is difficult.

本発明は、バーナ付近の雰囲気はバーナの空燃比によっ
て制御し、炉体の上部の雰囲気は炉体内を搬出口から搬
入口に向かって流れる気流の流量によって制御すること
により、還元帯における雰囲気濃度を均一に制御するこ
とを目的とするものであって、その一実施例を添付図面
に基づいて説明すると、還元帯B2の被焼成体aと炉体
1の側壁面及び被焼成体aと炉体1の天井面の間に夫々
構成された空間b、cに設けられた雰囲気検出管22,
11によって取り出された炉内ガスのCOガス濃度がC
O分析計23,12で検出され、その検出値が電気信号
として演算装置24,15に入力され、その入力信号に
より演算された結果に基づく一方の演算装置24の出力
信号により、第2図に示すように、ブリード弁26の開
度が調節されて圧力調整弁25の二次側圧力が制御され
、還元帯B2のバーナ4に供給される燃料と空気の比率
が変更されて主に炉体下部の空間bの雰囲気制御がなさ
れて所定のCO濃度に保持されるが、他方の演算装置1
5の出力信号は回転数制御装置20,21に入力され、
その出力によりプロア7、若しくは冷却帯Cの焼成帯B
寄りに設置されて吸引管19を炉体1内に貫入したブロ
ア18の回転数が変更されて、冷却帯Cから焼成帯Bに
流入する空気の流量が変化するようになっており、還元
帯B2内の上部の空間cのCOガス濃度が基準値より高
くなったことがCO分析計12で検出されると、炉体1
内に空気を吹き込む搬出口3側のブロア7の回転数が上
昇するか、あるいは、炉体内からガスを炉外に排出する
ブロア18の回転数が低下して冷却帯Cから焼成帯Bに
流入する空気の量が増大し、還元帯B2内の余剰のCO
ガスを燃焼させて、その濃度を下げ、逆にCOガス濃度
が低くなると、排出用のブロア18の回転数が上昇する
か、あるかは、吹き込み用のブ。
In the present invention, the atmosphere near the burner is controlled by the air-fuel ratio of the burner, and the atmosphere in the upper part of the furnace body is controlled by the flow rate of the airflow flowing from the delivery port toward the delivery port. The purpose is to uniformly control the temperature, and one embodiment thereof will be explained based on the attached drawings. Atmosphere detection tubes 22 provided in spaces b and c formed between the ceiling surfaces of the body 1,
The CO gas concentration of the furnace gas taken out by step 11 is C
Detected by the O analyzers 23 and 12, the detected values are input as electrical signals to the calculation devices 24 and 15, and the output signal of one calculation device 24 based on the result of calculation based on the input signal is used to generate the output signal shown in FIG. As shown, the opening degree of the bleed valve 26 is adjusted to control the secondary side pressure of the pressure regulating valve 25, and the ratio of fuel and air supplied to the burner 4 in the reduction zone B2 is changed, mainly to the furnace body. The atmosphere in the lower space b is controlled to maintain a predetermined CO concentration, but the other computing device 1
The output signal of 5 is input to the rotation speed control devices 20 and 21,
Depending on the output, Proa 7 or cooling zone C firing zone B
The rotational speed of the blower 18 installed closer to the furnace body 1 through the suction pipe 19 is changed, and the flow rate of air flowing from the cooling zone C to the firing zone B is changed. When the CO analyzer 12 detects that the CO gas concentration in the upper space c in B2 has become higher than the standard value, the furnace body 1
Either the rotational speed of the blower 7 on the side of the outlet 3 that blows air into the furnace increases, or the rotational speed of the blower 18 that discharges gas from the furnace to the outside of the furnace decreases and the gas flows from the cooling zone C to the firing zone B. As the amount of air increases, excess CO in reduction zone B2
When the gas is combusted and its concentration is lowered, and conversely the CO gas concentration is lowered, the number of revolutions of the discharge blower 18 increases or not.

ア7の回転数が低下して、冷却帯Cから焼成帯Bに流入
する空気の量が減少し、還元帯B2における酸素の不足
が促進されてCOガス濃度が上昇する方向の制御が行な
われるのである。なお、本実施例においては、炉体1の
中性帯BIの部分に、02濃度検出管1 3と圧力検出
管16が夫々貫入され、夫々の検出値が02分析計14
と発信器17‘こよって電気信号に変換されて演算装置
15に入力するように接続され、還元帯B2におけるC
O濃度の変動に基づく上記の制御に先だって、中性帯B
Iにおける炉圧及び02濃度の変動に基づいてブロア7
,18の回転数を制御するようになっている。
The rotational speed of A7 decreases, the amount of air flowing from the cooling zone C to the firing zone B decreases, the lack of oxygen in the reduction zone B2 is promoted, and control is performed in the direction of increasing the CO gas concentration. It is. In this embodiment, the 02 concentration detection tubes 13 and the pressure detection tubes 16 are inserted into the neutral zone BI of the furnace body 1, and the detected values are detected by the 02 analyzer 14.
is connected to the transmitter 17' so that it is converted into an electrical signal and inputted to the arithmetic unit 15, and the C in the reduction zone B2 is
Prior to the above control based on fluctuations in O concentration, neutral zone B
Blower 7 based on fluctuations in furnace pressure and 02 concentration in I
, 18.

このようにしたのは、還元帯B2が冷却帯Cから離間し
ており、ブロア7,18の回転数の変更による影響が還
元帯B2に及ぶのに遅れ時間が生ずるのを解消するため
であって、上流に位置する中性帯BIにおける02濃度
は下流の還元帯B2のCO濃度に直ちに影響を及ぼし、
また、中性帯BIにおける炉圧は下流の還元帯B2に流
入する気流の流量を決定するものであるから、冷却帯C
に隣接する中性帯BIにおける炉圧及び02濃度の変動
を検出して予めブロア7,18の回転数を制御すること
により、還元帯B2におけるCO濃度の自動制御の応答
速度を高め、より厳密な炉圧制御を行なうようにしたも
のである。
This was done in order to eliminate the delay time that occurs when the reduction zone B2 is affected by changes in the rotational speed of the blowers 7 and 18 since the reduction zone B2 is separated from the cooling zone C. Therefore, the 02 concentration in the upstream neutral zone BI immediately affects the CO concentration in the downstream reduction zone B2,
Furthermore, since the furnace pressure in the neutral zone BI determines the flow rate of the airflow flowing into the downstream reduction zone B2, the cooling zone C
By detecting fluctuations in furnace pressure and 02 concentration in the neutral zone BI adjacent to the BI and controlling the rotational speed of the blowers 7 and 18 in advance, the response speed of automatic control of the CO concentration in the reduction zone B2 is increased and more strict control is achieved. This system is designed to perform accurate furnace pressure control.

上記実施例によって具体的に説明したように、本発明の
トンネル炉の制御方法は、トンネル状の炉体の長さ方向
の中央部にバーナを列設して焼成帯を構成し、かつ、前
記炉体内の気圧を搬出口側が搬入口側より高くなるよう
に保って搬出口側から搬入口側に向かう気流を生じさせ
ることにより、前記焼成帯の搬入口側に子熱帯を、搬出
口側に冷却帯を夫々構成するとともに、前記焼成帯内を
、搬出口側から搬入口側に向って順次に、中性雰囲気に
保った中性帯、還元雰囲気に保った還元帯、炉内へ空気
を吹き込んで前記還元帯から流入する還元ガスを完全燃
焼させる浄化帯及び酸化雰囲気に保った酸化帯に区分し
たトンネル炉において、前記還元帯における還元雰囲気
濃度の変化に基づいて炉体内を搬出口側から搬入口側に
向かう前記気流の流量を制御することを要旨とするもの
であって、バーナによる空燃比の調節だけでは制御する
ことが困穀な炉体内上部の還元雰囲気濃度を所望の値に
維持することができ、炉体内の上部と下部において均一
な焼成条件を維持し得る効果を奏する。
As specifically explained in the above embodiments, the method for controlling a tunnel furnace of the present invention includes arranging burners in a row in the central part of the tunnel-shaped furnace body in the longitudinal direction to form a firing zone, and By maintaining the air pressure inside the furnace so that the loading port side is higher than the loading port side and generating an airflow from the loading port side to the loading port side, a child tropical zone is placed on the loading port side of the firing zone, and a subtropical zone is placed on the loading port side of the firing zone. In addition to configuring each cooling zone, the inside of the firing zone is sequentially divided from the carry-out port side to the carry-in port side: a neutral zone kept in a neutral atmosphere, a reduction zone kept in a reducing atmosphere, and air introduced into the furnace. In a tunnel furnace that is divided into a purification zone where the reducing gas flowing in from the reduction zone is completely combusted and an oxidation zone where an oxidizing atmosphere is maintained, the inside of the furnace body is separated from the exit side based on the change in the reducing atmosphere concentration in the reduction zone. The purpose is to control the flow rate of the airflow toward the loading port side, and maintain the reducing atmosphere concentration in the upper part of the furnace body at a desired value, which is difficult to control only by adjusting the air-fuel ratio using the burner. This has the effect of maintaining uniform firing conditions in the upper and lower parts of the furnace body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に使用するトンネル炉の断面
図に制御回路のブロック図を併記したものであり、第2
図は還元帯における炉体の横断面図に制御回路のブロッ
ク図を併記したものである。 1:炉体、2:搬入口、3:搬出口、4:バーナ、5,
7,9,18:ブロア、11,22:CO濃度検出管、
13:02濃度検出管、16:圧力検出管、12,23
:CO濃度分析計、14:02濃度分析計、17:発信
器、15,24:演算装置、20,21:制御装置、2
5:圧力調整弁、26:ブリード弁、A:予熱帯、B:
焼成帯、C:冷却帯、BI:中性帯、B2:還元帯、B
3:浄化帯、B4:酸化帯。 技1鼠 繁2図
Figure 1 is a cross-sectional view of a tunnel furnace used to carry out the method of the present invention, together with a block diagram of the control circuit.
The figure shows a cross-sectional view of the furnace body in the reduction zone along with a block diagram of the control circuit. 1: Furnace body, 2: Loading port, 3: Loading port, 4: Burner, 5,
7, 9, 18: Blower, 11, 22: CO concentration detection tube,
13:02 Concentration detection tube, 16: Pressure detection tube, 12, 23
:CO concentration analyzer, 14:02 concentration analyzer, 17: Transmitter, 15, 24: Arithmetic device, 20, 21: Control device, 2
5: Pressure adjustment valve, 26: Bleed valve, A: Pre-preparation zone, B:
Calcining zone, C: Cooling zone, BI: Neutral zone, B2: Reduction zone, B
3: Purification zone, B4: Oxidation zone. Technique 1 Nezushige 2

Claims (1)

【特許請求の範囲】 1 トンネル状の炉体の長さ方向の中央部にバーナを列
設して焼成帯を構成し、かつ、前記炉体内の気圧を搬出
口側が搬入口側より高くなるように保って搬出口側から
搬入口側に向かう気流を生じさせることにより、前記焼
成帯の搬入口側に予熱帯を、搬出口側に冷却帯を夫々構
成するとともに、前記焼成帯内を、搬出口側から搬入口
側に向って順次に、中性雰囲気に保った中性帯、還元雰
囲気に保った還元帯、炉内へ空気を吹き込んで前記還元
帯から流入する還元ガスを完全燃焼させる浄化帯及び酸
化雰囲気に保った酸化帯に区分したトンネル炉において
、前記還元帯における還元雰囲気濃度の変化に基づいて
炉体内を搬出口側から搬入口側に向かう前記気流の流量
を制御することを特徴とするトンネル炉の制御方法。 2 炉内圧力の変動に基づいて予め前記気流の流量を制
御することを特徴とする特許請求の範囲第1項記載のト
ンネル炉の制御方法。 3 前記中性帯における酸化雰囲気濃度の変化に基づい
て予め前記気流の流量を制御することも特徴とする特許
請求の範囲第1項記載のトンネル炉の制御方法。
[Claims] 1. Burners are arranged in a row in the longitudinal center of a tunnel-shaped furnace body to form a firing zone, and the pressure inside the furnace body is made higher on the outlet side than on the entrance side. By maintaining the air flow from the carrying-out port side to the carrying-in port side, a preheating zone is formed on the carrying-in port side of the firing zone, and a cooling zone is formed on the carrying-out port side. From the outlet side to the entrance side, the neutral zone kept in a neutral atmosphere, the reduction zone kept in a reducing atmosphere, and purification by blowing air into the furnace to completely burn the reducing gas flowing from the reduction zone. The tunnel furnace is divided into an oxidizing zone and an oxidizing zone maintained in an oxidizing atmosphere, and is characterized in that the flow rate of the air flow from the carrying-out port side to the carrying-in port side in the furnace body is controlled based on changes in the reducing atmosphere concentration in the reducing zone. A method for controlling a tunnel furnace. 2. The method for controlling a tunnel furnace according to claim 1, characterized in that the flow rate of the airflow is controlled in advance based on fluctuations in the pressure inside the furnace. 3. The tunnel furnace control method according to claim 1, further comprising controlling the flow rate of the air flow in advance based on a change in the oxidizing atmosphere concentration in the neutral zone.
JP22460582A 1982-12-20 1982-12-20 Tunnel furnace control method for reduction firing Expired JPS6012553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22460582A JPS6012553B2 (en) 1982-12-20 1982-12-20 Tunnel furnace control method for reduction firing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22460582A JPS6012553B2 (en) 1982-12-20 1982-12-20 Tunnel furnace control method for reduction firing

Publications (2)

Publication Number Publication Date
JPS59115976A JPS59115976A (en) 1984-07-04
JPS6012553B2 true JPS6012553B2 (en) 1985-04-02

Family

ID=16816340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22460582A Expired JPS6012553B2 (en) 1982-12-20 1982-12-20 Tunnel furnace control method for reduction firing

Country Status (1)

Country Link
JP (1) JPS6012553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190627A (en) * 1993-12-27 1995-07-28 Toto Ltd Tunnel type continuous baking furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190281A (en) * 1985-02-16 1986-08-23 富士電機システック株式会社 Method of controlling tunnel furnace in reduction baking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190627A (en) * 1993-12-27 1995-07-28 Toto Ltd Tunnel type continuous baking furnace

Also Published As

Publication number Publication date
JPS59115976A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
US4235591A (en) Continuous flow oven
JPS6012553B2 (en) Tunnel furnace control method for reduction firing
US4691898A (en) Continuous annealing furnace for metallic strip
US4214866A (en) Burner for high temperature combustion air
US4444554A (en) Heating method and apparatus
JPS6012554B2 (en) Tunnel furnace control method for reduction firing
JP3321947B2 (en) Tunnel type continuous firing furnace
JPS61190281A (en) Method of controlling tunnel furnace in reduction baking
JPH0477234B2 (en)
JPS59115974A (en) Method of controlling kiln pressure of tunnel kiln
JP3187991B2 (en) Furnace atmosphere control device
KR900006880B1 (en) Combustion control device
JPH06281364A (en) Temperature control method for heating furnace
JPS629650B2 (en)
JPH04124585A (en) Cooling device utilizing nitrogen gas for continuous furnace
JPS6015870B2 (en) How to control a heating furnace
JPS6117887B2 (en)
JPS61243219A (en) Combustion control method for radiant tube burner
JPS5852980A (en) Reduction incinerator
JPH0643133Y2 (en) Continuous sintering furnace
JPS6261089B2 (en)
JPS638747Y2 (en)
JP2790760B2 (en) Combustion exhaust gas pressure control method
JPS61138563A (en) Controlling method of continuous drying and baking apparatus of paint
JPH01247529A (en) Method for controlling direct firing type nonoxidized furnace