JP2006124560A - Silica brick for coke oven - Google Patents

Silica brick for coke oven Download PDF

Info

Publication number
JP2006124560A
JP2006124560A JP2004316274A JP2004316274A JP2006124560A JP 2006124560 A JP2006124560 A JP 2006124560A JP 2004316274 A JP2004316274 A JP 2004316274A JP 2004316274 A JP2004316274 A JP 2004316274A JP 2006124560 A JP2006124560 A JP 2006124560A
Authority
JP
Japan
Prior art keywords
brick
coke oven
siliceous
tridymite
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004316274A
Other languages
Japanese (ja)
Other versions
JP4725079B2 (en
Inventor
Kenichi Shimodaira
賢一 下平
Hisaki Kato
久樹 加藤
Tsuneo Nagaoka
恒夫 永岡
Haruyuki Okuda
治志 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004316274A priority Critical patent/JP4725079B2/en
Publication of JP2006124560A publication Critical patent/JP2006124560A/en
Application granted granted Critical
Publication of JP4725079B2 publication Critical patent/JP4725079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silica brick for a coke oven, causing no deterioration of mineral compositions even if using for a long term, which deterioration is caused by infiltration of dust such as alumina in atmospheric gas, and stably usable for a long term. <P>SOLUTION: The silica brick for coke oven is formed, on at least a part of its outer surface, a coat layer practically comprising SiO<SB>2</SB>. The coat layer is preferably formed with a powder obtained by cooling/solidifying fused silica and crushing the obtained or crushed tridymite by a baking method or a thermal spraying method, and the maximum size of the powder diameter is preferably ≤0.10 mm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コークス炉の炭化室と燃焼室との隔壁或いは蓄熱室の側壁などを構成するための耐火煉瓦として使用される珪石質煉瓦に関するものである。   The present invention relates to a siliceous brick used as a refractory brick for forming a partition wall between a carbonization chamber and a combustion chamber of a coke oven or a side wall of a heat storage chamber.

コークス炉は、石炭をコークスに乾留するための多数の炭化室と、石炭加熱用の燃料ガスを燃焼するための燃焼室とを交互に配列した構造であり、炭化室に装入された石炭は、両側の燃焼室内で燃焼する燃料ガスの燃焼熱によって加熱された隔壁を介して伝達される熱により、約1100℃で20時間程度加熱され乾留される。燃焼排ガスは、コークス炉の蓄熱室を通って熱交換された後に大気に排出され、一方、燃料ガス及び燃焼用空気は蓄熱室で加熱・昇温された後に燃焼室内で燃焼する構成になっている。乾留終了後は炭化室の両方のドアが開放され、生成したコークスは、コークス押出機によって排出側に押し出され更に消火装置によって消火・冷却されて、製品コークスが製造される。この炭化室と燃焼室とを仕切る隔壁及び蓄熱室の壁面には珪石質煉瓦が用いられている。   The coke oven has a structure in which many carbonization chambers for carbonizing coal into coke and combustion chambers for burning fuel gas for heating coal are alternately arranged. Then, it is heated and dried at about 1100 ° C. for about 20 hours by the heat transmitted through the partition wall heated by the combustion heat of the fuel gas combusted in the combustion chambers on both sides. The combustion exhaust gas is exhausted to the atmosphere after heat exchange through the heat storage chamber of the coke oven, while the fuel gas and combustion air are heated and heated in the heat storage chamber and then combusted in the combustion chamber. Yes. After the dry distillation is completed, both doors of the carbonization chamber are opened, and the produced coke is pushed out to the discharge side by a coke extruder and further extinguished and cooled by a fire extinguishing device to produce product coke. Silica brick is used for the partition wall that partitions the carbonization chamber and the combustion chamber and the wall surface of the heat storage chamber.

珪石質煉瓦が使用される理由は次の通りである。即ち、(1)1000℃以上の高温領域で機械的強度が大きいこと、(2)1000℃以上の高温領域で体積変化が少ないこと、(3)材料が安価で多量に入手できること、(4)熱伝導性が比較的良好であることなどである。但し、珪石質煉瓦は、600℃以下の低温領域における温度変化による体積変化が大きくスポーリングを起こし易い欠点があり、コークス炉といえども低温度域における温度変化の激しい箇所には適していない。   The reason why siliceous brick is used is as follows. (1) The mechanical strength is high in the high temperature region of 1000 ° C. or higher, (2) The volume change is small in the high temperature region of 1000 ° C. or higher, (3) The material is inexpensive and available in large quantities, (4) For example, the thermal conductivity is relatively good. However, siliceous bricks have a drawback that volume change due to temperature change in a low temperature region of 600 ° C. or less is large and easily cause spalling, and even a coke oven is not suitable for a portion where temperature change is severe in a low temperature region.

ところで、炭化室を構成する隔壁の表面は建設当初には平滑であるが、長期間に渡る、装入、乾留、払出の繰り返し使用によって煉瓦に亀裂・剥離が発生し、その結果、コークス押し出し時の抵抗の増大、損傷部の拡大による炭化室煉瓦の欠落、或いは、燃焼室フリューの火炎近傍の煉瓦に長年の使用によってダストが浸透し、物性差により煉瓦表面が剥離し、損傷部の拡大による炭化室の煉瓦の欠落などが発生し、排ガスの環境影響の増大や場合により操業不能に陥ることもある。この原因の1つとして、コークス炉の雰囲気ガス中のダスト(特にアルミナ)が珪石質煉瓦の気孔などを介して珪石質煉瓦中に侵入し、これに伴って部分的に珪石質煉瓦の鉱物組成が変化することが挙げられる。即ち、焼成工程を経て製造される珪石質煉瓦の鉱物組成はトリジマイトが主体であるが、アルミナはクリストバライトの生成を助長させる物質であり、アルミナの侵入によってトリジマイトよりも熱膨張率の大きいクリストバライトが珪石質煉瓦の表面側の一部に形成されるためである。   By the way, the surface of the partition walls that make up the carbonization chamber is smooth at the beginning of construction, but cracks and delamination occur in the brick due to repeated use of charging, dry distillation, and discharging over a long period of time, resulting in the coke extrusion. Due to the increase in resistance, the loss of the carbonization chamber brick due to the expansion of the damaged part, or the penetration of the dust into the brick near the flame of the combustion chamber flue after many years of use, the brick surface peels off due to the difference in physical properties, due to the expansion of the damaged part The loss of bricks in the carbonization chamber may occur, which may increase the environmental impact of exhaust gas and may become inoperable. One of the causes is that dust (especially alumina) in the atmosphere gas of the coke oven penetrates into the siliceous brick through the pores of the siliceous brick, and partly the mineral composition of the siliceous brick. Change. That is, the mineral composition of the siliceous brick produced through the firing process is mainly tridymite, but alumina is a substance that promotes the formation of cristobalite. This is because it is formed on a part of the surface side of the quality brick.

アルミナを含め、不純物の珪石質煉瓦表面への付着・侵入を防止するために、従来、種々の提案がなされている。例えば特許文献1には、珪石質煉瓦の一側表面に嵌合凹凸面を形成し、この珪石質煉瓦の嵌合凹凸面に、耐磨耗、耐スポール性を有し、且つ、その一側表面に前記煉瓦表面の嵌合凹凸面に対応し、且つ、前記嵌合凹凸に対し膨張吸収代を設けた嵌合凹凸を有するセラミックライナーを、目地緩衝材を介して嵌合装着して固着したコークス炉用珪石質煉瓦が提案されている。特許文献1によれば、珪石質煉瓦の表面には雰囲気ガスが直接当たらないため、雰囲気ガスに対する耐用性は表面に施したセラミックライナーの特性に左右されることになり、表面硬さと強度に優れた炉材となり、炉材寿命を向上させることができるとしている。   Various proposals have heretofore been made in order to prevent adhesion and intrusion of impurities to the siliceous brick surface including alumina. For example, in Patent Document 1, a fitting uneven surface is formed on one side surface of a siliceous brick, and the fitting uneven surface of the siliceous brick has wear resistance and spall resistance, and one side thereof. A ceramic liner having a fitting unevenness corresponding to the fitting unevenness surface of the brick surface on the surface and having an expansion absorption margin for the fitting unevenness is fitted and fixed via a joint cushioning material. A siliceous brick for coke ovens has been proposed. According to Patent Document 1, since the atmosphere gas is not directly applied to the surface of the siliceous brick, the durability against the atmosphere gas depends on the characteristics of the ceramic liner applied to the surface, and the surface hardness and strength are excellent. It is said that the furnace material life can be improved.

また特許文献2には、コークス炉を構成する珪石質煉瓦の表面に、R2 O(RはNaまたはKを指す)が10〜40質量%と、残部にSiO2 とを含み、融点が900℃以下の釉薬を熱間または冷間で塗布し、この釉薬を溶融して均一で緻密な釉層を表面に形成した珪石質煉瓦が提案されている。特許文献2によれば、均一で緻密な釉層により、石炭乾留の際に発生するカーボンなどが煉瓦表面にはほとんど付着せず、また、少量の付着物は容易に剥離でき且つ煉瓦表面を容易に補修できるとしている。
特開平7−70565号公報 特開平10−183134号公報
Patent Document 2 discloses that the surface of a siliceous brick constituting a coke oven contains 10 to 40% by mass of R 2 O (R represents Na or K), and the remainder contains SiO 2, and has a melting point of 900. There has been proposed a siliceous brick in which a glaze at a temperature of 0 ° C. or less is applied hot or cold, and the glaze is melted to form a uniform and dense glaze layer on the surface. According to Patent Document 2, due to the uniform and dense soot layer, carbon generated during coal dry distillation hardly adheres to the brick surface, and a small amount of deposits can be easily peeled off and the brick surface easily It can be repaired.
Japanese Patent Laid-Open No. 7-70565 JP-A-10-183134

しかしながら、特許文献1及び特許文献2には以下の問題点がある。即ち、特許文献1では、珪石質煉瓦の表面をセラミックライナーで被っただけであり、雰囲気ガスはセラミックライナーの背面にも流れ込むので、雰囲気ガス中のダストが珪石質煉瓦中に侵入する速度を遅らせることはできるものの、基本的に雰囲気ガス中のダストの珪石質煉瓦中への侵入を防止することはできない。また、特許文献2では、形成される釉層は、R2 Oを含んでいることから珪石質煉瓦自体と比べれば耐火性能に劣り、長期間の耐用性は有していない。 However, Patent Document 1 and Patent Document 2 have the following problems. That is, in Patent Document 1, only the surface of the siliceous brick is covered with the ceramic liner, and the atmospheric gas flows into the back surface of the ceramic liner, so that the speed at which the dust in the atmospheric gas enters the siliceous brick is delayed. Although it is possible, it is basically impossible to prevent the dust in the atmospheric gas from entering the siliceous brick. In Patent Document 2, glaze formed is inferior in fire resistance compared because it contains the R 2 O and silica bricks themselves, do not have long-term durability.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、コークス炉で長期間使用しても、雰囲気ガス中のアルミナなどのダストの侵入によって鉱物組成の変質することがなく、長期間安定して使用することのできるコークス炉用珪石煉瓦を提供することである。   The present invention has been made in view of the above circumstances, and the object thereof is that even if it is used for a long time in a coke oven, the mineral composition does not change due to the intrusion of dust such as alumina in the atmospheric gas, The object is to provide a quartz brick for a coke oven that can be used stably for a long period of time.

上記課題を解決するための第1の発明に係るコークス炉用珪石質煉瓦は、その外表面の少なくとも一部に、実質的にSiO2 からなる被覆層が形成されていることを特徴とするものである。 The siliceous brick for a coke oven according to the first invention for solving the above-mentioned problem is characterized in that a coating layer substantially made of SiO 2 is formed on at least a part of its outer surface. It is.

第2の発明に係るコークス炉用珪石質煉瓦は、第1の発明において、前記被覆層は、溶融シリカを冷却・固化した後に粉砕して得た粉末またはトリジマイトを粉砕して得た粉末を、焼き付け法または溶射法によって形成したものであることを特徴とするものである。   The siliceous brick for a coke oven according to a second aspect of the present invention is the first aspect, wherein the coating layer is a powder obtained by pulverizing after cooling and solidifying fused silica or a powder obtained by pulverizing tridymite, It is formed by a baking method or a thermal spraying method.

第3の発明に係るコークス炉用珪石質煉瓦は、第2の発明において、前記粉末のサイズは、最大径が0.10mm以下であることを特徴とするものである。   The siliceous brick for a coke oven according to a third invention is characterized in that, in the second invention, the size of the powder has a maximum diameter of 0.10 mm or less.

本発明によれば、実質的にSiO2 からなる被覆層でコークス炉用珪石質煉瓦の稼働面を被うので、外部に開口する煉瓦表面の気孔もこの被覆層によって被われ、コークス炉の雰囲気ガス中のアルミナなどのダストの気孔中への侵入が防止され、長期間の使用においてもアルミナの侵入によって生ずる鉱物組成の変態を防止することが可能となる。また、被覆層と煉瓦とが同一化学成分であるので、被覆層によって煉瓦自体が変質することがない。そのため、コークス炉での長期間の繰り返し使用においても珪石質煉瓦は施工当初と同等の品質を維持した状態であり、珪石質煉瓦における亀裂の発生或いは煉瓦の目地切れを抑えることが可能となり、長期間安定してコークス炉を操業することが達成され、工業上有益な効果がもたらされる。 According to the present invention, the working surface of the siliceous brick for a coke oven is covered with the coating layer substantially made of SiO 2, so that the pores on the brick surface opened to the outside are also covered by the coating layer, and the atmosphere of the coke oven Intrusion of dust such as alumina in the gas into the pores is prevented, and it is possible to prevent transformation of the mineral composition caused by the intrusion of alumina even during long-term use. Further, since the covering layer and the brick have the same chemical component, the brick itself is not altered by the covering layer. For this reason, siliceous bricks maintain a quality equivalent to that at the beginning of construction even in long-term repeated use in a coke oven, and it is possible to suppress the occurrence of cracks in the siliceous bricks or the breakage of brick joints. Stable operation of the coke oven is achieved over a period of time, which has an industrially beneficial effect.

以下、本発明を具体的に説明する。   The present invention will be specifically described below.

先ず、珪石質煉瓦の特徴について説明する。珪石質煉瓦は、石英(SiO2 )を主体とする珪岩を主原料とし、この珪岩を粉砕し粒度調整したものに石灰(CaO)などの焼結助剤及び成形用結合剤を添加して混練後、成形、乾燥、焼成して製造される。珪岩には、砂岩質珪岩、膠結性珪岩、再結晶珪岩(三河珪石、大連珪石)、複合珪岩(赤白珪石、青白珪石)などがある。この石英は、温度を上昇させると種々の変態を起こす。図1にSiO2 変態の転移関係を示す。 First, the characteristics of the siliceous brick will be described. Quartzite bricks are mainly composed of quartzite (SiO 2 ), and are mixed with a sintering aid such as lime (CaO) and a molding binder added to the crushed and adjusted particle size. Then, it is manufactured by molding, drying and firing. Examples of quartzite include sandstone quartzite, caustic quartzite, recrystallized quartzite (Mikawa quartzite, Dalian quartzite), and composite quartzite (red-white quartzite, blue-white quartzite). This quartz undergoes various transformations when the temperature is raised. FIG. 1 shows the transition relationship of the SiO 2 transformation.

図1に示すように、石英は、573℃でα−石英からβ−石英に変態し、更に温度を上昇させると、870℃でβ−石英からβ2 −トリジマイトに変態し、また、1250℃でβ−石英からβ−クリストバライトに変態する。変態して生成したβ2 −トリジマイト及びβ−クリストバライトは温度を下げると、β2 −トリジマイトは163℃でβ1 −トリジマイトに更に117℃でα−トリジマイトに変態し、一方、β−クリストバライトは241℃〜275℃でα−クリストバライトに変態し、これらは常温域でも准安定相或いは安定相として存在する。また、β2 −トリジマイトは1470℃でβ−クリストバライトに変態し、更にβ−クリストバライトを1713℃以上に加熱すれば、溶融してガラス状態の溶融シリカ(「珪酸ガラス」ともいう)が形成される。溶融シリカを冷却すれば、ガラス状態のまま固化し、極めて熱膨張の少ない石英ガラスが得られる。ここで、α型→β型の変態及びβ型→α型の変態は瞬間的に変態するが、β−石英→β2 −トリジマイト、β2 −トリジマイト→β−クリストバライトなどの変態は極めて遅く、これらの変態を促進するためには溶剤を必要とする。図1中に示す「緩」、「極緩」及び「急」は変態の速度を定性的に表している。 As shown in FIG. 1, quartz transforms from α-quartz to β-quartz at 573 ° C., and further increases in temperature, transforms from β-quartz to β 2 -tridymite at 870 ° C., and 1250 ° C. The transformation from β-quartz to β-cristobalite. When β 2 -tridymite and β-cristobalite produced by transformation are lowered in temperature, β 2 -tridymite is transformed into β 1 -tridymite at 163 ° C and further to α-tridymite at 117 ° C, while β-cristobalite is 241. It transforms into α-cristobalite at ℃ to 275 ° C., and these exist as a metastable phase or a stable phase even at room temperature. Β 2 -tridymite is transformed into β-cristobalite at 1470 ° C., and when β-cristobalite is further heated to 1713 ° C. or higher, it is melted to form glassy fused silica (also referred to as “silicate glass”). . If the fused silica is cooled, it is solidified in the glass state, and quartz glass with very little thermal expansion can be obtained. Here, α-type → β-type transformation and β-type → α-type transformation are transformed instantaneously, but β-quartz → β 2 -tridymite, β 2 -tridymite → β-cristobalite, etc. are extremely slow, A solvent is required to promote these transformations. “Slow”, “very slow”, and “sudden” shown in FIG. 1 qualitatively indicate the transformation speed.

また、図2に、SiO2 の鉱物組成の差による熱膨張率と温度との関係を示す。尚、図1及び図2は、鉄鋼便覧第II巻製銑・製鋼(日本鉄鋼協会編、第3版、182頁)に示されたものである。また、図2中のα、βなどの符号は鉱物組成を表している。 FIG. 2 shows the relationship between the coefficient of thermal expansion due to the difference in the mineral composition of SiO 2 and the temperature. 1 and 2 are shown in Steel Handbook Volume II Steelmaking and Steelmaking (Edited by Japan Iron and Steel Institute, 3rd edition, page 182). Moreover, symbols such as α and β in FIG. 2 represent mineral compositions.

図2に示すように、石英、トリジマイト、クリストバライト、石英ガラスの熱膨張率はそれぞれ異なっており、コークス炉の操業温度範囲である700〜1300℃の温度範囲において、石英、トリジマイト、クリストバライトの3種のなかではトリジマイトの熱膨張率が最も小さい。また、石英及びクリストバライトは、α型からβ型への変態の際に急激な膨張を示すが、トリジマイトは、α型からβ1 型及びβ1 型からβ2 型への変態の際に不連続的な膨張を示すものの、石英及びクリストバライトに比べると変態による膨張は極めて少ない。即ち、石英及びクリストバライトは、トリジマイトに比較して熱スポール性が悪く、煉瓦用耐火材料として適しているとはいえない。 As shown in FIG. 2, the coefficients of thermal expansion of quartz, tridymite, cristobalite, and quartz glass are different from each other, and three types of quartz, tridymite, and cristobalite are used in the temperature range of 700 to 1300 ° C. that is the operating temperature range of the coke oven. Among them, tridymite has the smallest coefficient of thermal expansion. Quartz and cristobalite show rapid expansion during the transformation from α to β, while tridymite is discontinuous during transformation from α to β 1 and β 1 to β 2 However, the expansion due to transformation is very small compared to quartz and cristobalite. That is, quartz and cristobalite are not suitable as brick refractory materials because they have poor thermal spatability compared to tridymite.

そのため、珪石質煉瓦は、原料中の石英をトリジマイトに変態させるために1200℃前後の温度で焼成されて製造される。また、粉体を成形し、焼成して製造されるものであるから気孔を有し、気孔率は15〜25%程度になる。尚、溶融シリカの固化したものである石英ガラスは、図2に示すように熱膨張率が極めて少なく、優れた耐火材料であるが、溶融処理の必要があることから極めて高価であり、コークス炉で大量に使用する煉瓦用耐火材料としては適していない。   Therefore, the siliceous brick is manufactured by firing at a temperature of around 1200 ° C. in order to transform the quartz in the raw material into tridymite. Moreover, since it is manufactured by molding and firing the powder, it has pores, and the porosity is about 15 to 25%. Note that quartz glass obtained by solidifying fused silica is an excellent refractory material having an extremely low coefficient of thermal expansion as shown in FIG. 2, but is extremely expensive due to the necessity of melting treatment, and is a coke oven. It is not suitable as a brick refractory material used in large quantities.

このような珪石質煉瓦を石炭乾留雰囲気に曝せば、雰囲気ガス中のアルミナなどのダストが開口した気孔などを介して珪石質煉瓦の内部にまで侵入し、雰囲気ガスと接触する部位にはアルミナなどのダスト成分の富化した層が形成される。アルミナはクリストバライトの生成を助長させる物質であるので、ダスト成分が限界値以上に富化した部分はβ−クリストバライトに変態する。β−クリストバライトはβ2 −トリジマイトよりも熱膨張率が高く、石炭装入、乾留、コークス払出の繰り返しの使用により、母材煉瓦との熱膨張率の差によって亀裂が生成し、やがて剥離する。 If such a siliceous brick is exposed to a coal dry distillation atmosphere, the dust such as alumina in the atmosphere gas penetrates into the inside of the siliceous brick through pores that are open, and alumina and the like are in contact with the atmosphere gas. A layer enriched with dust components is formed. Since alumina is a substance that promotes the formation of cristobalite, the portion where the dust component is enriched to a limit value or more is transformed into β-cristobalite. β-Cristobalite has a higher coefficient of thermal expansion than β 2 -tridymite, and cracks are generated due to the difference in coefficient of thermal expansion from the base material brick due to repeated use of coal charging, dry distillation, and coke discharging, and eventually peels off.

これに対して本発明の珪石質煉瓦では、少なくとも雰囲気ガスと直接接触する部位となる外表面に実質的にSiO2 からなる被覆層を形成し、このSiO2 の被覆層によって雰囲気ガス中のダスト成分の珪石質煉瓦への侵入を防止する。ここで、「実質的にSiO2 からなる被覆層」とは、「SiO2 の含有量が94質量%以上である被覆層」という意味である。 On the other hand, in the siliceous brick of the present invention, a coating layer consisting essentially of SiO 2 is formed at least on the outer surface, which is a portion that is in direct contact with the atmospheric gas, and the dust in the atmospheric gas is formed by this SiO 2 coating layer. Prevent entry of ingredients into siliceous bricks. Here, “a coating layer substantially composed of SiO 2 ” means “a coating layer having a SiO 2 content of 94% by mass or more”.

この被覆層を形成するSiO2 源としては、溶融シリカを固化させた石英ガラスの粉末或いはトリジマイトの粉末が最適である。トリジマイトは常温ではα−トリジマイトに変態しており、従って、α−トリジマイトの粉末を用いる。石英ガラスの熱膨張率は極めて小さく、珪石質煉瓦に被覆した場合に剥離し難くなる。特に気孔の内部に入った場合、石英ガラスはほとんど膨張しないので、珪石質煉瓦が気孔内に入った被覆層によって破壊されることがない。一方、トリジマイトは珪石質煉瓦の主たる鉱物組成と同一鉱物組成であるので、温度の上昇によって珪石質煉瓦と同様に変態し且つ熱膨張率は珪石質煉瓦と同等であり、これにより被覆層の煉瓦表面からの剥離が抑制される。被覆層を形成するための石英ガラス及びα−トリジマイトの品位は、SiO2 純分が94質量%以上であれば十分である。また、被覆層を形成するための石英ガラス及びα−トリジマイトの粒度は、珪石質煉瓦の気孔中にも入り込む必要があることから、最大径を0.10mm以下とすることが好ましい。 As the SiO 2 source for forming the coating layer, quartz glass powder or tridymite powder obtained by solidifying fused silica is optimal. Tridymite is transformed into α-tridymite at room temperature, and therefore α-tridymite powder is used. Quartz glass has an extremely low coefficient of thermal expansion, and is difficult to peel off when coated on a siliceous brick. In particular, when entering the pores, the quartz glass hardly expands, so that the siliceous brick is not broken by the coating layer that has entered the pores. On the other hand, since tridymite has the same mineral composition as the main mineral composition of siliceous brick, it transforms in the same way as siliceous brick with an increase in temperature, and the thermal expansion coefficient is equivalent to that of siliceous brick. Peeling from the surface is suppressed. As for the quality of quartz glass and α-tridymite for forming the coating layer, it is sufficient that the pure content of SiO 2 is 94% by mass or more. Moreover, since the particle size of the quartz glass and α-tridymite for forming the coating layer needs to enter the pores of the siliceous brick, the maximum diameter is preferably set to 0.10 mm or less.

SiO2 の被覆層を形成する方法としては、耐火物の補修の際に一般的に使用される吹き付け法、焼き付け法、溶射法などを用いることができるが、そのなかで、緻密で強固な被覆層が得られることから、焼き付け法または溶射法を用いることが好ましい。焼き付け法とは、粉末状のSiO2 源を適宜の焼結助剤または焼成用結合剤と共にバーナー火炎中を介して吹き付けて固着させる方法であり、溶射法とは、バーナー火炎などの熱を利用して溶融させた粉末状のSiO2 源を適宜の焼結助剤または焼成用結合剤と共に吹き付けて溶着させる方法である。形成される被覆剤の化学組成は、SiO2 を94質量%以上とし、Fe23 は1質量%未満、Al23 は2質量%未満とする。CaOは2質量%程度含有させてもよい。 As a method for forming a coating layer of SiO 2 , a spraying method, a baking method, a thermal spraying method and the like generally used for repairing a refractory can be used. Among them, a dense and strong coating is used. Since a layer is obtained, it is preferable to use a baking method or a thermal spraying method. The baking method is a method in which a powdery SiO 2 source is sprayed and fixed through a burner flame together with an appropriate sintering aid or baking binder, and the thermal spraying method uses heat such as a burner flame. Then, the melted powdery SiO 2 source is sprayed and welded together with a suitable sintering aid or firing binder. The chemical composition of the coating agent to be formed is SiO 2 94% by mass or more, Fe 2 O 3 is less than 1% by mass, and Al 2 O 3 is less than 2% by mass. You may make CaO contain about 2 mass%.

SiO2 の被覆層を形成する時期は、製造した個々の珪石質煉瓦に被覆層を形成してもよく、また、コークス炉に施工された珪石質煉瓦の稼働面に対して被覆層を形成してもどちらでもよい。即ち、SiO2 の被覆層が予め形成された珪石質煉瓦を用いてコークス炉の炭化室と燃焼室との隔壁或いは蓄熱室の側壁などを施工してもよく、また、被覆層が形成されていない珪石質煉瓦をコークス炉に施工した後に珪石質煉瓦の稼働面にSiO2 の被覆層を形成してもどちらでも構わない。更には、操業中の600℃以下の膨張・収縮の大きい温度域を避けた熱間で被服層を形成し、更に、この温度域で追加の形成を行えばより好ましい。 When the SiO 2 coating layer is formed, the coating layer may be formed on each manufactured siliceous brick, or the coating layer may be formed on the working surface of the siliceous brick installed in the coke oven. Or either. That is, a partition wall between a carbonization chamber and a combustion chamber of a coke oven or a side wall of a heat storage chamber may be constructed using a siliceous brick in which a coating layer of SiO 2 is formed in advance, and the coating layer is not formed. It is possible to form a coating layer of SiO 2 on the working surface of the siliceous brick after the non-silica brick is applied to the coke oven. Furthermore, it is more preferable to form the clothing layer in the heat avoiding the temperature range where expansion and contraction is large at 600 ° C. or less during the operation, and to perform additional formation in this temperature range.

このように本発明に係るコークス炉用珪石質煉瓦は、その外表面に実質的にSiO2 からなる被覆層が形成されているので、雰囲気ガス中のアルミナなどのダストの珪石質煉瓦への侵入が防止され、長期間の使用においてもアルミナの侵入によって生ずるβ−クリストバライトへの変態を防止することが可能となる。また、被覆層と煉瓦とが同一化学成分であるので、被覆層によって煉瓦自体が変質することがない。そのため、コークス炉での長期間の繰り返し使用においても珪石質煉瓦は施工当初と同等の品質を維持した状態であり、珪石質煉瓦における亀裂の発生或いは煉瓦の目地切れを抑えることが可能となり、長期間安定してコークス炉を操業することが達成される。 Thus, the siliceous brick for a coke oven according to the present invention has a coating layer substantially made of SiO 2 formed on its outer surface, so that dust such as alumina in the atmospheric gas enters the siliceous brick. It is possible to prevent transformation to β-cristobalite caused by the intrusion of alumina even during long-term use. Further, since the covering layer and the brick have the same chemical component, the brick itself is not altered by the covering layer. For this reason, siliceous bricks maintain a quality equivalent to that at the beginning of construction even in long-term repeated use in a coke oven, and it is possible to suppress the occurrence of cracks in the siliceous bricks or the breakage of brick joints. Stable operation of the coke oven is achieved for a period of time.

SiO2 変態の転移関係を示す図である。Is a diagram showing the transition relationship between the SiO 2 transformation. SiO2 の鉱物組成の差による熱膨張率と温度との関係を示す図である。It is a diagram showing the relationship between the thermal expansion coefficient and temperature due to the difference in the SiO 2 of the mineral composition.

Claims (3)

その外表面の少なくとも一部に、実質的にSiO2 からなる被覆層が形成されていることを特徴とするコークス炉用珪石質煉瓦。 A siliceous brick for a coke oven, wherein a coating layer substantially made of SiO 2 is formed on at least a part of the outer surface thereof. 前記被覆層は、溶融シリカを冷却・固化した後に粉砕して得た粉末またはトリジマイトを粉砕して得た粉末を、焼き付け法または溶射法によって形成したものであることを特徴とする、請求項1に記載のコークス炉用珪石質煉瓦。   The coating layer is formed by baking or spraying a powder obtained by cooling and solidifying fused silica and then obtaining a powder obtained by grinding or tridymite. A siliceous brick for coke ovens as described in 1. 前記粉末のサイズは、最大径が0.10mm以下であることを特徴とする、請求項2に記載のコークス炉用珪石質煉瓦。   The siliceous brick for coke oven according to claim 2, wherein the powder has a maximum diameter of 0.10 mm or less.
JP2004316274A 2004-10-29 2004-10-29 Silicate brick for coke oven Expired - Fee Related JP4725079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004316274A JP4725079B2 (en) 2004-10-29 2004-10-29 Silicate brick for coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004316274A JP4725079B2 (en) 2004-10-29 2004-10-29 Silicate brick for coke oven

Publications (2)

Publication Number Publication Date
JP2006124560A true JP2006124560A (en) 2006-05-18
JP4725079B2 JP4725079B2 (en) 2011-07-13

Family

ID=36719597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004316274A Expired - Fee Related JP4725079B2 (en) 2004-10-29 2004-10-29 Silicate brick for coke oven

Country Status (1)

Country Link
JP (1) JP4725079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106045485A (en) * 2016-08-19 2016-10-26 武汉科技大学 Fire resistant brick used for lining of thermal equipment and preparation method thereof
JP2021050275A (en) * 2019-09-25 2021-04-01 Jfeスチール株式会社 Block refractory material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276301A (en) * 1975-12-22 1977-06-27 Shinagawa Refractories Co Strengthened painting material for wall of coke oven
JPS5419243A (en) * 1977-07-14 1979-02-13 Matsushita Electric Ind Co Ltd Gas water heater
JPS5782187A (en) * 1980-09-02 1982-05-22 Otto & Co Gmbh Dr C Coating mixture for silica brick
JPH02160896A (en) * 1988-12-13 1990-06-20 Sumitomo Metal Ind Ltd Method for preventing adhesion of carbon to coke oven wall surface
JPH08119775A (en) * 1994-10-14 1996-05-14 Kawasaki Steel Corp Method for treating surface of high-temperature refractory
JP2000327408A (en) * 1999-05-13 2000-11-28 Kurosaki Harima Corp Thermal shock resistant silica brick for hot repairing and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419243U (en) * 1977-07-11 1979-02-07

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276301A (en) * 1975-12-22 1977-06-27 Shinagawa Refractories Co Strengthened painting material for wall of coke oven
JPS5419243A (en) * 1977-07-14 1979-02-13 Matsushita Electric Ind Co Ltd Gas water heater
JPS5782187A (en) * 1980-09-02 1982-05-22 Otto & Co Gmbh Dr C Coating mixture for silica brick
JPH02160896A (en) * 1988-12-13 1990-06-20 Sumitomo Metal Ind Ltd Method for preventing adhesion of carbon to coke oven wall surface
JPH08119775A (en) * 1994-10-14 1996-05-14 Kawasaki Steel Corp Method for treating surface of high-temperature refractory
JP2000327408A (en) * 1999-05-13 2000-11-28 Kurosaki Harima Corp Thermal shock resistant silica brick for hot repairing and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106045485A (en) * 2016-08-19 2016-10-26 武汉科技大学 Fire resistant brick used for lining of thermal equipment and preparation method thereof
JP2021050275A (en) * 2019-09-25 2021-04-01 Jfeスチール株式会社 Block refractory material
JP7276044B2 (en) 2019-09-25 2023-05-18 Jfeスチール株式会社 block refractories

Also Published As

Publication number Publication date
JP4725079B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US2968083A (en) Hot patching of refractory structures
CN100372796C (en) Composite silicon brick
CN101323530A (en) Fused quartz block for coke oven hot repair
CN105000899B (en) A kind of coke oven liner over-glaze paint
JP4725079B2 (en) Silicate brick for coke oven
US20020145212A1 (en) Process and mixture for forming a coherent refractory mass on a surface
CN111778043A (en) Method for repairing tamping coke oven wall melting hole
JP2006124561A (en) Silica brick for coke oven
KR20030059148A (en) Refractory article
KR101788275B1 (en) Ceramic welding composition
ES2373765T3 (en) DRY MIX FOR THE TREATMENT OF REFRACTORY SUBSTRATES AND PROCEDURE THAT USES IT.
JP4125980B2 (en) Silica brick for coke oven and its manufacturing method
JP4700560B2 (en) Manufacturing method for hot repair silica brick
JPH04367518A (en) Furnace wall of electric melting furnace for rockwool and construction of the wall
JP3827119B2 (en) Powder mixture for flame spray repair
JP3687274B2 (en) Coke oven carbonization chamber surface treatment method
CN111440006B (en) Preheating process for foamed ceramic blank
RU2231512C1 (en) Composition for protective cover of refractory materials, method for preparing protective cover on working surfaces of heat units and method for preparing heat units
JP3009815B2 (en) Aluminum titanate-alumina spray material
JP3716445B2 (en) Flame spray repair material and flame spray repair method
JPS5919905B2 (en) Fireproof insulation board
RU2239758C1 (en) Method of hot repair of refractory lining of thermal units by ceramic facing method and ceramic mass for making such facing
JP2017523122A (en) Method for producing refractory material for introduction into superstructure of glass melting tank and method for improving spectral radiation intensity of refractory molded body
JPH09308993A (en) Ceramic end tab for electric welding and its production
JPS61111962A (en) Thermal impact resistant silica brick

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees