JPS6012303B2 - Heat shock resistant ceramic sound absorber - Google Patents

Heat shock resistant ceramic sound absorber

Info

Publication number
JPS6012303B2
JPS6012303B2 JP51075015A JP7501576A JPS6012303B2 JP S6012303 B2 JPS6012303 B2 JP S6012303B2 JP 51075015 A JP51075015 A JP 51075015A JP 7501576 A JP7501576 A JP 7501576A JP S6012303 B2 JPS6012303 B2 JP S6012303B2
Authority
JP
Japan
Prior art keywords
ceramic
sound absorber
thermal expansion
coefficient
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51075015A
Other languages
Japanese (ja)
Other versions
JPS531206A (en
Inventor
徳久 岡田
宗治 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP51075015A priority Critical patent/JPS6012303B2/en
Publication of JPS531206A publication Critical patent/JPS531206A/en
Publication of JPS6012303B2 publication Critical patent/JPS6012303B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Building Environments (AREA)

Description

【発明の詳細な説明】 本発明は高温蒸気などの高温度の排ガスを排出する吸音
排気塔等の吸音体として特に優れた耐熱衝撃性セラミッ
ク吸音体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal shock-resistant ceramic sound absorber that is particularly excellent as a sound absorber for sound absorbing exhaust towers and the like that discharge high temperature exhaust gas such as high temperature steam.

従来各種工場等より排出される蒸気などの高温度の排ガ
スを排出する排気塔には、排出管などの騒音を消音ある
し・は吸音するため、ガラスウール等の繊維状吸音体が
広く使用されている。しかしながら繊維状吸音材は、水
蒸気あるいは降雨などにより一旦吸水すると完全除水が
非常に困難となり、吸水によって吸音率が箸るしく低下
する致命的な欠点がある。
Conventionally, fibrous sound absorbers such as glass wool have been widely used in exhaust towers that discharge high-temperature exhaust gases such as steam discharged from various factories to muffle or absorb noise from exhaust pipes, etc. ing. However, once fibrous sound absorbing materials absorb water due to water vapor or rain, it becomes extremely difficult to remove the water completely, and the fibrous sound absorbing material has the fatal drawback that its sound absorption coefficient drops significantly due to water absorption.

この欠点を補うため最近は繊維状吸音体に代って「珪砂
〜貢岩、あるいはセラミックタイル等を粉砕した粒子等
を、合成樹脂あるいは水ガラス等の結合剤で結合したい
わゆるセラミック吸音体が使用されるようになった。
In order to compensate for this drawback, recently, instead of fibrous sound absorbers, so-called ceramic sound absorbers have been used, which are made by combining silica sand, tributary rock, or crushed particles of ceramic tiles with a binder such as synthetic resin or water glass. It started to be done.

これらのセラミック吸音体は吸水しても極めて簡単かつ
迅速に除水ができるので、吸音率の箸るしい低下はみら
れないが、しかしながら高圧水蒸気排出のように高温度
の排ガスにさらされると熱衝撃によって破壊を生ずる欠
点がある。
Even if these ceramic sound absorbers absorb water, they can be removed extremely easily and quickly, so there is no significant decrease in sound absorption coefficient. It has the disadvantage of being destroyed by impact.

本発明の耐熱衝撃性セラミック吸音体は、従来のこれら
の欠点を解決したもので、熱膨脹係数が6〜3.5×1
0‐6/℃のセラミック粒子を、熱膨脹係数が5〜2.
5×10‐6/℃のガラス質を主成分とする耐熱性結合
剤で連続気孔を設けて結合した耐熱衝撃性セラミック吸
音体である。
The thermal shock-resistant ceramic sound absorber of the present invention solves these conventional drawbacks, and has a thermal expansion coefficient of 6 to 3.5 x 1.
Ceramic particles with a thermal expansion coefficient of 5-2.
This is a thermal shock-resistant ceramic sound absorber bonded with continuous pores using a heat-resistant binder mainly composed of glass with a temperature of 5 x 10-6/°C.

さらに詳しくは本発明の耐熱衝撃性セラミック吸音体を
説明すれば、熱膨脹係数が6〜3.5×10‐6/℃(
20℃〜600℃)の範囲内の磁器,陶器,あるいは耐
火物等のセラミック物質を粉砕整粒して得た、好ましく
は0.4〜3肌の粒径より成るセラミック粒子を、熱膨
脹係数が好ましくはセラミック粒子より2.5〜1×1
0‐6/℃程度小さい5〜2.5×10‐6/℃(20
午C〜600℃)範囲内のガラスあるいは紬薬等のガラ
ス質を主成分とする耐熱性結合剤で被覆し、板状に連続
気孔を設けて成形後、耐熱性結合剤の軟化温度と溶融温
度との間の温度で焼結して、連続気孔を設けた状態で結
合した耐熱衝撃性セラミック吸音体である。
More specifically, the thermal shock-resistant ceramic sound absorber of the present invention has a coefficient of thermal expansion of 6 to 3.5 x 10-6/°C (
Ceramic particles, preferably having a particle size of 0.4 to 3 degrees, obtained by crushing and sizing ceramic materials such as porcelain, ceramics, or refractories within the range of 20 to 600 degrees Celsius, are Preferably 2.5 to 1×1 than ceramic particles
5 to 2.5 x 10-6/℃ (20
It is coated with a heat-resistant binder mainly composed of glass or vitreous material such as pongee (within the range of 600 °C to 600 °C), and after forming into a plate with continuous pores, the softening temperature and melting temperature of the heat-resistant binder are determined. This is a thermal shock-resistant ceramic sound absorber that is sintered at a temperature between

本発明で使用するセラミックスの組成の一例を挙げると
次の通りである。
An example of the composition of the ceramic used in the present invention is as follows.

セラミックス練成 Aそ2〇3 20〜60% SiQ 30〜80% K20十Na20 1〜5% Mg○十Ca0 1〜20% その他(不純物)1〜5% 熱膨脹係数 6〜3.5十lo−6/℃次に本発
明に使用するガラス結合剤の組成の一例をあげると次の
通りである。
Ceramics kneading A 203 20~60% SiQ 30~80% K20~Na20 1~5% Mg○~Ca0 1~20% Others (impurities) 1~5% Thermal expansion coefficient 6~3.5~lo- 6/°C Next, an example of the composition of the glass binder used in the present invention is as follows.

なおガラス結合剤の組成は中性酸化物10〜30%、酸
性酸化物50〜80%、塩基性酸化物5〜20%の範囲
の組合せが必須の条件で、夫々の酸化物は上記の例示に
限られるものではない。
The composition of the glass bonding agent must be a combination of 10 to 30% neutral oxide, 50 to 80% acidic oxide, and 5 to 20% basic oxide, and the respective oxides may be selected from the above examples. It is not limited to.

本発明において、セラミックスの熱膨脹係数よりガラス
の熱膨脹係数を小さくした理曲ま強い機械的強度を有す
るセラミックスをこれより若干小さい熱駒彰脹係数を有
するガラスにより被覆しガラス溶融温度以上で焼成し、
冷却すると「 セラミックスの方がガラスの熱膨脹係数
より大きいため、ガラスより体積収縮が多くなり、従が
つて、セラミックス粒子表面を被覆しているガラスが内
側に引張られ、結果的にガラス表面方向に圧縮力が作用
することとなります。
In the present invention, a ceramic having strong mechanical strength with a thermal expansion coefficient smaller than that of glass than that of ceramics is coated with glass having a thermal expansion coefficient slightly smaller than the thermal expansion coefficient of glass, and is fired at a temperature higher than the glass melting temperature.
When cooled, "ceramics have a larger coefficient of thermal expansion than glass, so they contract more in volume than glass. As a result, the glass covering the surface of the ceramic particles is pulled inward, and as a result, it is compressed in the direction of the glass surface." Force will be applied.

セラミック吸音体に急熱または急冷が加わると温度分布
差により熱血彰膿差が生じ、内部に引張力が発生します
が、本願セラミック吸音体はセラミック粒子を結合して
いるガラスに圧縮力を内在しているため、急熱または急
冷によって発生する引張力とキャンセルしあい、結果的
に耐熱衝撃性の高い吸音体となるからである。なお、本
発明においてセラミック粒子の熱駒酸腹係数を6〜3.
5×10‐6/℃と限定したのは、セラミック粒子の熱
膨脹係数が6xlo‐6/℃を越えて大きくなるとセラ
ミック吸音体の耐熱衝撃性が低下して高圧水蒸気等に使
用した場合破壊しやすくなって好ましくなく、又3.5
×10‐6/℃未満の場合は、特定の高価なセラミック
粒子しか存在せず実用的でなく、しかも耐熱性結合剤と
の熱膨脹係数差が小さくなって、耐熱衝撃性の向上の点
で好ましくないものである。
When a ceramic sound absorber is rapidly heated or cooled, the difference in temperature distribution causes a difference in temperature and tensile force is generated internally, but the ceramic sound absorber of this application has a compressive force built into the glass that binds the ceramic particles. This is because the material cancels out the tensile force generated by rapid heating or cooling, resulting in a sound absorbing material with high thermal shock resistance. In addition, in the present invention, the thermoplasticity coefficient of the ceramic particles is 6 to 3.
The reason why it is limited to 5×10-6/℃ is because if the thermal expansion coefficient of the ceramic particles exceeds 6×lo-6/℃, the thermal shock resistance of the ceramic sound absorber will decrease and it will be easily destroyed when used in high-pressure steam, etc. 3.5.
If it is less than ×10-6/°C, only specific expensive ceramic particles are present and it is not practical, and the difference in coefficient of thermal expansion with the heat-resistant binder becomes small, which is preferable from the viewpoint of improving thermal shock resistance. It's something that doesn't exist.

また、耐熱性結合剤の熱膨脹係数を5〜2.5×10‐
6/℃と限定したのは、5×10‐6/℃を越えて大き
くなると、熱衝撃によって吸音体が破壊しやすくなるた
めであり、また下限を2.5×10‐6/℃と限定した
のは、これ以下の実用的な耐熱性結合剤がないためであ
る。
In addition, the thermal expansion coefficient of the heat-resistant binder is 5 to 2.5 × 10-
The reason for limiting the value to 6/°C is that if the temperature exceeds 5 x 10-6/°C, the sound absorber will be easily destroyed by thermal shock, and the lower limit was set at 2.5 x 10-6/°C. This is because there is no practical heat-resistant binder that is lower than this.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

表に記載する種々の組成および熱膨脹係数を持った各種
のセラミック物質を、ロール型粉砕機で粉砕筋分して、
0.5〜2職の粒径に整粒したセラミック粒子を用意し
た。
Various ceramic materials having various compositions and coefficients of thermal expansion listed in the table are crushed into strips using a roll-type crusher.
Ceramic particles sized to a particle size of 0.5 to 2 were prepared.

またこれとは別に表に記載する各種の組成および熱通諺
眼係数を持った耐熱性結合剤を用意した。
Separately, heat-resistant binders having various compositions and heat transmission coefficients listed in the table were prepared.

そして、表に記載するセラミック粒子と耐熱性結合剤と
の組合わせにより、セラミック粒子と耐熱性結合剤との
調合物を混練し、300×300×3伍吻の金型を用い
て、板状にプレス成型した。そして暁結して本発明の耐
熱衝撃性セラミック吸音体(恥.1〜肺.10)を得た
。また比較のために、本発明で限定した熱風酸脹係数の
範囲外のセラミック粒子および耐熱性結合剤を使用した
ものを、参考品(No.11〜No.18)とし、さら
に市販品を従来品(M.19〜No.20)としてそれ
ぞれ用意した。
Then, by combining the ceramic particles and heat-resistant binder listed in the table, the mixture of ceramic particles and heat-resistant binder was kneaded and molded into a plate shape using a 300 x 300 x 3 mould. Press molded into. As a result, a thermal shock-resistant ceramic sound absorbing body of the present invention (shame: 1 to lung: 10) was obtained. For comparison, reference products (No. 11 to No. 18) using ceramic particles and a heat-resistant binder outside the hot air expansion coefficient range defined in the present invention were used, and commercially available products were compared to conventional products. (M.19 to No.20) were prepared respectively.

そしてこれら各セラミック吸音体について400℃の陣
温槽中に15分間保持した後、20qoの水中に投入し
て1粉ご間保持して1サィクルとする急熱急冷試験およ
び曲げ試験を実施した。
Each of these ceramic sound absorbers was held in a temperature bath at 400° C. for 15 minutes, and then put into 20 qo water and held in each powder for one cycle of a rapid heating and cooling test and a bending test.

その結果は表に記載するとおりである。The results are shown in the table.

船 表の実施例の結果より明らかなとおり、セラミック粒子
の熱膨脹係数が6×3.5×10‐6/℃、耐熱性結合
剤の熱膨脹係数が5〜2.5×10‐6/℃の範囲内に
ある本発明の船.1〜舷.10は極めて耐熱衝撃性に優
れていることが確認され、セラミック粒子あるいは耐熱
降給合剤のどちらか一方あるいはその両方が、数値限定
範囲外にある参考品の肺.11〜M.18および柚.1
9〜No.20の従来品は耐熱衝撃性に劣ることが確認
された。
As is clear from the results of the examples on the ship table, the coefficient of thermal expansion of the ceramic particles is 6 x 3.5 x 10-6/℃, and the coefficient of thermal expansion of the heat-resistant binder is 5 to 2.5 x 10-6/℃. Ships of the invention within range. 1~Side. No. 10 was confirmed to have extremely excellent thermal shock resistance, and the reference product Lung. 11~M. 18 and Yuzu. 1
9~No. It was confirmed that the conventional product No. 20 had poor thermal shock resistance.

以上のべたごとく本発明の耐熱衝撃性セラミック吸音体
は、熱塊鼓腹係数の限定されたセラミック粒子と同じ熱
膨脹係数の限定された耐熱性結合剤との組合わせにより
、従来にない耐熱衝撃性に優れたセラミック吸音体が得
られたものであり、しかもセラミック質であるので水蒸
気や降雨によっても吸音率が低下することも少ない利点
がある。
As described above, the thermal shock resistant ceramic sound absorber of the present invention has unprecedented thermal shock resistance due to the combination of ceramic particles with a limited thermal bulk coefficient and a heat resistant binder with the same limited thermal expansion coefficient. An excellent ceramic sound absorber has been obtained, and since it is made of ceramic, it has the advantage that the sound absorption coefficient is less likely to decrease even when exposed to water vapor or rain.

Claims (1)

【特許請求の範囲】[Claims] 1 Al_2O_320〜60%,SiO_230〜8
0%,K_2O+Na_2O1〜5%,MgO+CaO
1〜20%で熱膨脹係数が6〜3.5×10^−^6/
℃のセラミツク粒子と、中性酸化物10〜30%,酸性
酸化物50〜80%,塩基性酸化物5〜20%で熱膨脹
係数が5〜2.5×^−^6/℃のガラス質を主成分と
し、かつ、ガラス質粒子の熱膨脹係数がセラミツク粒子
より2.5〜1×10^−^6/℃だけ小さい配合とし
た耐熱性結合剤でセラミツク粒子を被覆し、連続気孔を
設けて焼結し結合したことを特徴とする耐熱衝撃性セラ
ミツク吸音体。
1 Al_2O_320~60%, SiO_230~8
0%, K_2O+Na_2O1~5%, MgO+CaO
Thermal expansion coefficient is 6 to 3.5 x 10^-^6/ at 1 to 20%
Ceramic particles at ℃, 10-30% neutral oxides, 50-80% acidic oxides, 5-20% basic oxides, and a glassy material with a thermal expansion coefficient of 5-2.5 x ^-^6/℃ Ceramic particles are coated with a heat-resistant binder containing as the main component and the coefficient of thermal expansion of the glassy particles is 2.5 to 1 x 10^-^6/°C smaller than that of the ceramic particles, and continuous pores are provided. A thermal shock-resistant ceramic sound absorber characterized by being sintered and bonded.
JP51075015A 1976-06-26 1976-06-26 Heat shock resistant ceramic sound absorber Expired JPS6012303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51075015A JPS6012303B2 (en) 1976-06-26 1976-06-26 Heat shock resistant ceramic sound absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51075015A JPS6012303B2 (en) 1976-06-26 1976-06-26 Heat shock resistant ceramic sound absorber

Publications (2)

Publication Number Publication Date
JPS531206A JPS531206A (en) 1978-01-09
JPS6012303B2 true JPS6012303B2 (en) 1985-04-01

Family

ID=13563922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51075015A Expired JPS6012303B2 (en) 1976-06-26 1976-06-26 Heat shock resistant ceramic sound absorber

Country Status (1)

Country Link
JP (1) JPS6012303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068202B2 (en) * 1986-08-28 1994-02-02 三菱重工業株式会社 Ceramic sound absorbing body manufacturing method
JPH02152460A (en) * 1988-12-01 1990-06-12 Fuji Titan Kogyo Kk Dielectric ceramic beads

Also Published As

Publication number Publication date
JPS531206A (en) 1978-01-09

Similar Documents

Publication Publication Date Title
US3488723A (en) Acoustical material for high temperature application
US4650775A (en) Thermally bonded fibrous product
US20160230383A1 (en) Silicic acid mixtures and use thereof as insulation material
JP2684518B2 (en) Method for producing fine porous body having heat insulating property
US6416572B1 (en) Binder compositions for bonding particulate material
CN107988851A (en) Soluble ceramic fiber plate and preparation method thereof
US6180927B1 (en) Heat insulating moulded body and process for producing the same
JPS6012303B2 (en) Heat shock resistant ceramic sound absorber
US6773618B2 (en) Microporous thermal insulation molding containing electric-arc silica
CA2354967A1 (en) Porosifying, solidification-accelerating additive for binding agent building materials, and process of producing same
US4481124A (en) Thermal shock resistant porous sound absorbing body
US5496780A (en) Method for producing silica brick
US2970061A (en) Building units and method of producing the same
KR101544082B1 (en) Inorganic insulation board
JP3359429B2 (en) Ceramic bonding composition and bonding method
JPH01100204A (en) Porous aluminum or aluminum alloy body
JPS6137228B2 (en)
KR102444232B1 (en) Ecofriendly sound-absorbing board and method for manufacturing the same
SU1034355A1 (en) Composition for impregnating glass-fibre fabric
SU1014822A1 (en) Raw mix for making heat insulating products
JPH0535112B2 (en)
JPH0780714B2 (en) Ceramic sound absorbing plate and method of manufacturing the same
JPH02204353A (en) Sound absorbing material
JPH0519772A (en) Ceramic sound absorbing material
JPH0153237B2 (en)