JPS60124063A - Reproduction system of magnet memory device - Google Patents

Reproduction system of magnet memory device

Info

Publication number
JPS60124063A
JPS60124063A JP58232407A JP23240783A JPS60124063A JP S60124063 A JPS60124063 A JP S60124063A JP 58232407 A JP58232407 A JP 58232407A JP 23240783 A JP23240783 A JP 23240783A JP S60124063 A JPS60124063 A JP S60124063A
Authority
JP
Japan
Prior art keywords
circuit
signal
peak
peak pulse
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58232407A
Other languages
Japanese (ja)
Inventor
Takashi Aikawa
隆 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58232407A priority Critical patent/JPS60124063A/en
Publication of JPS60124063A publication Critical patent/JPS60124063A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals

Abstract

PURPOSE:To detect accurately the peak position of a reproduction signal and to improve the reliability for reproduction of a magnetic memory, by producing a gate signal which detects the peak position of the reproduction signal by a differentiation system and excludes the peak position of a signal due to noises by an integration system. CONSTITUTION:The record data is written onto a magnetic disk by a magnetic disk through a writing circuit 12, and the reproduction signal read by the head 11 is supplied to an amplifier 13. The output of the amplifier 13 is branched into two parts. One of these two outputs is supplied to a differentiating circuit 14 and differentiated; while the other output is supplied to an integration circuit 17 and integrated. This integration waveform is converted into a peak pulse PP-B via a zero-slice circuit 18, and this 2nd peak pulse PP-B is supplied to a delay circuit 19 and a triggerable monostable circuit 20 respectively. The circuit 19 delays the 2nd peak pulse by 3 bits like the input 1st peak pulse PP-A to produce a signal D. This signal D is delivered to an AND circuit 21 and a flip-flop circuit 22 respectively. A pulse NP produced by noises is excluded and only a correct signal peak pulse is detected.

Description

【発明の詳細な説明】 (al 発明の技術分野 本発明は、磁気記憶装置の再生方式に関するものである
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a reproduction method for a magnetic storage device.

(bl 技術の背景 電子計算機システムの外部記憶装置として用いられる磁
気ディスク装置の再生方式としては、磁気ディスク媒体
より読み出した再生信号を微分し、その微分波形の零交
叉点から信号のピーク位置を検出する微分方式が主であ
ったが、最近この方式がノイズによる誤検出が多いこと
から、再生信号を積分して零交叉点を検出する積分方式
の採用も試みられている。しかし、この積分方式におい
ては、信号の振幅が長期にわたって変動する場合、本来
の信号のピーク位置よりずれた位置を検出する問題があ
る。このような事情からノイズに強くて誤検出しない再
生方式の開発が望まれている。
(bl Background of the Technology) The playback method of a magnetic disk device used as an external storage device for a computer system is to differentiate the playback signal read from the magnetic disk medium and detect the peak position of the signal from the zero crossing point of the differential waveform. However, since this method has recently caused many false detections due to noise, attempts have been made to adopt an integral method that integrates the reproduced signal and detects the zero crossing point.However, this integral method When the amplitude of a signal fluctuates over a long period of time, there is a problem in detecting a position that deviates from the original peak position of the signal.For this reason, it is desired to develop a reproduction method that is resistant to noise and does not cause false detections. There is.

10) 従来技術と問題点 第1図に前述した微分方式による信号波形を示す。この
図において、(81は再生信号波形、(blはその信号
微分波形、(c+は零交叉点であるヘースライン旧4と
微分波形の交叉点より検出したピークパルス、(dlば
このピークパルスの有無に基づく「1」「0」の再生デ
ータである。このような方式において、磁気ディスク装
置の使用密度範囲が広いと第2図の波形の斜線で示すよ
うな低密度部分では、再生信号波形がヘースラインBL
に接近するために本来の信号のピーク位置で無いそこに
ノイズによって恰も信号のピーク位置が存在するように
誤検出し、ノイズパルスNPを生しる。そこで実際は、
このノイズによるピーク誤検出を防1トするため第3図
ia)に示す再生信号波形そのものを適当なレベルSL
でスライスして、同図(blのゲート信号を作り本来の
ピーク信号とノイズによるピーク信号を区別する方法を
採っている。しかし、この方法によっても第4図(al
に示ずように低密度部分の再生信号波形が複雑なポール
フェース厚の非対称な薄膜ヘッドを使用する場合はスラ
イスレベルSLの設定範囲が狭い、ずなわら振幅マージ
ンAMが小さくなるという問題があった。なお、第4回
出)、[C1および(diは微分波形、ピークパルスお
よびゲート信号を示す。
10) Prior art and problems FIG. 1 shows a signal waveform obtained by the above-mentioned differential method. In this figure, (81 is the reproduced signal waveform, (bl is the differential waveform of the signal, (c+ is the peak pulse detected from the intersection point of the differential waveform with the Hoeslein old 4 which is the zero crossing point, and (dl is the presence or absence of the peak pulse. In such a system, if the usage density range of the magnetic disk device is wide, the reproduced signal waveform will be Haeseline BL
Since the peak position of the signal is not the original peak position of the signal, it is erroneously detected as if the peak position of the signal exists due to the noise, and a noise pulse NP is generated. So actually,
In order to prevent erroneous peak detection due to this noise, the reproduced signal waveform itself shown in Figure 3 ia) is adjusted to an appropriate level SL.
The method used is to create a gate signal in Figure 4 (bl) and distinguish between the original peak signal and the peak signal due to noise. However, even with this method, the gate signal in Figure 4 (al
When using an asymmetric thin-film head with a pole face thickness in which the reproduced signal waveform in the low-density portion is complex as shown in Figure 2, there is a problem that the setting range of the slice level SL is narrow, and the amplitude margin AM is also small. Ta. Note that (4th appearance), [C1 and (di) indicate the differential waveform, peak pulse, and gate signal.

一方、前述した積分による百η二方式は、記録時の信号
波形と同j−〉波形に再生するためにヘースラインから
再生信号波形のピークまでしか振幅マージンのない11
純な振幅検出方式や前記微分力式に比較して振幅マージ
ンが大きい利点がある。第5図はこの積分方式による信
号波形を示し、(alは記録信号波形、(tl)は再生
信号波形、(c+は再生信号の積分波形、そして((1
)はピークパルスである。
On the other hand, in the above-mentioned integration-based 10η2 method, in order to reproduce the same waveform as the signal waveform at the time of recording, the amplitude margin is only from the Hass line to the peak of the reproduced signal waveform.
This method has the advantage of having a larger amplitude margin than the pure amplitude detection method or the differential force method. FIG. 5 shows the signal waveform by this integration method, where (al is the recording signal waveform, (tl) is the reproduced signal waveform, (c+ is the integral waveform of the reproduced signal, and ((1
) is the peak pulse.

この積分方式は、通常低域成分を少なくするような書き
込み方式との組合せ(例えばスクランブルIIRZI)
で使用される。その理由器;1ヘッド再生出力か低域成
分を持たないため、記1.J時のイハ月に低域成分が多
く含まれている例えば第f)図flll f、こ示す積
分波形の如きヘーヌライン旧7に対1−7非対称な波形
の場合には、その積分時に低域成分のlTr仕が不十分
となってそれが長III IIJI T:変動するFl
れがあるのでこれを抑えるためである。なお、第6図(
81は記録用のrlJ rOJデータである。しかし、
長周期の変動を完全に零にするのは困難であり、スライ
スレベルを零に設定すると第6図(C)のピークパルス
のPPI、PP2で示すように本来の信号のピーク位置
から八Tずれた位置でピーク位置が検出されるという問
題が生しる。
This integration method is usually combined with a writing method that reduces low-frequency components (for example, scrambled IIRZI).
used in The reason for this is that the playback output from the first head does not have a low frequency component. For example, in the case of a waveform that is 1-7 asymmetric with respect to Hoenelein old 7, such as the integral waveform shown in Fig. The lTr function of the component is insufficient and it becomes long.
This is to suppress this problem. In addition, Figure 6 (
81 is rlJ rOJ data for recording. but,
It is difficult to make long-period fluctuations completely zero, and when the slice level is set to zero, the peak pulse PPI and PP2 in Figure 6 (C) will shift by 8 T from the original signal peak position. A problem arises in that the peak position is detected at a certain position.

以上のように従来の再生方式によるピーク位置検出には
多くの問題が残されている。
As described above, many problems remain in peak position detection using conventional reproduction methods.

(d) 発明の目的 本発明は、このような従来の状況からノイズに強くて正
確な信号のピーク位置検出を行うことができる新しい磁
気記憶装置の再生方式の提供を目的とするものである。
(d) Object of the Invention It is an object of the present invention to provide a new reproducing method for a magnetic storage device that is resistant to noise and capable of accurately detecting the peak position of a signal.

(e)発明の構成 上記目的を達成するために本発明によれば、従来の微分
、積分方式の長所に着目して、振幅変動に強くて信号の
ピーク位置を正確に検出できる特徴を持つ微分方式によ
り再生信号のピーク位置を検出し、振幅マージンが大き
い特徴を持つ積分方式によりノイズによる信号のピーク
位置を除外するゲート信号を形成し、これら方式による
信冒波形の合成によって本来の信号のピーク位置を検出
するようにした磁気記憶装置の再生方式が提案される。
(e) Structure of the Invention In order to achieve the above object, the present invention focuses on the advantages of conventional differentiation and integration methods, and provides a differentiation system that is resistant to amplitude fluctuations and capable of accurately detecting the peak position of a signal. A method detects the peak position of the reproduced signal, an integration method with a large amplitude margin is used to form a gate signal that excludes the peak position of the signal due to noise, and a synthesis of the signal waveforms using these methods detects the peak of the original signal. A playback method for a magnetic storage device that detects position is proposed.

さらに置体的には、磁気記録媒体上に論理値r1.J、
rOJのデータを磁気ヘッドで記録し、そしてそれを再
生する磁気記1.#装置において、前記磁気ヘッドによ
り読め出された記録データを微分回路と積分回路にそれ
ぞれ通して微分波形と積分波形を形成し、前記微分波形
LJ第1の1ノヘルスライス回路と第1の遅延回路をh
10次通して所定ビット数分遅延されたピークパルスに
変換し、前記積分波形は第2のレベルスライス回路を通
してピークパルスに変換後さらに第2の遅延回路と単安
定回路に並列入力され、該小安定回路の出力と前記第2
の遅延回路の所定ピッ(・数分遅延されたピークパルス
出力とにより前記記録データにおける「0」の連続する
位置と時間幅を検出し、この検出された時間幅信号をゲ
ート信号として前記第1の遅延回路よりのピークパルス
群の内のノイズによるパルスを除外して抽出するように
したことを特徴とする磁気記憶装置の再生方式を提案す
るものである。
Furthermore, in physical terms, the logical value r1. J.
A magnetic recorder for recording rOJ data with a magnetic head and reproducing it 1. # In the apparatus, the recorded data read by the magnetic head is passed through a differentiating circuit and an integrating circuit to form a differential waveform and an integral waveform, and the differential waveform LJ is passed through a first one-noh slice circuit and a first delay. h the circuit
The integrated waveform is converted into a peak pulse delayed by a predetermined number of bits through a 10-order pulse, and the integrated waveform is converted into a peak pulse through a second level slice circuit, and then input in parallel to a second delay circuit and a monostable circuit. The output of the stabilizing circuit and the second
The consecutive positions and time widths of "0" in the recorded data are detected by a predetermined pitch (peak pulse output delayed by several minutes) of the delay circuit, and the detected time width signal is used as a gate signal to detect the first The present invention proposes a reproducing method for a magnetic storage device, which is characterized in that pulses due to noise are extracted from a group of peak pulses from a delay circuit of the present invention.

(fl 発明の実施例 以下、本発明の一実施例につき第7図のブロック図と第
8図の信号波形を参照して詳細に説明する。
Embodiment of the Invention Hereinafter, an embodiment of the invention will be described in detail with reference to the block diagram of FIG. 7 and the signal waveform of FIG. 8.

すなわち、第7図において11は磁気ヘッド、12は書
込み回路、13は増幅器、14は微分回路、15および
18は零スライス回路、]6およびI9は遅延回路、1
7は積分回路、20はリトリガブル単安定回路、21お
よび23はアンド回路、22ばフリップフロップ回路で
ある。
That is, in FIG. 7, 11 is a magnetic head, 12 is a write circuit, 13 is an amplifier, 14 is a differential circuit, 15 and 18 are zero slice circuits, ] 6 and I9 are delay circuits, 1
7 is an integrating circuit, 20 is a retriggerable monostable circuit, 21 and 23 are AND circuits, and 22 is a flip-flop circuit.

この再生回路構成の動作を第8図の信号波形と共に説明
するが、ごの例では第8図(a)で明らかなように「0
」が3ビン1〜連続した場合の記録(書込み)データの
再生を対象として示している。すなわち、その記録デー
タは書込み回路12を通して磁気ヘッド11により磁気
ディスク」二に書込まれ、かつ磁気ヘッド11で読み取
られた再生信号〔第8図(bl参照〕し才増幅器】3に
入力される。この増幅器13の出力は分岐してその一方
が微分回路14に入力されて微分される。第8図tc+
に示すこの微分波形は、零スライス回路15を経て同図
(diのピークパルス(第1ピークパルス)PP−Aに
変換される。この第1ピークパルスPP−八にはノイズ
によるパルスNPが含まれており、これらのピークパル
ス、ば遅延回路16で3ヒント遅延されて第8図Fkl
の信号Gとなる。なお、この3ビット分の信号遅延は前
記した書込みデータの形態に基づいて設定したものであ
る。
The operation of this reproducing circuit configuration will be explained together with the signal waveforms shown in FIG. 8. In this example, as is clear from FIG.
'' is shown for reproduction of recorded (written) data when 3 bins 1 or more occur consecutively. That is, the recorded data is written on the magnetic disk 2 by the magnetic head 11 through the write circuit 12, and the reproduced signal read by the magnetic head 11 is input to the amplifier 3 (see FIG. 8). The output of this amplifier 13 is branched and one of them is input to the differentiating circuit 14 and differentiated.
This differential waveform shown in FIG. These peak pulses are delayed by 3 hints in the delay circuit 16 and are shown in FIG.
becomes signal G. Note that this 3-bit signal delay is set based on the format of the write data described above.

一方、前記増幅器13の他方の出力は積分回路17に入
力されて積分される。第8図(elに示すこの積分波形
は、零スライス回1−δ18を経て同図(flに示すピ
ークパルス(第2ピークパルス) PP−8に変換され
る。この第2ピークパルスPP−Rは、遅延回路19と
リトリガブル単安定回路20にそれぞれ入力する。
On the other hand, the other output of the amplifier 13 is input to an integrating circuit 17 and integrated. This integral waveform shown in FIG. 8 (el) is converted into the peak pulse (second peak pulse) PP-8 shown in FIG. 8 (fl) through zero slice times 1-δ18. This second peak pulse PP-R are input to the delay circuit 19 and the retriggerable monostable circuit 20, respectively.

遅延回路19は、入力したそれを前記第1ピークパルス
PP−Aと同様に3ビツト遅延して第8図(hlの信号
りを形成し、アンド回路21とフリップフロップ回路2
2にそれぞれ出力する。リトリガブル単安定回路20は
、前述した3ビツト連続の「0」データの時間幅を判定
するため応答時間を約2ビット分に設定していて、前記
第2ピークパルスpp−nの入力により第8図(g))
に示す信号Cを得て、前記アンド回路21に出力する。
The delay circuit 19 delays the input signal by 3 bits in the same manner as the first peak pulse PP-A to form the signal hl shown in FIG.
Output each to 2. The retriggerable monostable circuit 20 has a response time set to approximately 2 bits in order to determine the time width of the above-mentioned 3-bit continuous "0" data. Figure (g))
A signal C shown in is obtained and output to the AND circuit 21.

アンド回路21は、これらの信号CとDとの論理積信号
〔第8図(i1参照〕Eを前記フリップフロップ回路2
2に出力する。フリップフロップ回路22は、前記遅延
回路19よりの信号りでセットされて論理値「0」の出
力状態となり、かつアンド回路21よりの信号Eで元の
11」出力状態にリセットされるように構成されており
、第8図01がその出力波形である。このフリップフロ
ップ回路22の出力信号Fは、ゲート信号としてアンド
回路23に供給される。アンド回路23は、また前記信
号微分処理系における遅延回路16の第1ピークパルス
PP−A対応の信号Gも入力していて、これを前記ゲー
ト信号Fの「l」状態の期間、通過するようになってい
る。第8図+mlの波形はこの論理積信号Hを示し、こ
れが所望のピークパルスとなる。これから判るように、
ノイズによるパルスNPは除外され正しい信号のピーク
パルスだけが検出されることになる。
The AND circuit 21 outputs a logical product signal E of these signals C and D [FIG. 8 (see i1)] to the flip-flop circuit 2.
Output to 2. The flip-flop circuit 22 is configured to be set by a signal from the delay circuit 19 to an output state of logical value "0", and reset to the original output state of "11" by a signal E from the AND circuit 21. 01 in FIG. 8 is the output waveform. The output signal F of this flip-flop circuit 22 is supplied to an AND circuit 23 as a gate signal. The AND circuit 23 also receives the signal G corresponding to the first peak pulse PP-A of the delay circuit 16 in the signal differentiation processing system, and is configured to pass this signal during the "L" state of the gate signal F. It has become. The waveform +ml in FIG. 8 shows this AND signal H, which becomes the desired peak pulse. As you will see,
Pulses NP due to noise are excluded and only peak pulses of the correct signal are detected.

なお、上記実施例では「0」が3ビツト以上連続した場
合に有効に動作する。2ビツト以下のものに対しても効
力を発揮させるには、リトリガブル単安定回路の応答時
間および遅延回路の遅延時間を変えれば良い。但し通常
[0(が1ビット或いは2ビツトの場合には微分波形が
ベースラインにほとんど接近せず、従ってノイズによる
パルスの発生確率も小さい。
Note that the above embodiment operates effectively when three or more bits of "0" are consecutive. In order to make it effective even for 2 bits or less, the response time of the retriggerable monostable circuit and the delay time of the delay circuit can be changed. However, normally when [0 () is 1 bit or 2 bits, the differential waveform hardly approaches the baseline, and therefore the probability of generation of pulses due to noise is small.

fg) 発明の効果 以上詳細に説明したように、本発明の磁気記1a装置の
再生方式によれば、従来の微分、積分方式よりも正確に
再生信号のピーク位置を検出することができ、極めて信
頼度の高い磁気ティスフ装置などが実現できる。
fg) Effects of the Invention As explained in detail above, according to the reproduction method of the magnetic recording device 1a of the present invention, the peak position of the reproduced signal can be detected more accurately than the conventional differential and integral methods, and is extremely effective. Highly reliable magnetic tisf devices can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は従来の磁気記憶装置の微分法による
再生方式を説明するための信号波形図、第5図と第6図
は同し〈従来の積分法による再生方式を説明するための
信号波形図、第7図および第8図は本発明に係る再生方
式の一具体例を説明するためのブロック図と信号波形図
である。 図において11は磁気ヘソ1′、I2ば書込め回路、1
3は増幅器、14ば微分回路、15および18は零スラ
イス回路、16および19は遅延回路、17は積分回路
、20はリトリガブル単安定回路、21および23はア
ンド回路、22はフリソプフ11ツブ回路をそれぞれ示
C1−〇□−O −−ミ→ g−9i:3 6
Figures 1 to 4 are signal waveform diagrams for explaining the reproduction method using the differential method of a conventional magnetic storage device, and Figures 5 and 6 are the same (for explaining the reproduction method using the conventional integral method). FIGS. 7 and 8 are a block diagram and a signal waveform diagram for explaining a specific example of the reproduction method according to the present invention. In the figure, 11 is a magnetic belly button 1', I2 is a write circuit, 1
3 is an amplifier, 14 is a differentiation circuit, 15 and 18 are zero slice circuits, 16 and 19 are delay circuits, 17 is an integration circuit, 20 is a retriggerable monostable circuit, 21 and 23 are AND circuits, and 22 is a Frisopf 11 tube circuit. Respectively, C1-〇□-O --Mi→ g-9i: 3 6

Claims (1)

【特許請求の範囲】[Claims] 磁気記録媒体上に論理値rlJ、rOJのデータを磁気
ヘッドで記録し、そしてそれを再生ずる磁気記憶装置に
おいて、前記磁気へ・7Fにより読み出された記録デー
タを微分回路と積分回路にそれぞれ通して微分波形と積
分波形を形成し、前記微分波形は第1のレベルスライス
回路と第1の遅延回路を順次通して所定ヒツト数分遅延
されたピークパルスに変換し、前記積分波形は第2のレ
ベルスライス回路を通してピークパルスに変換後さらに
第2の遅延回路と単安定回路に並列入力され、該単安定
回路の出力と前記第2の遅延回路の所定ビット数分遅延
されたピークパルス出力とにより前記記録データにおけ
る「0」の連続する位置と時間幅を検出し、この検出さ
れた時間幅信号をケート信号にして前記第1の遅延回路
よりのピークパルス群の内のノイズによるパルスを除外
して抽出するようにしたことを特徴とする磁気記1a装
置の再生方式。
In a magnetic storage device that records data of logical values rlJ and rOJ on a magnetic recording medium using a magnetic head and then reproduces the data, the recorded data read out by the magnetic head 7F is passed through a differentiating circuit and an integrating circuit, respectively. to form a differential waveform and an integral waveform, the differential waveform is sequentially passed through a first level slice circuit and a first delay circuit and converted into a peak pulse delayed by a predetermined number of hits, and the integral waveform is converted to a peak pulse delayed by a predetermined number of hits. After being converted into a peak pulse through a level slice circuit, it is further inputted in parallel to a second delay circuit and a monostable circuit, and the output of the monostable circuit and the peak pulse output delayed by a predetermined number of bits of the second delay circuit are used. Detecting the continuous position and time width of "0" in the recorded data, and using the detected time width signal as a gate signal to exclude pulses due to noise among the peak pulse group from the first delay circuit. 1. A reproducing method for a magnetic recording device 1a, characterized in that the magnetic recording device 1a extracts data by
JP58232407A 1983-12-08 1983-12-08 Reproduction system of magnet memory device Pending JPS60124063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58232407A JPS60124063A (en) 1983-12-08 1983-12-08 Reproduction system of magnet memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232407A JPS60124063A (en) 1983-12-08 1983-12-08 Reproduction system of magnet memory device

Publications (1)

Publication Number Publication Date
JPS60124063A true JPS60124063A (en) 1985-07-02

Family

ID=16938757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232407A Pending JPS60124063A (en) 1983-12-08 1983-12-08 Reproduction system of magnet memory device

Country Status (1)

Country Link
JP (1) JPS60124063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186097A (en) * 2019-07-01 2021-01-05 上海磁宇信息科技有限公司 Structure for optimizing write performance of magnetic random access memory and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186097A (en) * 2019-07-01 2021-01-05 上海磁宇信息科技有限公司 Structure for optimizing write performance of magnetic random access memory and preparation method thereof
CN112186097B (en) * 2019-07-01 2023-10-27 上海磁宇信息科技有限公司 Structure for optimizing writing performance of magnetic random access memory and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0477391B2 (en)
KR850004147A (en) Optical information recorder
US4774601A (en) Read channel for magnetic recording
KR100240788B1 (en) Digital data reproducing apparatus
KR890002871A (en) Digital signal reproducing device
JPS60124063A (en) Reproduction system of magnet memory device
US5420726A (en) Channel qualifier for a hard disk drive which differentiates a raw data signal before peak detection and qualification of the signal
JPH0467244B2 (en)
US4876615A (en) Data decoding system
JPS601654A (en) Recording device
US5239422A (en) Rotary head type digital magnetic recording-reproducing apparatus
JP3291047B2 (en) Magneto-optical disk playback device
US3614758A (en) Method and apparatus for saturation-type digital magnetic recording
JPS6353609B2 (en)
JPH0522281B2 (en)
JP3104182B2 (en) Magnetic disk
JPS5849924B2 (en) The best way to do it
JPH0793904A (en) Information recording apparatus, information reproducing apparatus and optical disk
KR920018660A (en) Playback unit of magnetic recording and playback device
JPH07254106A (en) Sector servo system magnetic disk device
JPS61264559A (en) Optical disc
JPS598890B2 (en) data detection device
JPH0479003A (en) Magnetic recorder
JPH0580070B2 (en)
JPS6180567A (en) Magnetic recording and reproducing device