JPS6137228B2 - - Google Patents

Info

Publication number
JPS6137228B2
JPS6137228B2 JP54136735A JP13673579A JPS6137228B2 JP S6137228 B2 JPS6137228 B2 JP S6137228B2 JP 54136735 A JP54136735 A JP 54136735A JP 13673579 A JP13673579 A JP 13673579A JP S6137228 B2 JPS6137228 B2 JP S6137228B2
Authority
JP
Japan
Prior art keywords
molded article
inorganic fiber
sodium montmorillonite
drying
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54136735A
Other languages
Japanese (ja)
Other versions
JPS5659665A (en
Inventor
Misao Nobori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP13673579A priority Critical patent/JPS5659665A/en
Publication of JPS5659665A publication Critical patent/JPS5659665A/en
Publication of JPS6137228B2 publication Critical patent/JPS6137228B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無機繊維とコロイダルシリカ等からな
るスラリーまたはペースト状物を成形乾燥して均
一に硬化させてなる無機繊維成形体及びその製造
方法に関するものである。 一般に無機繊維に結合剤としてコロイダルシリ
カを使用して得られる無機繊維成形体は、耐熱性
断熱性及び耐熱衝撃性等に優れているため高温用
の保温断熱材料として広く利用されている。しか
しこの種の成形体は、その製造工程における乾燥
時に結合剤たるコロイダルシリカが該成形体の表
面に移行するため該成形体内部では結合剤の不足
が生じ、そのため十分な機械的強度は得られず、
該成形体の加工性及び加工後の機械的強度が著し
く低下するという欠点があつた。 このような成形体を製造する際に従来採用され
ている方法は、コロイダルシリカを水に分散させ
た分散液中に無機繊維を投入解繊して分散させた
スラリー状物またはペースト状物を所望の形状に
成形した乾燥硬化させる方法である。しかしなが
ら、この従来方法においては、その乾燥時に該成
形体内部に存在するコロイダルシリカがその成形
体表面から水分蒸発に伴う内部水分の表面への移
行とともに表面に移行する現象、すなわちマイグ
レーシヨンを起しその乾燥終了時には結合剤たる
コロイダルシリカのゲル化合物は成形体表面付近
に集合するため成形体内部では同ゲル化物が不足
し十分な機械的強度は得られず、成形体の加工性
及び加工後の機械的強度が著しく低下するという
欠点があつた。 上記欠点を解消するため結合剤たるコロイダル
シリカの乾燥時におけるマイグレーシヨン防止す
る諸々の方法が検討されている。 たとえば乾燥方法としては、 低温での緩やかな熱風伝熱乾燥(43゜ないし
49℃)をする方法。(特公昭37―8590号) 高周波伝熱乾燥をする方法。 一方、スラリーあるいはペースト状物への添
加による方法として、 ゲル化剤添加による方法。(特開昭53―27618
号) また、増粘剤添加による方法などがある。 しかしながら、これらの方法は、たとえば上記
においては、乾燥時間が著しく長くなるため生
産性が低下し、上記においては該装置が非常に
高価であること、複雑な形状のものには適用が困
難であること及び乾燥時のコントロールが困難で
あるといつた未解決の問題があり、また上記,
においては、スラリー中のコロイダルシリカの
安定性を低下させたり、成形体の耐熱性を低下さ
せたり、あるいは添加剤として有機物質を使用す
る場合には成形体の使用時に有害ガス煙が発生す
るといつた二次的な好ましくない現象が生じるの
で満足できる方法ではない。 本発明は、上記の乾燥時における成形体内部の
コロイダルシリカのマイグレーシヨンを防止する
ことを目的として、均一に硬化した成形体が上述
の欠点などが全く生じることなく該成形物を乾燥
しうる方法を提供することを目的とするものであ
る。 以下本発明を具体的に説明する。 本発明において使用される無機繊維としては、
セラミツクフアイバー、アルミナフアイバー、ジ
ルコニアフアイバー、石英ウール、ロツクウー
ル、スラグウール、グラスウールアスベストなど
があり、このうち特にセラミツクフアイバーが高
耐熱性及び価格の点で最も好ましい。また、結合
剤として用いるコロイダルシリカは、水分散液の
状態で使用され、その濃度に対しては特に制限は
ない。 また、本発明の上記目的のために用いられるソ
ジウムモンモリロナイトは、ベントナイト、酸性
白土等の粘土を構成する主要鉱物であるモンモリ
ロナイトの一種であり、その平均的粒子の大きさ
は1μ×0.4μ×0.04μ程度であつた理想的な化
学式としては、Na(Al5/3Mg1/3)Si4O10
(OH)2・nH2Oで示される層状ケイ酸塩鉱物中最
も陽イオン交換容量などが大きく特徴的な性質を
示す鉱物である。すなわち、ソジウムモンモリロ
ナイトは水及び有機溶媒中において大きな膨潤力
を呈し、またその分散液は膨潤に起因する大きな
粘性をも示し、その濃度が高くなるにつれて同液
のチクソトロピー特性は著しく増大するものであ
る。この特性は他の粘土鉱物のそれに比べて非常
に高いものである。 本発明の無機繊維成形体中のソジウムモンモリ
ロナイトの割合は、重量パーセントで0.2〜20%
が最も好ましい。すなわち、ソジウムモンモリロ
ナイトの割合が0.2重量%未満になるとマイクレ
ーシヨン防止効果が著しく低下し、内部まで均一
な硬度を有する成形体が得られ難い。他方、20重
量%を超すと成形後の成形体中でのソジウムモン
モリロナイトの分散媒である水の量が多くなるた
め脱型操作あるいはその後の取り扱いが困難にな
るとともに、乾燥時における乾燥収縮が大きく、
得られた成形体の寸法精度は著しく低下する。 本発明の製造方法においては、まずソジウムモ
ンモリロナイトあるいはソジウムモンモリロナイ
トの水分散液をコロイダルシリカと共に水に分散
させた分散液中もしくは無機繊維を投入し解繊し
て均一に分散させたスラリーまたはペースト状物
を得るまでの任意の時期に添加する。この場合、
コロイダルシリカ水分散液もしくはスラリーまた
はスラリー状物中のコロイダルシリカ及びソジウ
ムモンモリロナイトは共に微量のアルカリにより
安定化され両者の粒子間では同じ表面電荷を有し
ているため両者間の結合による凝集はなく長期位
定性を保持するものである。 そして、同スラリーもしくはペースト状物から
脱水成形後、従来の乾燥方法により乾燥し成形体
を得る。この場合には、スラリーもしくはペース
ト状物中のコロイダルシリカは成形体の成形後あ
るいは乾燥時においてソジウムモンモリロナイト
それ自身が有しているチクソトロピー特性を増大
させゲル状構造をとるため、本来ならばソジウム
モンモリロナイトと同電荷を有しているために非
常にマイグレーシヨンを起こしやすい状態にある
にもかかわらずソジウムモンモリロナイト粒子間
に取り込まれるためのマイグレーシヨンを起こさ
ないことを知見したものである。そのため乾燥し
て得られた成形体は従来の成形体のごとく内部の
硬さが著しく低いということはなく内部までほぼ
均一な硬さを示すのである。 一方、スラリーまたはペースト状物の脱水成形
後回収されるコロイダルシリカとソジウムモンモ
リロナイトとを含有する水分散液は上述したごと
く非常に安定な状態を保つとともに、同液中には
有機物質を全く含まないため長期間放置しても腐
敗することもなく長期にわたつて反覆利用できる
利点がある。また、スラリーもしくはペースト状
物からの成形工程においては従来法と全く変わら
ないのはもちろんのこと作業性生産においても優
るとも劣らないものである。 このように本発明方法により得られた無機繊維
成形体は、当初の目的である内部まで均一に硬化
した成形体であるばかりでなく、構成材料がすべ
て無機質であつて結合助剤として添加されるソジ
ウムモンモリロナイトが非常に耐熱性に優れてい
るため、十分な加工性を有しかつ加工による強度
低下が生じないのはもちろんのこと構成材料中に
有機物質を含まないため加熱時の有害ガス煙等の
発生による被害は全くなく、かつ耐熱性が著しく
向上し高温において優れた熱特性を有するもので
ある。 こうした理由により本発明の無機繊維成形体
は、寸法精度を得ることあるいは所望の形状の成
形体を得ること等を目的とした後加工を必要とす
る保温断熱材料として最適のものであつて、同成
形体を一部品として構成される製品の使用上ある
いは作業環境上有害ガス煙等の発生を避けらけれ
ばならない分野、あるいは従来よりも高耐熱性を
必要とする分野における保温断熱材料として使用
することができる新規で有用な無機繊維成形体で
ある。 以下本発明の実施例について説明する。 〔実施例1〕 コロイダルシリカ(粒子径10〜20mμ)の10%
水分散液16中に、ソジウムモンモリロナイト
(化学組成SiO261.18%、Al2O322.48%、MgO3.42
%、Fe2O32.09%、CaO0.54%、Na2O4.02%、
K2O0.14%、Ig loss5.98%)を水に対してそれぞ
れ12、3重量%添加し十分に撹拌した後、無機繊
維としてセラミツクフアイバーを水に対して1重
量%投入し解繊して得られたスラーから金網を施
した金型にて吸引脱水成形(真空成形)した。続
いて150℃にて10時間通常の熱風乾燥機により乾
燥を行ない、150×150×25mmの成形体を得た。
得られた成形体の嵩比重及び同成形体の表面硬度
と内部中心部の硬度を測定した。その結果を第1
表のA(1〜3)に示す。なお硬度はゴム硬度計
(RubbertestertyP―eC)により測定した。 また、上記と同様の試験を化学組成SiO272.99
%、Al2O314.98%、MgO0.57%、Fe2O31.56%、
CaO1.114%、Na2O3.54%、K2O0.24%、
Igloss4.98%で示されるソジウムモンモリロナイ
トに対しても行なつた。その結果を同じく第1表
のB(4〜6)に示す。 一方、真空成形後それぞれの回収液を約5か月
間放置した後同液を使用して前回と同一条件にて
成形体を得た。得られた成形体に対して再び前回
と同じ測定を行なつた。その結果を第3表の8〜
14に示す。 また、本発明より得られる成形体と対比するた
めの成形体としてソジウムモンモリロナイトを添
加しない成形体を上記と同様の方法にて作製し、
得られた成形体に対して上記と同様の測定を行な
つた。その結果を第1表の7に示す。
The present invention relates to an inorganic fiber molded article obtained by forming and drying a slurry or paste-like material consisting of inorganic fibers and colloidal silica, etc. and uniformly curing it, and a method for producing the same. In general, inorganic fiber molded articles obtained by using colloidal silica as a binder in inorganic fibers are widely used as heat-insulating materials for high temperatures because they have excellent heat-resistant insulation properties and thermal shock resistance. However, in this type of molded product, colloidal silica, which is a binder, migrates to the surface of the molded product during drying in the manufacturing process, resulting in a lack of binder inside the molded product, and therefore sufficient mechanical strength cannot be obtained. figure,
There was a drawback that the processability of the molded product and the mechanical strength after processing were significantly reduced. The conventional method for manufacturing such molded bodies is to add inorganic fibers to a dispersion of colloidal silica in water, defibrate them, and disperse them to create a slurry or paste-like product. This is a method of drying and curing the molded material into the shape of the material. However, in this conventional method, a phenomenon occurs in which colloidal silica present inside the molded body migrates from the surface of the molded body to the surface as moisture evaporates from the surface of the molded body during drying, that is, migration occurs. At the end of drying, the gel compound of colloidal silica, which is a binder, gathers near the surface of the molded object, so there is not enough gelled material inside the molded object, and sufficient mechanical strength cannot be obtained. The disadvantage was that the mechanical strength was significantly reduced. In order to overcome the above-mentioned drawbacks, various methods have been studied to prevent migration of colloidal silica, which is a binder, during drying. For example, drying methods include gentle hot air heat transfer drying at low temperatures (43° or
49℃). (Special Publication No. 37-8590) A method of high-frequency heat transfer drying. On the other hand, there is a method of adding a gelling agent to a slurry or paste. (Unexamined Japanese Patent Publication No. 53-27618
(No.) There is also a method of adding a thickener. However, these methods, for example in the above case, reduce productivity due to a significantly long drying time, in the above case, the equipment is very expensive, and it is difficult to apply to objects with complex shapes. There are unresolved problems such as drying and difficulty in controlling the drying process.
In this case, if the stability of colloidal silica in the slurry is reduced, the heat resistance of the molded product is reduced, or if organic substances are used as additives, noxious gas fumes are generated when the molded product is used. This is not a satisfactory method because secondary undesirable phenomena occur. The present invention aims to prevent the migration of colloidal silica inside the molded product during the drying process described above, and the present invention provides a method for drying a molded product that is uniformly cured without causing any of the above-mentioned drawbacks. The purpose is to provide the following. The present invention will be specifically explained below. Inorganic fibers used in the present invention include:
There are ceramic fibers, alumina fibers, zirconia fibers, quartz wool, rock wool, slag wool, glass wool asbestos, etc. Among these, ceramic fibers are most preferred in terms of high heat resistance and cost. Further, colloidal silica used as a binder is used in the form of an aqueous dispersion, and there are no particular restrictions on its concentration. Furthermore, the sodium montmorillonite used for the above purpose of the present invention is a type of montmorillonite, which is a main mineral that constitutes clays such as bentonite and acid clay, and its average particle size is 1 μ × 0.4 μ × The ideal chemical formula with a value of about 0.04μ is Na(Al 5/3 Mg 1/3 )Si 4 O 10
Among the layered silicate minerals represented by (OH) 2 ·nH 2 O, it is a mineral that exhibits characteristic properties such as the largest cation exchange capacity. In other words, sodium montmorillonite exhibits a large swelling power in water and organic solvents, and its dispersion also exhibits large viscosity due to swelling, and as its concentration increases, the thixotropic properties of the liquid increase significantly. be. This property is much higher than that of other clay minerals. The proportion of sodium montmorillonite in the inorganic fiber molded article of the present invention is 0.2 to 20% by weight.
is most preferred. That is, if the proportion of sodium montmorillonite is less than 0.2% by weight, the micration prevention effect will be significantly reduced, and it will be difficult to obtain a molded product having uniform hardness throughout the interior. On the other hand, if it exceeds 20% by weight, the amount of water, which is a dispersion medium for sodium montmorillonite, in the molded product increases, making demolding operations and subsequent handling difficult, and drying shrinkage during drying. big,
The dimensional accuracy of the obtained molded body is significantly reduced. In the production method of the present invention, first, sodium montmorillonite or an aqueous dispersion of sodium montmorillonite is dispersed in water together with colloidal silica, or inorganic fibers are added and defibrated to uniformly disperse the slurry or paste. Add at any time until the product is obtained. in this case,
Both colloidal silica and sodium montmorillonite in the colloidal silica aqueous dispersion, slurry, or slurry-like material are stabilized by a trace amount of alkali, and both particles have the same surface charge, so there is no aggregation due to bonding between them. It maintains long-term positional stability. Then, the slurry or paste is dehydrated and molded, and then dried by a conventional drying method to obtain a molded product. In this case, the colloidal silica in the slurry or paste enhances the thixotropic properties of sodium montmorillonite itself and assumes a gel-like structure after molding or drying the molded product, so it would normally be It was discovered that although sodium montmorillonite has the same charge as sodium montmorillonite and is therefore highly susceptible to migration, it does not cause migration due to being incorporated between sodium montmorillonite particles. Therefore, the molded product obtained by drying does not have extremely low internal hardness like conventional molded products, but exhibits almost uniform hardness throughout the interior. On the other hand, an aqueous dispersion containing colloidal silica and sodium montmorillonite recovered after dehydration molding of a slurry or paste remains in a very stable state as described above, and contains no organic substances at all. Therefore, it has the advantage that it does not rot even if left for a long time and can be used repeatedly over a long period of time. Furthermore, in the process of molding a slurry or paste-like material, it is not only the same as the conventional method, but also superior in terms of workability and production. In this way, the inorganic fiber molded article obtained by the method of the present invention is not only a molded article that is uniformly hardened to the inside, which is the original purpose, but also the constituent materials are all inorganic and are added as a binding agent. Sodium-montmorillonite has excellent heat resistance, so it has sufficient workability and does not lose strength due to processing, and does not contain any organic substances in its constituent materials, so it does not produce harmful gas fumes when heated. There is no damage caused by such occurrences, and the heat resistance is significantly improved, and it has excellent thermal properties at high temperatures. For these reasons, the inorganic fiber molded article of the present invention is optimal as a heat-insulating material that requires post-processing for the purpose of obtaining dimensional accuracy or obtaining a molded article of a desired shape. Used as a heat-retaining and insulating material in fields where the generation of harmful gases and fumes must be avoided in the use of products made of molded bodies as one component or in the working environment, or in fields that require higher heat resistance than conventional products. This is a new and useful inorganic fiber molded product that can Examples of the present invention will be described below. [Example 1] 10% of colloidal silica (particle size 10-20 mμ)
Sodium montmorillonite (chemical composition SiO 2 61.18%, Al 2 O 3 22.48%, MgO 3.42
%, Fe 2 O 3 2.09%, CaO 0.54%, Na 2 O 4.02%,
After adding 12% and 3% by weight of K 2 O (0.14% Ig loss, 5.98% Ig loss 5.98%) to water and stirring thoroughly, 1% by weight of ceramic fiber to water was added as an inorganic fiber and defibrated. The slurry obtained was subjected to suction dehydration molding (vacuum molding) in a metal mold covered with a wire mesh. Subsequently, it was dried at 150° C. for 10 hours using a conventional hot air dryer to obtain a molded article of 150×150×25 mm 3 .
The bulk specific gravity of the obtained molded product, the surface hardness of the molded product, and the hardness of the internal center were measured. The result is the first
It is shown in A (1-3) of the table. The hardness was measured using a rubber hardness meter (RubbertestertyP-eC). In addition, the same test as above was carried out with chemical composition SiO 2 72.99
%, Al2O3 14.98 % , MgO0.57%, Fe2O3 1.56 %,
CaO1.114%, Na2O3.54 %, K2O0.24 %,
It was also carried out for sodium montmorillonite, which has an Igloss of 4.98%. The results are also shown in B (4-6) of Table 1. On the other hand, after vacuum forming, each recovered liquid was allowed to stand for about 5 months, and then the same liquid was used to obtain a molded article under the same conditions as the previous time. The same measurements as the previous time were performed on the obtained molded body again. The results are from 8 to 8 in Table 3.
Shown in 14. In addition, as a molded body for comparison with the molded body obtained by the present invention, a molded body without adding sodium montmorillonite was produced by the same method as above,
The same measurements as above were performed on the obtained molded body. The results are shown in 7 of Table 1.

【表】 なお、ここで使用したソジウムモンモリロナイ
トAおよびBは化学組成(%)は第2表の通りで
ある。
[Table] The chemical compositions (%) of sodium montmorillonite A and B used here are as shown in Table 2.

【表】【table】

〔実施例2〕[Example 2]

実施例1と同様にコロイダルシリカ10%水分散
液16中にソジウムモンモリロナイト(化学組
成;SiO261.18%、Al2O322.48%、MgO3.42%、
Fe2O32.09%、CaO0.54%、Na2O4.02%、
K2O0.14%、Ig loss5.98%)を水に対して1、
2、3重量%添加し十分に撹拌した後、無機繊維
としてロツクウールを水に対して1重量%投入し
解繊して得られたスラリーから金網を施した金型
にて吸引脱水成形(真空成形)した。続いて150
℃にて10時間通常の熱風乾燥機にて乾燥を行ない
150×150×25mmの成形体を得た。このようにして
得られた成形体の嵩比重及び同成形体の表面硬度
と内部中心部の硬度を測定した。その結果を第4
表の15〜17に示す。 他方、真空成形後それぞれの回収液を約5か月
間放置した後、同液を使用して前回と同一条件に
て成形体を得た。このようにして得られた成形体
に対して再び前回と同じ測定を行なつた。その結
果を第5表の19〜21に示す。 また、本発明より得られる成形体と対比するた
めの成形体としてソジウムモンモリロナイトを添
加しない成形体を上記と同様の方法にて作製し得
られた成形体に対して上記と同様の測定を行なつ
た。その結果を第4表の18に示す。
Similarly to Example 1, sodium montmorillonite (chemical composition; SiO 2 61.18%, Al 2 O 3 22.48%, MgO 3.42%,
Fe 2 O 3 2.09%, CaO 0.54%, Na 2 O 4.02%,
K 2 O 0.14%, Ig loss 5.98%) to water 1,
After adding 2 to 3% by weight and stirring thoroughly, 1% by weight of rock wool as an inorganic fiber was added to water and defibrated. The slurry obtained was then suction dehydrated (vacuum forming) in a mold with a wire mesh. )did. followed by 150
Dry in a regular hot air dryer at ℃ for 10 hours.
A molded body of 150 x 150 x 25 mm was obtained. The bulk specific gravity of the molded product thus obtained, the surface hardness of the molded product, and the hardness of the internal center were measured. The result is the fourth
Shown in Tables 15 to 17. On the other hand, after vacuum forming, each recovered liquid was allowed to stand for about 5 months, and then the same liquid was used to obtain a molded article under the same conditions as the previous time. The same measurements as the previous one were again carried out on the thus obtained molded article. The results are shown in Table 5, 19-21. In addition, for comparison with the molded product obtained by the present invention, a molded product without the addition of sodium montmorillonite was prepared in the same manner as above, and the same measurements as above were performed on the resulting molded product. Summer. The results are shown in Table 4, 18.

【表】【table】

〔実施例3〕[Example 3]

コロイダルシリカ10%水分散液23中にソジウ
ムモンモリロナイト(化学組成SiO261.18%、
Al2O322.48%、MgO3.42%、Fe2O32.09%、
CaO0.54%、Na2O4.02%、K2O0.14%、Ig
loss5.98%)を水に対して1重量%添加し十分に
撹拌した後、無機繊維としてセラミツクフアイバ
ーを水に対して1重量%投入し解織して得られた
スラリーから金網を施した金型にて吸引脱水成形
(真空成形)した。続いて150℃にて15時間通常の
熱風乾燥機により乾燥を行ない200×200×20mmの
成形体を得た。 また、上記と同様の方法にて化学組成が
SiO272.99%、Al2O314.98%、MgO0.57%、
Fe2O31.56%、CaO1.14%、Na2O3.54%、
K2O0.24%、Ig loss4.98%で示されるソジウムモ
ンモリロナイトを添加したものについても同様の
成形体の作製を行なつた。 このようにして得られた2種の成形体を150×
100×20mmの大きさに切断しそれらに対して荷重
加熱軟化量測定試験を行なつた。 なお、ここでいう荷重加熱軟化量測定試験方法
は次の通りである。 150×100×20mmの試験片をスパン支柱上にセツ
トし(スパン長120mm)同試験片上中央にスパン
と平行に底面が45×100mmの荷重物を試験片に対
して0.1Kg/cm2の荷重がかかるようにセツトした
後、荷重物上面に測定棒を垂直に立てる。このよ
うにしてセツトされた試験片に対して一定の昇温
速度(常温〜1000℃、3.5℃/mm、1000℃以上1.5
℃/min)でもつて加熱し同時に測定棒先端の上
下変化を測定する。 その結果を図面のおよびに示す。 また、本発明より得られる成形体と対比するた
めの成形体としてソジウムモンモリロナイトを添
加しない成形体を上記と同様の方法にて作製し得
られた成形体に対して上記と同様の測定を行なつ
た。 その結果を図面のに示す。 なお、上記図面における試験片、、の嵩
比重及びモンモリロナイト化学組成は第6表の通
りである。
Sodium montmorillonite (chemical composition SiO2 61.18%,
Al 2 O 3 22.48%, MgO 3.42%, Fe 2 O 3 2.09%,
CaO0.54%, Na2O4.02 %, K2O0.14 %, Ig
After adding 1% by weight of 5.98% loss to water and stirring thoroughly, 1% by weight of ceramic fiber to water was added as an inorganic fiber, and the resulting slurry was made into a metal with wire mesh. Suction dehydration molding (vacuum molding) was performed in a mold. Subsequently, it was dried at 150° C. for 15 hours using a conventional hot air dryer to obtain a molded article of 200×200×20 mm. In addition, the chemical composition can be determined using the same method as above.
SiO2 72.99%, Al2O3 14.98 %, MgO0.57%,
Fe 2 O 3 1.56%, CaO 1.14%, Na 2 O 3.54%,
A similar molded body was also produced with the addition of sodium montmorillonite with K 2 O of 0.24% and Ig loss of 4.98%. The two types of molded bodies obtained in this way were
They were cut into pieces of 100 x 20 mm and subjected to a test to measure the amount of softening when heated under load. The test method for measuring the amount of softening by heating under load is as follows. A test piece measuring 150 x 100 x 20 mm was set on a span support (span length 120 mm), and a load with a bottom surface of 45 x 100 mm was placed parallel to the span at the center of the test piece, and a load of 0.1 Kg/cm 2 was applied to the test piece. After setting the measuring rod so that the load is applied, place the measuring rod vertically on the top of the load. The test piece set in this way was heated at a certain rate (room temperature to 1000°C, 3.5°C/mm, 1.5°C above 1000°C).
℃/min) and at the same time measure the vertical change of the tip of the measuring rod. The results are shown in and in the drawings. In addition, for comparison with the molded product obtained from the present invention, a molded product without adding sodium montmorillonite was prepared in the same manner as above, and the same measurements as above were performed on the obtained molded product. Summer. The results are shown in the figure. The bulk specific gravity and montmorillonite chemical composition of the test pieces in the above drawings are shown in Table 6.

〔実施例4〕[Example 4]

コロイダルシリカ15%水分散液3中にソジウ
ムモンモリロナイト(化学組成SiO261.18%、
Al2O322.48%、MgO3.42%、Fe2O32.09%、
CaO0.54%、Na2O4.02%、K2O0.14%、Ig
loss5.98%)を水に対しそれぞれ2、4、6重量
%添加し十分撹拌した後無機繊維としてセラミツ
クフアイバーを水に対して10wt%投入解繊して
得られたペースト状物を真空吸引しながらプレス
成形した後、150℃にて15時間通常の熱風乾燥機
にて乾燥を行ない150×150×40mmの成形体を得
た。このようにして得られた成形体の嵩比重及び
同成形体の表面硬度と内部中心部の硬度を測定し
た。その結果を第7表の23〜25に示す。 また、本発明により得られる成形体と対比する
ための成形体としてソジウムモンモリロナイトを
添加しない成形体を上記と同様の方法にて作成し
得られた成形体に対して上記と同じ測定を行なつ
た。その結果をも第7表の26に示す。
Sodium montmorillonite (chemical composition SiO 2 61.18%,
Al 2 O 3 22.48%, MgO 3.42%, Fe 2 O 3 2.09%,
CaO0.54%, Na2O4.02 %, K2O0.14 %, Ig
After adding 2, 4, and 6% by weight of (loss5.98%) to water and stirring thoroughly, ceramic fibers were added as inorganic fibers at 10wt% to water, defibrated, and the resulting paste was vacuum-sucked. After press-molding, it was dried at 150° C. for 15 hours in a conventional hot air dryer to obtain a molded product of 150×150×40 mm. The bulk specific gravity of the molded product thus obtained, the surface hardness of the molded product, and the hardness of the internal center were measured. The results are shown in Table 7, 23-25. In addition, for comparison with the molded product obtained by the present invention, a molded product without the addition of sodium montmorillonite was prepared in the same manner as above, and the same measurements as above were performed on the obtained molded product. Ta. The results are also shown in Table 7, 26.

【表】 上記第7表によりソジウムモンモリロナイトを
添加することによりほぼ均一な硬度を有する成形
体が得られることが明らかである。 また、得られた成形体を種々の形状に加工した
が、ソジウムモンモリロナイトを添加した成形体
は全て取扱い強度及び機械的強度において低下す
ることがなかつた。 以上の結果からも明らかなように、本発明はマ
イグレイシヨンを起さない均一に硬化した無機繊
維成形体とその製造法を提供するものであつて、
当分野においてきわめて有用なものである。
[Table] It is clear from Table 7 above that by adding sodium montmorillonite, a molded article having substantially uniform hardness can be obtained. Further, the obtained molded bodies were processed into various shapes, but all of the molded bodies to which sodium-montmorillonite was added did not deteriorate in handling strength or mechanical strength. As is clear from the above results, the present invention provides a uniformly cured inorganic fiber molded article that does not cause migration and a method for producing the same.
It is extremely useful in this field.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の無機繊維成形体の試験片の荷
重加熱軟化量測定試験の結果を示すグラフであ
る。
The drawing is a graph showing the results of a heat-under-load softening amount measurement test of a test piece of an inorganic fiber molded article of the present invention.

Claims (1)

【特許請求の範囲】 1 無機繊維とコロイダルシリカとソジウムモン
モリロナイトとを主成分とする混合物の水添加物
を成形乾燥して均一に硬化させてなる無機繊維成
形体。 2 前記無機繊維がシリカとアルミナとを主成分
とするセラミツク繊維であることを特徴とする特
許請求の範囲第1項記載の無機繊維成形体。 3 前記ソジウムモンモリロナイトを重量パーセ
ントで0.2〜20%含有することを特徴とする特許
請求の範囲第1項記載の無機繊維成形体。 4 無機繊維とコロイダルシリカとを主成分とす
る混合物に水を添加したスラリー状物又はペース
ト状物に結合助剤としてソジウムモンモリロナイ
トを添加し、前記混合物を成形し乾燥することに
より乾燥時のコロイダルシリカのマイグレーシヨ
ンを防止し、併せて該成形物を均一に硬化するこ
とを特徴とする無機繊維成形体の製造方法。 5 前記成形し乾燥する工程が真空成形あるいは
プレス成形による成形方法であつて、乾燥する方
法が熱風伝熱乾燥法あるいは輻射伝熱乾燥法であ
ることを特徴とする特許請求の範囲第4項記載の
無機繊維成形体の製造方法。
[Scope of Claims] 1. An inorganic fiber molded article obtained by molding and drying a water additive of a mixture containing inorganic fibers, colloidal silica, and sodium montmorillonite as main components and uniformly curing it. 2. The inorganic fiber molded article according to claim 1, wherein the inorganic fiber is a ceramic fiber containing silica and alumina as main components. 3. The inorganic fiber molded article according to claim 1, which contains the sodium montmorillonite in a weight percentage of 0.2 to 20%. 4 Sodium montmorillonite is added as a binding agent to a slurry or paste made by adding water to a mixture mainly composed of inorganic fibers and colloidal silica, and the mixture is molded and dried to form a colloidal material when dried. A method for producing an inorganic fiber molded article, characterized by preventing migration of silica and uniformly curing the molded article. 5. Claim 4, characterized in that the forming and drying step is a forming method using vacuum forming or press forming, and the drying method is a hot air heat transfer drying method or a radiation heat transfer drying method. A method for producing an inorganic fiber molded article.
JP13673579A 1979-10-22 1979-10-22 Inorganic fiber formed body and manufacture thereof Granted JPS5659665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13673579A JPS5659665A (en) 1979-10-22 1979-10-22 Inorganic fiber formed body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13673579A JPS5659665A (en) 1979-10-22 1979-10-22 Inorganic fiber formed body and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5659665A JPS5659665A (en) 1981-05-23
JPS6137228B2 true JPS6137228B2 (en) 1986-08-22

Family

ID=15182273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13673579A Granted JPS5659665A (en) 1979-10-22 1979-10-22 Inorganic fiber formed body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5659665A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988378A (en) * 1982-11-10 1984-05-22 東芝セラミツクス株式会社 Lightweight refractories and manufacture
US4737192A (en) * 1983-10-17 1988-04-12 Manville Service Corporation Refractory binder, method for making same, and product produced thereby
JPS61125137U (en) * 1985-01-23 1986-08-06
AU1723701A (en) * 1999-12-14 2001-06-25 Jan Abraham Weyers Method of manufacturing a heat insulating/fire retardant material
JP5057709B2 (en) * 2006-06-26 2012-10-24 イソライト工業株式会社 Method for producing inorganic fiber laminate
JP4937648B2 (en) * 2006-06-26 2012-05-23 イソライト工業株式会社 Method for producing inorganic fiber molded body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961207A (en) * 1972-05-03 1974-06-13
JPS5269420A (en) * 1975-12-06 1977-06-09 Johns Manville Refractory fiber insulation composition and products thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961207A (en) * 1972-05-03 1974-06-13
JPS5269420A (en) * 1975-12-06 1977-06-09 Johns Manville Refractory fiber insulation composition and products thereof

Also Published As

Publication number Publication date
JPS5659665A (en) 1981-05-23

Similar Documents

Publication Publication Date Title
CN113372134A (en) Microporous light silica brick and preparation method thereof
CN103641463B (en) Preparation method of ceramic tube for explosionproof fuse for automobile
US2554934A (en) Method of manufacturing structural insulation
JPS6137228B2 (en)
US3367871A (en) Molded precision-dimensioned high temperature insulation material
US3079266A (en) Process for the manufacture of refractory materials and resultant product
US2215078A (en) Process for the manufacture of fireproof thermal and acoustical insulation articles
JPS629552B2 (en)
GB2093009A (en) Moulded articles
CA1190946A (en) Moulded articles
US2095982A (en) Magnesium oxide products and proc
CN114249577B (en) Aggregate for clay insulating brick and preparation method thereof, clay insulating brick and preparation method thereof
CN106495736A (en) A kind of low body density high-strength degree light silicious brick and preparation method thereof
KR101584749B1 (en) Heat-resistant composition comprising blast furnace slag for a probe and heat-resistant protecting tube for a probe
US2839414A (en) Low loss ceramic insulators
US3679441A (en) Ceramic product from fly ash and method of making same
CN112794725A (en) Preparation method of alumina fiber lining material for industrial microwave kiln
US3544666A (en) Method for producing a heat insulating refractory using calcined geyserite having a high tridymite content
US2106410A (en) Ceramic composition
SU1680677A1 (en) Method for manufacturing articles of heat-resistant concrete
JPH0254294B2 (en)
SU1719364A1 (en) Process for making silica-quartzite refractory products without firing
CN113896546B (en) Light moisture-proof refractory material and preparation method thereof
SU1689358A1 (en) Method of producing silica brick-quartzite products not requiring firing
KR970008688B1 (en) Lightweight aggregate material and production thereof