JPH0153237B2 - - Google Patents

Info

Publication number
JPH0153237B2
JPH0153237B2 JP58142362A JP14236283A JPH0153237B2 JP H0153237 B2 JPH0153237 B2 JP H0153237B2 JP 58142362 A JP58142362 A JP 58142362A JP 14236283 A JP14236283 A JP 14236283A JP H0153237 B2 JPH0153237 B2 JP H0153237B2
Authority
JP
Japan
Prior art keywords
refractory
weight
silica
fire
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58142362A
Other languages
Japanese (ja)
Other versions
JPS6033279A (en
Inventor
Takeyoshi Togashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP58142362A priority Critical patent/JPS6033279A/en
Publication of JPS6033279A publication Critical patent/JPS6033279A/en
Publication of JPH0153237B2 publication Critical patent/JPH0153237B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窯炉、煙道等に使用される耐火物或い
は建築用板等の基材表面に塗布して耐火性を増大
させる耐火性被覆材に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a fire-resistant coating that is applied to the surface of a base material such as a refractory used for a furnace, a flue, or a construction board to increase fire resistance. It is related to materials.

(従来の技術) 窯炉等の高温雰囲気にさらされる部分に使用さ
れる耐火物の表面にはムライト、アルミナ等の粒
状物を主成分としてこれに粘土あるいは水ガラス
等の粘着剤を添加した耐火性被覆剤を塗布して耐
火物表面とその内部で焼成される被焼成品との融
着防止を図るとともに耐火物表面の損傷防止を図
つていたが、従来の被覆材を耐火物主体の表面に
被覆すると粘着剤として含まれる水ガラス等がガ
ラス化し、耐火物主体との熱膨脹差によりクラツ
クを生じて剥離するために耐火物主体の保護機能
が十分ではなく、高温雰囲気による耐火物主体の
酸化を十分に防止することができないうえに断熱
性が不十分であるために熱衝撃緩衝効果が小さく
て耐火物の寿命延長に十分寄与することができな
い等の欠点があり、また、従来の耐火性被覆材は
保全、補修の施工頻度を高くする必要があるため
施行コストが高くなる欠点もあつた。
(Prior art) The surface of refractories used in parts exposed to high-temperature atmospheres, such as kilns, is made of refractory materials whose main ingredients are granular materials such as mullite and alumina, with the addition of adhesives such as clay or water glass. In the past, conventional coating materials were applied to prevent fusion between the refractory surface and the product to be fired inside, as well as to prevent damage to the refractory surface. When coated on the surface, the water glass contained as an adhesive becomes vitrified and cracks and peels due to the difference in thermal expansion with the refractory, so the protective function of the refractory is not sufficient, and the refractory is damaged due to high temperature atmosphere. In addition to being unable to sufficiently prevent oxidation, the thermal shock buffering effect is small due to insufficient heat insulation, and it cannot fully contribute to extending the life of refractories. The disadvantage of using cladding materials is that they require more frequent maintenance and repair, resulting in higher installation costs.

(発明の目的) 本発明は前記のような欠点をなくして剥離の虞
れがないうえ耐酸化性、耐熱衝撃性が良好で耐火
物表面を有効に保護することができる耐火性被覆
材を目的として完成されたものである。
(Object of the invention) The object of the present invention is to provide a fire-resistant coating material that eliminates the above-mentioned drawbacks, has no risk of peeling, has good oxidation resistance and thermal shock resistance, and can effectively protect the surface of refractories. It was completed as.

(発明の構成) 本発明は60〜300メツシユに調整されたセラミ
ツクス短繊維35〜50重量%と粒径5〜30μmのシ
リカを5〜70重量%含有するシリカゾル50〜65重
量%とを主成分としてこれに適量の有機性粘結剤
を添加したことを特徴とするものである。
(Structure of the Invention) The main components of the present invention are 35 to 50% by weight of ceramic short fibers adjusted to a mesh size of 60 to 300 and 50 to 65% by weight of silica sol containing 5 to 70% by weight of silica with a particle size of 5 to 30 μm. This is characterized by the addition of an appropriate amount of an organic binder.

本発明に使用されるセラミツクス繊維は使用温
度を考虜して選択されるものであつて、例えば使
用温度が800〜1600℃である場合にはこの温度に
耐えるアルミナを主成分とするアルミナ繊維とす
ることが好ましい。このセラミツクス繊維は粉砕
後脱鉄され60〜300メツシユ程度に篩分けて短繊
維とする。ここでセラミツクス短繊維の寸法が60
メツシユ以下となると耐衝撃性が低下し、逆に
300メツシユを超えると粘着力が低下するので本
発明の目的を達成するに不適当となる。一方、無
機バインダーとしてはシリカが水溶液に対し5〜
70重量%好ましくは15〜50重量%含有されたシリ
カゾルが用いられる。その理由はシリカが5重量
%未満であるとバインダーとしての能力が低下し
て剥離し易くなり、逆に70重量%を超えると耐火
性被覆層の表面にシリカが融出して焼成品等との
融着防止効果が小さくなるからであり、また、シ
リカの粒径は均質性を高めて粒子間の結合力の低
下により接着力が小さくなることのないよう5〜
30μm程度とすることが好ましい。これらのセラ
ミツクス短繊維とシリカゾルとは、セラミツクス
短繊維35〜50重量%に対しシリカゾル50〜65重量
%の比率で混合するとともに粉末状のカルボキシ
ルメチルセルロース、ポリビニルアルコールある
いはグリセリン等の有機性一時的粘結剤を例えば
0.2〜1.0重量%程度の適量添加して耐火性被覆材
とする。セラミツクス短繊維とシリカゾルとの混
合比率を上述のように限定したのは、第1図に示
されるようにシリカゾルの含有率が50〜65重量%
であるときに耐火物表面への施行に好適な2.5〜
30ポアズの粘性を得ることができるためである。
このようにして得られた耐火性被覆材は耐火物主
体や耐熱金属等の基材の表面に対してスプレイ、
刷毛塗り、デイツピング等の適宜の方法により
0.1〜2mm程度の厚さでコーテイングして保護層
を被着形成する。但し、窯内の壁面に使用するラ
イニング耐火物を基材とする場合にはその表面に
対しては断熱性を増す効果を重視して2mm以上の
厚さに被覆してもよい。このようにして得られた
耐火性被覆材は耐火物主体等の基材表面に強固に
付着し、シロキサン結合が形成されて強固な結合
組織となるうえ基材を耐火物主体とした場合は仮
焼後においては耐火物主体と反応して表面に融着
し、かつ耐火物組織中に部分的に浸透して通気性
のない保護層が形成されることとなる。なお、第
2図に示すように炭化珪素質の耐火物主体を基材
1とし、その表面にはセラミツクス短繊維として
アルミナ繊維を使用するとともにシリカ質のバイ
ンダーを使用した耐火性被覆材よりなる保護層2
を被着形成した場合には該保護層2の表層側にア
ルミナリツチな層2aが形成されてその下方にシ
リカリツチな層2bが形成され、これらの2層に
より耐火物劣化の原因となる酸素及び燃焼ガスの
浸入を防止するので特に優れた酸化防止効果を得
ることができる。
The ceramic fibers used in the present invention are selected with consideration to the operating temperature. For example, if the operating temperature is 800 to 1600°C, alumina fibers whose main component is alumina that can withstand this temperature are selected. It is preferable to do so. After crushing, the ceramic fibers are deironated and sieved into approximately 60 to 300 mesh pieces to produce short fibers. Here, the dimensions of the ceramic short fibers are 60
If it is below mesh, the impact resistance will decrease;
If the number exceeds 300 meshes, the adhesive strength will decrease, making it unsuitable for achieving the object of the present invention. On the other hand, as an inorganic binder, silica is
A silica sol containing 70% by weight, preferably 15-50% by weight is used. The reason for this is that if the silica content is less than 5% by weight, its ability as a binder will decrease and it will easily peel off, whereas if it exceeds 70% by weight, silica will melt onto the surface of the fire-resistant coating layer and cause problems with fired products, etc. This is because the effect of preventing fusion will be reduced, and the particle size of the silica should be adjusted to 5 to 5 to increase homogeneity and prevent the adhesive force from becoming small due to a decrease in the bonding force between particles.
The thickness is preferably about 30 μm. These ceramic short fibers and silica sol are mixed in a ratio of 50 to 65 weight percent of silica sol to 35 to 50 weight percent of ceramic short fibers, and are combined with an organic temporary caking agent such as powdered carboxymethylcellulose, polyvinyl alcohol, or glycerin. For example,
Add an appropriate amount of about 0.2 to 1.0% by weight to make a fire-resistant coating material. The reason why the mixing ratio of ceramic short fibers and silica sol is limited as described above is that the content of silica sol is 50 to 65% by weight as shown in Figure 1.
2.5~ suitable for application to refractory surfaces when
This is because a viscosity of 30 poise can be obtained.
The fire-resistant coating material obtained in this way is sprayed onto the surface of the base material such as refractory material or heat-resistant metal.
By an appropriate method such as brush painting or datuping
A protective layer is formed by coating to a thickness of about 0.1 to 2 mm. However, if the lining refractory used for the walls inside the kiln is used as the base material, the surface may be coated to a thickness of 2 mm or more, with emphasis on the effect of increasing heat insulation. The refractory coating material obtained in this way firmly adheres to the surface of the base material, such as a refractory-based material, and forms siloxane bonds to form a strong connective tissue. After firing, it reacts with the main refractory, fuses to the surface, and partially penetrates into the structure of the refractory, forming an impermeable protective layer. As shown in Fig. 2, the base material 1 is mainly made of silicon carbide refractory material, and on its surface, alumina fibers are used as short ceramic fibers, and a fire-resistant coating material using a silica binder is used for protection. layer 2
When deposited, an alumina-rich layer 2a is formed on the surface side of the protective layer 2, and a silica-rich layer 2b is formed below it, and these two layers trap oxygen and other substances that cause deterioration of refractories. Since the infiltration of combustion gas is prevented, particularly excellent anti-oxidation effects can be obtained.

(実施例) 70メツシユに粉砕されたアルミナ短繊維と150
メツシユのアルミナ短繊維とを同重量ずつ混合し
たセラミツクス繊維38重量%にシリカゾルを主成
分とする無機バインダー61.8重量%を結合剤とし
て添加するとともにカルボキシルメチルセルロー
ス0.2重量%を添加した粘度10ポアズの耐火性被
覆材を炭化珪素を主成分とする板状の耐火物の表
面に0.7〜1mmの範囲内に0.1mmずつ厚さを変えて
塗布し、これを最高温度1350℃の焼成炉中に12時
間曝した後取出して衝撃抵抗値を測定したとこ
ろ、第3図に示すとおりの結果が得られた。即
ち、保護膜の厚さを1mmとした場合には保護膜の
ない耐火物に比較して14倍の衝撃抵抗値を得るこ
とができた。なお、保護層の膜厚を大きくすれば
衝撃抵抗値は増加するものの同図に示すように剥
離発生率が増加するので、実用上保護層の膜厚は
0.7〜1mm程度が適切である。
(Example) Alumina short fibers crushed to 70 mesh and 150 mesh
Fire resistance with a viscosity of 10 poise, made by adding 61.8% by weight of an inorganic binder whose main component is silica sol as a binder and 0.2% by weight of carboxymethyl cellulose to 38% by weight of ceramic fibers mixed with the same weight of alumina short fibers from mesh. The coating material is applied to the surface of a plate-shaped refractory whose main component is silicon carbide at varying thicknesses of 0.1 mm within the range of 0.7 to 1 mm, and then exposed to a firing furnace at a maximum temperature of 1350°C for 12 hours. After that, it was taken out and the impact resistance value was measured, and the results shown in FIG. 3 were obtained. That is, when the thickness of the protective film was 1 mm, it was possible to obtain an impact resistance value 14 times that of a refractory without a protective film. In addition, if the thickness of the protective layer is increased, the impact resistance value will increase, but as shown in the figure, the rate of peeling will increase, so in practical terms the thickness of the protective layer should be
Approximately 0.7 to 1 mm is appropriate.

次に、上記と同一の保護層が形成された板状の
耐火物を焼成炉内において300〜900℃に昇温した
のち直ちに常温の炉外へ取出して急冷し、亀裂発
生状態を観察したところ保護層が形成された耐火
物表面に亀裂の発生は認められず、また、第4図
に示されるように急冷による熱衝撃を受けた後も
曲げ強度は保護層のない耐火物に比較して900℃
の急冷温度差において約15%の向上を示した。ま
た、本実施例の保護層が形成された耐火物を最高
使用温度1350℃の焼成炉に継続的に使用したとこ
ろ、保護層のない耐火物に対して約2倍の寿命を
示した。なお、以上の実施例では基材として炭化
珪素を主成分とする耐火物を用いたが、本発明の
耐火性被覆材はその他の耐火物や耐熱金属等にも
適用できるものである。
Next, a plate-shaped refractory on which the same protective layer as above was formed was heated to 300 to 900°C in a firing furnace, then immediately taken out of the furnace at room temperature and rapidly cooled, and the state of crack formation was observed. No cracks were observed on the surface of the refractory on which the protective layer was formed, and as shown in Figure 4, even after receiving thermal shock due to rapid cooling, the bending strength was higher than that of the refractory without the protective layer. 900℃
It showed an improvement of about 15% in the quenching temperature difference. Furthermore, when the refractory on which the protective layer of this example was formed was continuously used in a firing furnace with a maximum operating temperature of 1,350°C, the life was approximately twice as long as that of the refractory without a protective layer. In the above examples, a refractory whose main component is silicon carbide was used as the base material, but the refractory coating material of the present invention can also be applied to other refractories, heat-resistant metals, and the like.

(発明の効果) 本発明は以上の説明からも明らかなように、60
〜300メツシユに調整されたセラミツクス短繊維
と粒径5〜30μmのシリカを5〜70重量%含有す
るシリカゾルとを主成分としてこれに適量の有機
性粘結剤を添加したものであるから剥離の虞れが
ないうえ耐酸化性、耐熱性、耐熱衝撃性等が良好
で、窯炉、煙道その他の高温雰囲気にさらされる
部分に使用される耐火物等の耐火材の損傷を防止
してその寿命を延長することができるもので、保
全、補修の施行頻度を低下させることができるか
ら施行コストを低減できる経済的利益もあり、優
れた耐火性被覆材として、産業の発展に寄与する
ところ極めて大である。
(Effect of the invention) As is clear from the above description, the present invention
The main ingredients are ceramic short fibers adjusted to ~300 mesh and silica sol containing 5 to 70% by weight of silica with a particle size of 5 to 30 μm, to which an appropriate amount of organic binder is added, making it easy to peel. It is safe from damage and has good oxidation resistance, heat resistance, thermal shock resistance, etc., and can be used to prevent damage to refractories used in furnaces, flues, and other areas exposed to high temperature atmospheres. It can extend the lifespan and reduce the frequency of maintenance and repair, which has the economic benefit of reducing installation costs.As an excellent fire-resistant covering material, it will greatly contribute to the development of industry. It's large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る耐火性被覆材の粘度とこ
れに含有される無機バインダーの含有率との関係
を示すグラフ、第2図は本発明に係る耐火性被覆
材を被覆した耐火物の部分断面図、第3図は本発
明に係る耐火性被覆材を被覆した耐火物における
保護層の膜厚と衝撃抵抗値および剥離発生率との
関係を示すグラフ、第4図は本発明に係る耐火性
被覆材を被覆した耐火物における急冷温度差と該
急冷後の常温曲げ強度との関係を示すグラフであ
る。 1:基材、2:保護層。
FIG. 1 is a graph showing the relationship between the viscosity of the fire-resistant coating material according to the present invention and the content of the inorganic binder contained therein, and FIG. A partial cross-sectional view, FIG. 3 is a graph showing the relationship between the thickness of the protective layer, impact resistance value, and peeling rate in a refractory coated with the fire-resistant coating material according to the present invention, and FIG. It is a graph showing the relationship between the quenching temperature difference and the normal temperature bending strength after the quenching in a refractory coated with a refractory coating material. 1: Base material, 2: Protective layer.

Claims (1)

【特許請求の範囲】[Claims] 1 60〜300メツシユに調整されたセラミツクス
短繊維35〜50重量%と粒径5〜30μmのシリカを
5〜70重量%含有するシリカゾル50〜65重量%と
を主成分としてこれに適量の有機性粘結剤を添加
したことを特徴とする耐火性被覆材。
1 The main components are 35 to 50% by weight of ceramic short fibers adjusted to 60 to 300 mesh and 50 to 65% by weight of silica sol containing 5 to 70% by weight of silica with a particle size of 5 to 30 μm, and an appropriate amount of organic A fire-resistant coating material characterized by the addition of a binder.
JP58142362A 1983-08-03 1983-08-03 Refractory coating material and refractories coated therewith Granted JPS6033279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142362A JPS6033279A (en) 1983-08-03 1983-08-03 Refractory coating material and refractories coated therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142362A JPS6033279A (en) 1983-08-03 1983-08-03 Refractory coating material and refractories coated therewith

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP18637089A Division JPH0251484A (en) 1989-07-19 1989-07-19 Refractory material coated with refractory material

Publications (2)

Publication Number Publication Date
JPS6033279A JPS6033279A (en) 1985-02-20
JPH0153237B2 true JPH0153237B2 (en) 1989-11-13

Family

ID=15313613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142362A Granted JPS6033279A (en) 1983-08-03 1983-08-03 Refractory coating material and refractories coated therewith

Country Status (1)

Country Link
JP (1) JPS6033279A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617157B1 (en) * 1987-06-26 1991-01-11 Vesuvius Crucible Co INSULATING COATING FOR REFRACTORY BODIES, COATING METHOD AND ARTICLE THEREOF
CN101942677A (en) * 2010-09-30 2011-01-12 中南大学 Heat-insulating coating material for aluminum electrolytic inert anode and use thereof
WO2017073115A1 (en) * 2015-10-27 2017-05-04 株式会社Inui Coating liquid, composition for coating liquid, and refractory article having coating layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140518A (en) * 1976-05-18 1977-11-24 Ibigawa Electric Ind Co Ltd Indefiniteeform refractory heattinsulating material essentially made from ceramic fiber
JPS5626791A (en) * 1979-08-03 1981-03-14 Isolite Insulating Prod Fibrous refractory insulating material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140518A (en) * 1976-05-18 1977-11-24 Ibigawa Electric Ind Co Ltd Indefiniteeform refractory heattinsulating material essentially made from ceramic fiber
JPS5626791A (en) * 1979-08-03 1981-03-14 Isolite Insulating Prod Fibrous refractory insulating material

Also Published As

Publication number Publication date
JPS6033279A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
EP0134769B1 (en) Oxidation prohibitive coatings for carbonaceous articles
WO2007049822A1 (en) Monolithic refractory
JP2001248972A (en) High durability heat insulator and manufacturing method for the same as well as its application and method for executing the same
JP5110540B2 (en) FeO resistant coating material
EP3752566A1 (en) A chemical method to decrease oxide scale generation in hot rolling
JPH0153237B2 (en)
JP2007145701A (en) Monolithic refractory, refractory and oven
JPS6215508B2 (en)
JPH0319195B2 (en)
JPS6021886A (en) Coating material for ceramic fiber
JP3103523B2 (en) Thermal spray material
JP3009815B2 (en) Aluminum titanate-alumina spray material
JPS6158867A (en) Flame spray material for furnace wall maintenance
JPH01148757A (en) Patching repairing material
JPH02225383A (en) Bonded ceramics and iron parts and production thereof
JP3501621B2 (en) Industrial furnace and method for constructing thermal insulation layer of industrial furnace
JP2004168565A (en) Scale-resistant coating material for heating furnace
JPH0575953B2 (en)
JPH0217869Y2 (en)
JP3716445B2 (en) Flame spray repair material and flame spray repair method
JPH0688824B2 (en) Inflatable inorganic material
JPS5879870A (en) Powder material for flame spray
JPH01261282A (en) Binder for inorganic adhesive and inorganic adhesive using the same
JPH06206776A (en) Refractory powder for flame spraying
JP2006124560A (en) Silica brick for coke oven