JP3827119B2 - Powder mixture for flame spray repair - Google Patents

Powder mixture for flame spray repair Download PDF

Info

Publication number
JP3827119B2
JP3827119B2 JP08189398A JP8189398A JP3827119B2 JP 3827119 B2 JP3827119 B2 JP 3827119B2 JP 08189398 A JP08189398 A JP 08189398A JP 8189398 A JP8189398 A JP 8189398A JP 3827119 B2 JP3827119 B2 JP 3827119B2
Authority
JP
Japan
Prior art keywords
layer
repair
thermal
spraying
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08189398A
Other languages
Japanese (ja)
Other versions
JPH11279741A (en
Inventor
久宏 松永
正人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP08189398A priority Critical patent/JP3827119B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to EP98947848A priority patent/EP0990712A4/en
Priority to PCT/JP1998/004615 priority patent/WO1999050470A1/en
Priority to KR10-1999-7011031A priority patent/KR100369265B1/en
Priority to AU94606/98A priority patent/AU749724B2/en
Priority to CN98807600A priority patent/CN1265161A/en
Priority to CA002291227A priority patent/CA2291227A1/en
Priority to BR9809188-3A priority patent/BR9809188A/en
Priority to US09/424,650 priority patent/US6322622B1/en
Priority to TW087117762A priority patent/TW459066B/en
Publication of JPH11279741A publication Critical patent/JPH11279741A/en
Application granted granted Critical
Publication of JP3827119B2 publication Critical patent/JP3827119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、工業用炉の内壁、特にコークス炉の高熱状態の内壁を補修するための材料であって、粉末状の耐火物を火炎により溶融し、噴射ノズルを用いて溶射補修する火炎溶射補修用粉状混合物に関するものである。
【0002】
【従来の技術】
工業炉、特に鉄鋼設備としてのコークス炉、高炉、製鋼炉等の築炉構造物の炉内は、乾留石炭、溶銑、溶鋼、スラグ等の溶融物に接して、1000℃以上もの高温に曝されるという苛酷な環境にある。特に、コークス炉炭化室からのコークス押し出し作業時や製鋼炉での溶銑・溶鋼の注湯、貯留、排出等の作業時には、これらの内壁は著しい温度変動に遭遇する。従って、これらの内壁は、単に前記溶融物が浸潤して溶損するというだけでなく、熱スポーリングによる亀裂や剥離等の損傷が頻繁に発生する。
このような種々の損傷要因に対処するには、設計あるいは築炉の段階で適切な材質のれんがを選択しなければならないと共に、その寿命を向上させるには、途中で補修することも必要である。
【0003】
例えば、その補修技術としては、耐火物損傷部に補修材料を熱間で吹き付ける火炎溶射補修方法がある。この火炎溶射補修方法というのは、主として高温の炉内壁面に対し、修復すべき炉壁耐火物の材質とほぼ同じ組成を有する補修用耐火性酸化物粉体または易被酸化性粉体あるいはその両者の混合物からなる火炎溶射補修材料を熱間吹き付けする技術である。この方法によれば、前記耐火性酸化物粉体は可燃性ガスの燃焼熱により溶融し、易被酸化性粉体はそれ自身の燃焼により発熱溶融して酸化物となり、前記耐火性酸化物粉体と共に溶射補修層を形成することができる。
特に、コークス炉は、改修時以外は炉温を下げることができず、高熱状態での炉壁補修が必須になることから、かかる火炎溶射補修方法が有効である。
【0004】
このような火炎溶射補修方法に関する従来技術としては、例えば、特公平2−45110 号公報に開示されている方法がある。この方法は、粉末状の耐火性酸化物を、可燃性物質および可燃性ガスに混合し、酸素あるいは空気等の酸素を含む支燃性ガス中に供給して燃焼火炎の熱によりその耐火性酸化物粉体を溶融し、炉の内壁の損傷部に瞬時に吹き付ける乾式方法である。
この方法にあっては、溶射された補修耐火物は、予め水分と吹き付け材を混合し泥漿化した材料をタンクから吹き付ける方法、即ち湿式吹き付け法に基づいて施工した補修耐火物に比べると、耐用性が格段に高いという特徴がある。
【0005】
ところで、このような火炎溶射補修方法に用いる溶射材料としては、例えば特公平3−9185号公報では、SiO2:93.9〜99.6wt%以上、 Al2O3: 1.5wt%以下、 CaO: 2.0wt%以下、 Fe2O3: 1.0wt%以下、Na2O: 0.4〜 2.0wt%からなる高シリカ質溶射材料を提案している。
一般に、この種の材料は、溶射直後の結晶化率が60%程度の材料であるが、その非晶質(ガラス質)の部分(<40%)が結晶化する際の膨張に伴う亀裂の発生や溶射補修層とコークス炉壁れんがとの熱膨張特性の差による接着強度の低下が認められる。即ち、上記の提案にかかる材料は、こうした結晶化率が低いために起こる弊害を克服するために開発されたものであった。
【0006】
しかしながら、特公平3−9185号公報に開示の技術は、材料の結晶化率を60%以上の溶射補修層にするための溶射条件、すなわち、酸素ガス流量、プロパンガス流量が極めて狭い範囲に限定されるという問題点があった。さらに、結晶化率60%以上の溶射補修層が得られる溶射条件では、緻密な溶射補修層、即ち高い圧縮強度をもつ溶射補修層が得られにくく、そのために耐磨耗性が劣り、溶射補修層の寿命が短いという問題があった。
【0007】
さらに、従来の溶射補修材料の主成分であるSiO2の原料としては、コストの面から珪石れんが屑などを利用することが多い。しかし、こうしたれんが屑を原料として用いると、不純物の混入が多くなる。特に、 CaOは珪石れんが製造の際バインダーとして広く使用される物質であるため不可避に混入し、それ故にこの CaOを2wt%以下に抑えることは困難な成分である。しかも、この CaOは、SiO2系の溶射被覆層における溶射直後の結晶化率を下げる作用が強いため、この CaO分が高くなると他の成分を調整することによって結晶化率の向上を図らねばならなかった。
【0008】
【発明が解決しようとする課題】
以上説明したように、従来技術は、結晶化率が低いために、補修層に亀裂が発生しやすくかつ基材表面に対する接着強度が低いという課題が残ったままか、少なくとも結晶化率を上げるための条件が厳しく、かつ圧縮強度が上がらず耐磨耗性が劣り、寿命が短いという問題点があった。
【0009】
また、SiO2を主成分とする火炎溶射補修材料の溶射直後の結晶化率を向上させるためには、結晶化を阻害する成分を排除することが効果的であることは当然であるが、原料コストを考えると、純度の高い原料を用いることには制約がある。このような理由で従来、SiO2の原料としては珪石れんが屑などを多く再利用しているのである。一方で、火炎溶射補修材料としては、珪石れんが屑などから不可避的に混入する CaOが存在する条件下にあっても溶射直後の結晶化率が80%以上となり、圧縮強度もコークス炉壁れんがの補修に必要とされている200kgf/cm2を満たすものが求められている。
【0010】
本発明の目的は、幅広い溶射条件において、溶射直後の結晶化率が高く、かつ緻密な溶射補修層を施工するのに有効な溶射補修材料を提供することにある。
本発明の他の目的は、補修層の亀裂や補修面に対する接着強度の低下がなく、一方で高い圧縮強度の確保を通じて、耐磨耗性と耐用性(寿命)に優れた溶射補修材料を提供することにある。
本発明のさらに他の目的は、不可避的に混入する CaOをある程度含有する場合であっても、溶射直後の結晶化率80%以上、かつ高圧縮強度(≧200kgf/cm2)の溶射層が得られる溶射材料を得ることにある。
【0011】
【課題を解決するための手段】
発明者らは、従来技術が抱えている前述した問題点について鋭意検討した結果、ある程度の不純物元素を混入しても、幅広い溶射条件において溶射直後の被覆層の結晶化率が80%以上を示し、かつ高い圧縮強度(≧200kgf/cm2)の溶射補修層を得るのに有効な、下記要旨構成にかかる火炎溶射補修材料としての粉状混合物を提案する。
【0012】
すなわち、本発明は基本的に、酸化物としての濃度で、SiO2:89wt%以上、 CaO: 2.0超〜 5.0wt%、Na2O:0.5〜 4.0wt%および Al2O3: 1.0wt%以下含有し、残部が不可避的不純物であり、火炎溶射後の結晶化率が 80 %以上、圧縮強度が 200kgf/cm 2 以上、補修層が 100 %結晶化したときの強度の低下率が 30 %以下の接着強度を示すものである火炎溶射補修用粉状混合物である。
【0014】
さらに、本発明は、酸化物としての濃度が、SiO2:89wt%以上、 CaO: 2.0超〜 5.0wt%、Li2O:0.2wt%超、かつ(Na2O+Li2O): 0.3〜 4.0wt%および Al2O3: 1.0wt%以下含有し、残部が不可避的不純物であり、火炎溶射後の結晶化率が 80 %以上、圧縮強度が 200kgf/cm 2 以上、補修層が 100 %結晶化したときの強度の低下率が 30 %以下の接着強度を示すものである火炎溶射補修用粉状混合物である。
【0016】
ここで、酸化物としての濃度の意味は、材料中に含まれる水分を除き、残った酸化物、炭酸塩、金属などの成分を酸化物に換算したものを 100としたときの量(wt%)をいう。
【0017】
【発明の実施の形態】
本発明は、主成分としてSiO2を含有する。このSiO2は、コークス炉などの炉壁内面に使用されている珪石れんがとほぼ同じ成分であり、これらの内壁面を補修部位とする場合、炉壁れんがと溶射補修耐火物層との熱膨張特性を、ほぼ一致させるために必須の成分となる。
本発明において、このSiO2の含有量は酸化物としての濃度に換算した量で89wt%以上とする。このように限定した理由は、SiO2の量が89wt%未満では、不可避に混入する CaO、 Fe2O3などの不純物成分の量が多くなり、この影響で溶射直後の溶射層の結晶化率が80%未満に低下するためである。
なお、本発明においてSiO2成分の原料としては、珪石れんが屑、珪石、珪砂等を用いることができる。
【0018】
ここで結晶化率とは、粉末X線回析で計測できる結晶化した鉱物層の定量値の合計である。SiO2を主成分とする溶射層の場合、主要鉱物相はクリストバライト、トリジマイト、クォーツの3種類である。したがって、その結晶化率は次式で表すことができる。
結晶化率(wt%)=クリストバライト+トリジマイト+クォーツ
一般に、SiO2系の材料からなる溶射層では、この層中に結晶化した部分とガラス化した部分との両方が生成する。そのうち、ガラス化した部分は、炉壁内の1000℃程度の温度に保持されると相変態を起こし、徐々に結晶化する。この結晶化の課程では相変態に伴う膨張が生じるため、溶射層内部に応力が発生し脆くなる。その上、この膨張により、補修される珪石れんが表面と溶射層との間の接着が弱くなるため、珪石れんが表面で溶射層全体の剥離が生じ易くなる。この意味において、望ましい補修材料は溶射直後の結晶化率が高く、その後溶射層の結晶化が進んだときでも該溶射層の膨張が起きにくいことが必要である。
【0019】
発明者らが溶射層の接着強度を計測したところによると、溶射直後の溶射層の結晶化率が80%以上であれば、溶射直後の溶射層と炉壁れんがとの接着強度に対し溶射層の結晶化が進んで 100%に達したときの該溶射層と炉壁れんがとの接着強度の減少率が、約30%以下となることがわかった。この程度の減少率であれば、接着強度の低下による溶射層の剥離による炉壁の損傷は無視できる。つまり、本発明において、溶射後のかかる結晶化率を80%以上にする理由はこの点に根拠をおくものである。
【0020】
ここで、接着強度とは、図1に示す方法で求めた数値を用いて比較したものであり、下記のようにして求めた。
▲1▼珪石れんがの側面に押し棒(断面20× 200mm角の耐火物)を押し当てた状態で、この押し棒の下方に補修材(約500g)を火炎溶射する。
▲2▼そして、前記押し棒を上から加圧し、溶射補修層が珪石れんがから剥離した時の押し棒の加圧力を下記式により測定し、接着強度とした。
【数1】

Figure 0003827119
【0021】
本発明にかかる材料は、SiO2の他に、Ca OやNa2OLi2Oなどを所定量を添加したものである。このような成分組成にすることで、溶射直後の溶射補修層の結晶化が促進され、圧縮強度が200kgf/cm2以上の緻密強固な溶射補修層を形成することができる。この点、溶射補修層の圧縮強度が200kgf/cm2以上になると、コークス炉におけるコークス炉におけるコークス押し出しに対する耐磨耗性も十分となる。
なお、上記圧縮強度は、JIS R2206で規定された耐火れんがの圧縮強さの試験方法に準拠して測定した値であり、ここでは溶射補修材料を珪石れんが表面に80mm以上の厚みで溶射した溶射補修層から試料を切り出して試験に供した。
【0022】
次に、添加成分であるNa2Oの含有量は、酸化物の濃度に換算して 0.5〜 4.0wt%の範囲とする。その理由は、Na2Oが 0.5wt%以下だと、圧縮強度が200kgf/cm2以上の溶射補修層を得るのは困難であり、耐磨耗性に課題が残る。一方、このNa2Oを4wt%を超えて含有させると、溶射直後の該補修層の結晶化率が80%に達しないため、該溶射補修層の剥離が発生しやすくなる。好ましいNa2Oの含有量は、 1.0〜 3.0wt%である。
なお、Na2O源としては、珪酸ナトリウム、炭酸ナトリウム等が好ましいが、その他の原料を用いることもできる。
【0023】
次に、Li2Oは、耐火物の濃度に換算して、 0.2超〜 4.0wt%添加する。このLi2Oは、通常、上記Na2Oよりも少量で溶射補修層の結晶化率を高める効果がある。このLi2Oの含有率が 0.2wt%以下だと、圧縮強度が200kgf/cm2以上の溶射補修層を得ることが困難であり、耐磨耗性が不足する。一方、この量が、 4.0wt%を超えて含有すると溶射補修層の結晶化率が80%にまで達しないため、該溶射補修層の剥離が起こりやすくなる。このLi2O含有量の好ましい範囲は、 0.3〜 1.0wt%である。
なお、Li2O源としては、炭酸リチウム等の原料を用いることができる。
【0024】
本発明においては Li2OとNa2Oを共に含有する場合(Li2O+Na2O)を 0.3〜 4.0wt%の範囲とする。これらの合計量が4wt%を超えると、溶射直後の結晶化率が80%にまで達せず、溶射層の剥離などの問題がある。好ましくは、 0.3wt%≦(Li2O+Na2O)≦ 2.5wt%の範囲がよい。
【0025】
本発明においては、CaOが2.0超〜5.0wt%の範囲の場合、Alを1wt%以下に抑制する必要がある。この理由は、CaOの含有量を5wt%以下に抑えても、溶射直後の結晶化率を低下させる物質の一つであるAl1wt%以下にしなければ、CaO量を制御する意味がなくなるからである。
図2は、CaO:5wt%、LiO:0.5wt%含有する溶射材料において、Alを変化させたときの溶射直後の溶射層の結晶化率を示したものである。溶射時の燃料ガス、酸素はそれぞれの溶射層で圧縮強度が200〜300kgf/cm に示すように適宜操作した。この図に示すように、CaOを5wt%含有する場合において、Al濃度が1.0wt%を超えると、溶射直後の結晶化率は80%以下となってしまう。また、図3はAl1wt%を含む溶射材料において、CaOの量を変化させたときの溶射層の溶射直後の結晶化率を示すが、CaOが5wt%以下であれば、Alを1wt%を含有しても結晶化率は80%以上を保つことがわかる。
【0026】
本発明において、SiO、CaO、NaO、Li 以外の成分は不可避的混入不純物である。これらの成分としては、Al、Fe、TiO、KOなどの酸化物が考えられるが、とくにAlについては、結晶化を阻害する傾向が強いため、1.0wt%以下にすることが望ましい。
【0027】
また、本発明にかかる材料については、粒度は特に限定しないが、好ましくは0.15mm以下の粒度にすることが望ましい。これは材料粒度が粗いと、この材料を溶融するための燃料ガス、酸素が多く必要になるからである。
【0028】
本発明の第1の実施態様としては、SiO2を93wt%以上含む珪石、珪石れんが屑、珪砂等の材料に、炭酸ナトリウムや珪酸ナトリウムを 3.6〜 6.8wt%の範囲で添加した場合、酸化物としての濃度に換算して、SiO2:89wt%以上、かつNa2O: 2.1〜 4.0wt%および 2.0超〜 5.0wt%の CaOと 1.0wt%以下の Al2O3とを含有するように配合調整したものが好適である。
【0030】
本発明の第2の実施態様としては、SiOを93wt%以上含む珪石等の材料に、炭酸リチウムを0.5wt%以上、かつ(炭酸ナトリウム+炭酸リチウム)の添加率が0.5〜6.5wt%の範囲となるように炭酸リチウムを添加し、酸化物としての濃度にして、SiOを89wt%以上、かつLiO:0.2wt%超、かつ(NaO+LiO):0.3〜4.0wt%および2.0超〜5.0wt%のCaOと1.0wt%以下のAlとを含有するように配合調整したものが好適である。
【0031】
上記の各実施形態において、Na2O源として炭酸ナトリウム、Li2O源として炭酸リチウムを用いる理由は、炭酸ナトリウムおよび炭酸リチウムは取り扱いが容易であり、また溶射時に容易に溶融し、SiO2と反応しやすいためである。なお、これらの原料は均一混合することが好ましい。
【0032】
【実施例】
以下、本発明を具体的に説明する。
表1(本発明例)、表2(比較例)に示した化学成分の材料(粒度−0.15mm)を、溶射量50kg/hを同表に示すガス流量( Nm3/h)にて、炉壁温度 750℃のコークス炉の炉壁(珪石れんが)に溶射し、溶射補修層を形成した。この溶射補修層の厚みは約50mmとした。溶射した3分後にその溶射補修層を回収し、JIS R 2206に準拠する圧縮強度(試験片:25mm×60mm×60mm)および粉末X線回析により結晶化率を測定した。また、溶射してから10分後、溶射補修層を1200℃で保持して 100%結晶化させた後、珪石れんがとの接着強度を測定した。なお、溶射時における材料の溶融率は、すべて90%以上であり、溶射補修層の溶融状態に依存する強度の相違などの影響を排除した。それぞれの測定結果について表1、表2にあわせて示した。
【0033】
上記測定結果から明らかなように、 CaOを 2.0〜 5.0wt%含む場合、酸化物としての濃度が、▲1▼SiO2:89wt%以上、かつNa2O 0.5〜 4.0wt%、かつ Al2O3:1.0wt%以下、▲2▼SiO2:89 wt%以上、Li2O:0.2 wt%超、かつ(Na2O+Li2O): 0.3〜 4.0wt% Al2O3: 1.0wt%以下である本発明にかかる材料の場合、溶射後3分経過した後の結晶化率はいずれも80%以上で、圧縮強度は 200kgf/cm2 以上を示した。また、本発明にかかるこれらの材料は、プロパンおよび酸素のユーティリティが±15%以上の範囲において、溶射3分後の結晶化率が80%以上で圧縮強度が 200kgf/cm2 以上であり、コークス炉の高温炉壁補修材料として要求される特性を満たしていた。しかも、 100%結晶化後の珪石れんがとの接着強度の低下率が、比較例>70%に対し、本発明例では30%以下であった。
【0034】
【表1】
Figure 0003827119
【0035】
【表2】
Figure 0003827119
【0036】
【発明の効果】
かくして本発明にかかる補修材料によれば、 CaOを 2.0〜 5.0wt%含有し Al2O3が1wt%以下である、SiO2を主成分とする材料において、溶射直後の結晶化率が高く、緻密な溶射補修層が得られるので、この溶射補修層の結晶化率が 100%になるとき(膨張時)の炉壁れんがとの熱膨張特性の差がほとんどないので亀裂の発生や接着強度の低下が起こらないと共に、高い圧縮強度の溶射補修層が得られるから、耐磨耗性と耐用性(寿命)に優れる。しかも、本発明の材料は上記の溶射補修層を少量の酸素ガス、プロパンガスを使用量で施工することができる。
【図面の簡単な説明】
【図1】図1は、接着強度の測定方法を説明する図である。
【図2】図2は、原料中の Al2O3濃度と溶射直後の結晶化率との関係を示すグラフである。
【図3】図3は、原料中の CaO濃度と溶射直後の結晶化率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is a material for repairing the inner wall of an industrial furnace, in particular, the inner wall of a coke oven in a high-heat state, in which a powdered refractory is melted by a flame and flame spray repair is performed using a spray nozzle. It relates to a powdery mixture.
[0002]
[Prior art]
Industrial furnaces, especially furnaces such as coke ovens, blast furnaces, and steelmaking furnaces as steel facilities, are exposed to high temperatures of 1000 ° C or higher in contact with melts such as dry-distilled coal, hot metal, molten steel, and slag. In a harsh environment. In particular, during the coke extrusion work from the coke oven carbonization chamber and the work of hot metal, molten steel pouring, storage, discharge, etc. in the steelmaking furnace, these inner walls encounter significant temperature fluctuations. Accordingly, these inner walls are not only simply infiltrated and melted by the melt, but also frequently undergo damage such as cracking and peeling due to thermal spalling.
In order to cope with such various damage factors, it is necessary to select a brick of an appropriate material at the stage of design or construction, and in order to improve its life, it is also necessary to repair it in the middle. .
[0003]
For example, as the repair technique, there is a flame spray repair method in which a repair material is sprayed hot on a refractory damaged part. This flame spraying repair method is mainly intended for repairing refractory oxide powder or easily oxidizable powder having the same composition as the material of the furnace wall refractory to be repaired, on the high-temperature furnace wall. This is a technique in which a flame spray repair material consisting of a mixture of both is hot sprayed. According to this method, the refractory oxide powder is melted by the combustion heat of the combustible gas, and the easily oxidizable powder is heated and melted by its own combustion to become an oxide. A thermal spray repair layer can be formed with the body.
In particular, since the furnace temperature cannot be lowered except at the time of refurbishment in a coke oven, and the furnace wall must be repaired in a high heat state, this flame spray repair method is effective.
[0004]
As a conventional technique related to such a flame spray repair method, for example, there is a method disclosed in Japanese Patent Publication No. 2-45110. In this method, a powdered refractory oxide is mixed with a flammable substance and a flammable gas, supplied into a flammable gas containing oxygen such as oxygen or air, and the refractory oxidation is performed by the heat of the combustion flame. This is a dry method that melts the material powder and instantaneously sprays it on the damaged part of the inner wall of the furnace.
In this method, the sprayed repaired refractory is more durable than the repaired refractory constructed by pre-mixing water and spraying material and spraying the slurry from the tank, that is, the wet spraying method. It is characterized by its remarkably high nature.
[0005]
Incidentally, as, for example, in the KOKOKU 3-9185 discloses spray material for use in such flame spraying repair method, SiO 2: 93.9~99.6wt% or more, Al 2 O 3: 1.5wt% or less, CaO: 2.0 wt %, Fe 2 O 3 : 1.0 wt% or less, Na 2 O: 0.4 to 2.0 wt%, a high siliceous thermal spray material is proposed.
In general, this type of material has a crystallization rate of about 60% immediately after thermal spraying, but the amorphous (glassy) portion (<40%) has cracks due to expansion when it crystallizes. Decrease in adhesive strength is observed due to the difference in thermal expansion characteristics between the generation and thermal spray repair layer and the coke oven wall brick. That is, the material according to the above proposal has been developed in order to overcome the adverse effects caused by such a low crystallization rate.
[0006]
However, the technique disclosed in Japanese Patent Publication No. 3-9185 is limited to a spraying condition for forming a sprayed repair layer having a crystallization rate of 60% or more, that is, an oxygen gas flow rate and a propane gas flow rate within a very narrow range. There was a problem of being. Furthermore, under the thermal spraying conditions in which a thermal spray repair layer having a crystallization rate of 60% or more is obtained, it is difficult to obtain a dense thermal spray repair layer, that is, a thermal spray repair layer having a high compressive strength. Therefore, the abrasion resistance is poor and the thermal spray repair is performed. There was a problem that the lifetime of the layer was short.
[0007]
Further, as a raw material of SiO 2 which is a main component of the conventional thermal spray repair material, silica brick waste is often used from the viewpoint of cost. However, when such brick waste is used as a raw material, contamination of impurities increases. In particular, CaO is a substance that is inevitably mixed in because silica brick is widely used as a binder in production, and therefore it is difficult to keep this CaO below 2 wt%. Moreover, since CaO has a strong effect of lowering the crystallization rate immediately after thermal spraying in the SiO 2 -based thermal spray coating layer, if this CaO content increases, the crystallization rate must be improved by adjusting other components. There wasn't.
[0008]
[Problems to be solved by the invention]
As described above, since the conventional technology has a low crystallization rate, there remains a problem that the repair layer easily cracks and the adhesion strength to the substrate surface remains low, or at least to increase the crystallization rate. However, there was a problem that the compressive strength was not increased, the wear resistance was inferior, and the life was short.
[0009]
Moreover, in order to improve the crystallization rate immediately after thermal spraying of a flame spray repair material mainly composed of SiO 2 , it is natural to eliminate components that inhibit crystallization, Considering the cost, there are restrictions on using high-purity raw materials. For these reasons, conventionally, a large amount of silica brick waste is reused as a raw material for SiO 2 . On the other hand, as a flame spraying repair material, the crystallization rate immediately after spraying is 80% or more even in the presence of CaO inevitably mixed from silica brick scraps, etc. satisfies the 200 kgf / cm 2, which is required to repair is required.
[0010]
An object of the present invention is to provide a thermal spray repair material that has a high crystallization rate immediately after thermal spraying and is effective for constructing a dense thermal spray repair layer under a wide range of thermal spraying conditions.
Another object of the present invention is to provide a thermal spray repair material that is excellent in wear resistance and durability (lifetime) through ensuring high compressive strength without cracking of the repair layer or a decrease in adhesion strength to the repair surface. There is to do.
Still another object of the present invention is to provide a sprayed layer having a crystallization rate of 80% or more immediately after spraying and a high compressive strength (≧ 200 kgf / cm 2 ) even when CaO inevitably mixed in is contained to some extent. It is to obtain the obtained thermal spray material.
[0011]
[Means for Solving the Problems]
As a result of intensive studies on the above-mentioned problems of the prior art, the inventors have shown that the crystallization rate of the coating layer immediately after thermal spraying is 80% or more under a wide range of thermal spraying conditions even when a certain amount of impurity elements are mixed. The present invention proposes a powdery mixture as a flame spray repair material according to the following summary, which is effective for obtaining a thermal spray repair layer having a high compressive strength (≧ 200 kgf / cm 2 ).
[0012]
That is, the present invention is basically a concentration as an oxide, SiO 2: 89 wt% or more, CaO: 2.0 super ~ 5.0wt%, Na 2 O: 0.5~ 4.0wt% and Al 2 O 3: 1.0wt% contains the following, Ri balance der unavoidable impurities, the crystallization ratio after flame spraying is 80% or more, the compressive strength is 200 kgf / cm 2 or more, decrease rate of the intensity when the repair layer is 100% crystallinity is 30 % is der Ru flame spray repairing powdery mixture shows the adhesive strength of the following.
[0014]
Furthermore, the present invention, the concentration of the oxides, SiO 2: 89 wt% or more, CaO: 2.0 super ~ 5.0wt%, Li 2 O: 0.2wt% greater, and (Na 2 O + Li 2 O ): 0.3 ~ 4.0 wt% and Al 2 O 3: containing less 1.0 wt%, the balance Ri der unavoidable impurities, the crystallization ratio after flame spraying is 80% or more, the compressive strength is 200 kgf / cm 2 or more, the repair layer is 100% rate of decrease in intensity when crystallized is der Ru flame spray repairing powdery mixture indicates the bond strength of 30% or less.
[0016]
Here, the meaning of the concentration as an oxide is the amount (wt%) when excluding the water contained in the material and converting the remaining oxide, carbonate, metal, etc. into an oxide. ).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention contains SiO 2 as a main component. This SiO 2 is almost the same component as silica brick used on the inner wall of furnace walls such as coke ovens, and when these inner walls are used as repair sites, thermal expansion between the furnace wall brick and the sprayed repair refractory layer It becomes an essential component for almost matching the characteristics.
In the present invention, the SiO 2 content is 89 wt% or more in terms of the concentration as an oxide. The reason for this limitation is that when the amount of SiO 2 is less than 89 wt%, the amount of impurity components such as CaO and Fe 2 O 3 that are inevitably mixed increases, and this causes the crystallization rate of the sprayed layer immediately after spraying. This is because of a decrease to less than 80%.
In the present invention, as the raw material for the SiO 2 component, silica brick waste, silica stone, silica sand and the like can be used.
[0018]
Here, the crystallization rate is the total of the quantitative values of the crystallized mineral layer that can be measured by powder X-ray diffraction. In the case of a thermal spray layer mainly composed of SiO 2 , there are three main mineral phases: cristobalite, tridymite, and quartz. Therefore, the crystallization rate can be expressed by the following formula.
Crystallization rate (wt%) = Cristobalite + tridymite + quartz Generally, in a sprayed layer made of a SiO 2 -based material, both a crystallized portion and a vitrified portion are generated in this layer. Of these, the vitrified portion undergoes phase transformation and gradually crystallizes when kept at a temperature of about 1000 ° C. in the furnace wall. In this crystallization process, expansion occurs due to phase transformation, so that stress is generated inside the sprayed layer and becomes brittle. In addition, due to this expansion, the adhesion between the surface of the silica brick to be repaired and the sprayed layer becomes weak, and therefore, the silica spray is easily peeled off from the entire surface of the sprayed layer. In this sense, it is necessary that the desired repair material has a high crystallization rate immediately after thermal spraying, and the thermal sprayed layer is unlikely to expand even when crystallization of the thermal sprayed layer proceeds thereafter.
[0019]
According to the measurement of the adhesive strength of the thermal sprayed layer by the inventors, if the crystallization rate of the thermal sprayed layer immediately after thermal spraying is 80% or more, the thermal sprayed layer with respect to the adhesive strength between the thermal sprayed layer and the furnace wall brick immediately after thermal spraying. It was found that the rate of decrease in the adhesive strength between the thermal sprayed layer and the brick at the furnace wall when the crystallization of the steel reached 100% was about 30% or less. With such a reduction rate, damage to the furnace wall due to the delamination of the sprayed layer due to a decrease in adhesive strength can be ignored. That is, in the present invention, the reason why the crystallization rate after spraying is 80% or more is based on this point.
[0020]
Here, the adhesive strength is a comparison using numerical values obtained by the method shown in FIG. 1 and was obtained as follows.
(1) With a push bar (refractory 20 x 200 mm square in cross section) pressed against the side of the silica brick, repair material (approx. 500 g) is flame sprayed under the push bar.
{Circle around (2)} Then, the push rod was pressurized from above, and the pressure applied to the push rod when the thermal spray repair layer was peeled off from the silica brick was measured by the following formula to obtain the adhesive strength.
[Expression 1]
Figure 0003827119
[0021]
Material according to the present invention, in addition to SiO 2, it is obtained Ca O and Na 2 O, Li 2 O and adding a predetermined amount. By adopting such a component composition, crystallization of the thermal spray repair layer immediately after thermal spraying is promoted, and a dense and strong thermal spray repair layer having a compressive strength of 200 kgf / cm 2 or more can be formed. In this respect, if the compressive strength of the thermal spray repair layer is 200 kgf / cm 2 or more, the wear resistance against coke extrusion in the coke oven in the coke oven becomes sufficient.
The compressive strength is a value measured in accordance with the test method for compressive strength of refractory bricks specified in JIS R2206. Here, the thermal spray repair material is sprayed with silica brick on the surface with a thickness of 80 mm or more. A sample was cut out from the repair layer and used for the test.
[0022]
Next, the content of Na 2 O as an additive component is in the range of 0.5 to 4.0 wt% in terms of oxide concentration. The reason is that when Na 2 O is 0.5 wt% or less, it is difficult to obtain a thermal spray repair layer having a compressive strength of 200 kgf / cm 2 or more, and there remains a problem in wear resistance. On the other hand, when the Na 2 O content exceeds 4 wt%, the crystallization rate of the repair layer immediately after thermal spraying does not reach 80%, so that the thermal spray repair layer easily peels off. A preferable Na 2 O content is 1.0 to 3.0 wt%.
As the Na 2 O source, sodium silicate, sodium carbonate and the like are preferable, but other raw materials can also be used.
[0023]
Next, Li 2 O is added in excess of 0.2 to 4.0 wt% in terms of the concentration of the refractory. This Li 2 O usually has the effect of increasing the crystallization rate of the thermal spray repair layer in a smaller amount than the Na 2 O. If the Li 2 O content is 0.2 wt% or less, it is difficult to obtain a thermal spray repair layer having a compressive strength of 200 kgf / cm 2 or more, and the wear resistance is insufficient. On the other hand, when the amount exceeds 4.0 wt%, the crystallization rate of the thermal spray repair layer does not reach 80%, and the thermal spray repair layer is likely to be peeled off. A preferable range of the Li 2 O content is 0.3 to 1.0 wt%.
Note that a raw material such as lithium carbonate can be used as the Li 2 O source.
[0024]
In the present invention, when they contain both L i 2 O and Na 2 O, in the range of 0.3 to 4.0 wt% of (Li 2 O + Na 2 O ). If the total amount exceeds 4 wt%, the crystallization rate immediately after spraying does not reach 80%, and there is a problem such as peeling of the sprayed layer. The range of 0.3 wt% ≦ (Li 2 O + Na 2 O) ≦ 2.5 wt% is preferable.
[0025]
In the present invention, when CaO is in the range of more than 2.0 to 5.0 wt%, Al 2 O 3 needs to be suppressed to 1 wt% or less. This is because, even with reduced content of CaO below 5 wt%, unless the Al 2 O 3 1wt% or less, which is one of the substances lowering the crystallization ratio immediately after thermal spraying, is meant to control the amount of CaO Because it disappears.
FIG. 2 shows the crystallization rate of the sprayed layer immediately after spraying when Al 2 O 3 is changed in a sprayed material containing CaO: 5 wt% and Li 2 O: 0.5 wt%. The fuel gas and oxygen during spraying have a compressive strength of 200 to 300 kgf / cm 2 in each sprayed layer. As shown in FIG. As shown in this figure, in the case of containing 5 wt% CaO, if the Al 2 O 3 concentration exceeds 1.0 wt%, the crystallization rate immediately after thermal spraying becomes 80% or less. FIG. 3 shows the crystallization rate immediately after thermal spraying of the thermal spray layer when the amount of CaO is changed in a thermal spray material containing 1 wt% of Al 2 O 3. If CaO is 5 wt% or less, Al 2 It can be seen that the crystallization ratio is maintained at 80% or more even when 1 wt% of O 3 is contained.
[0026]
In the present invention, components other than SiO 2 , CaO, Na 2 O and Li 2 O are inevitable impurities. As these components, oxides such as Al 2 O 3 , Fe 2 O 3 , TiO 2 , and K 2 O are conceivable. Particularly, Al 2 O 3 has a strong tendency to inhibit crystallization, and thus 1 It is desirable to make it 0.0 wt% or less.
[0027]
Further, the particle size of the material according to the present invention is not particularly limited, but it is desirable that the particle size is preferably 0.15 mm or less. This is because if the material particle size is coarse, more fuel gas and oxygen are required to melt the material.
[0028]
The first embodiment of the present invention, silica containing SiO 2 or 93 wt%, silica brick scrap, to materials such as silica sand, when added sodium or silicate of sodium carbonate in the range of 3.6 to 6.8 wt%, oxide In terms of the concentration, SiO 2 : 89 wt% or more and Na 2 O: 2.1 to 4.0 wt% and more than 2.0 to 5.0 wt% CaO and 1.0 wt% or less Al 2 O 3 What was blended and adjusted is suitable.
[0030]
As a second embodiment of the present invention, lithium carbonate is added at 0.5 wt% or more and (sodium carbonate + lithium carbonate) is added in an amount of 0.5 to 6 to a material such as silica containing 93 wt% or more of SiO 2. Lithium carbonate is added so as to be in a range of 0.5 wt%, and the concentration as an oxide is set to 89 wt% or more of SiO 2 , Li 2 O: more than 0.2 wt%, and (Na 2 O + Li 2 O): What was blended and adjusted to contain 0.3 to 4.0 wt% and more than 2.0 to 5.0 wt% of CaO and 1.0 wt% or less of Al 2 O 3 is preferable.
[0031]
In the above embodiments, sodium carbonate as Na 2 O source, the reason for using a lithium carbonate as Li 2 O source, sodium carbonate and lithium carbonate are easy to handle, also easily melted at the time of spraying, and SiO 2 It is because it is easy to react. These raw materials are preferably mixed uniformly.
[0032]
【Example】
The present invention will be specifically described below.
The materials of chemical components shown in Table 1 (Invention Example) and Table 2 (Comparative Example) (particle size -0.15 mm) were sprayed at 50 kg / h at the gas flow rate (Nm 3 / h) shown in the same table. Thermal spraying was performed on the furnace wall (silica brick) of a coke oven with a furnace wall temperature of 750 ° C. to form a sprayed repair layer. The thickness of this thermal spray repair layer was about 50 mm. The sprayed repair layer was collected 3 minutes after spraying, and the crystallization rate was measured by compressive strength (test piece: 25 mm × 60 mm × 60 mm) and powder X-ray diffraction according to JIS R 2206. Further, 10 minutes after the thermal spraying, the thermal spray repair layer was held at 1200 ° C. and allowed to crystallize 100%, and then the adhesive strength with the silica brick was measured. In addition, the melting rate of the material at the time of thermal spraying was all 90% or more, and the influence of the difference in strength depending on the molten state of the thermal spray repair layer was excluded. Each measurement result is shown in Tables 1 and 2 together.
[0033]
As is apparent from the above measurement results, when CaO is contained in an amount of 2.0 to 5.0 wt%, the oxide concentration is as follows: ( 1) SiO 2 : 89 wt% or more, Na 2 O 0.5 to 4.0 wt%, and Al 2 O 3: 1.0 wt% or less, ▲ 2 ▼ SiO 2: 89 wt% or more, Li 2 O: 0.2 wt% greater, one or (Na 2 O + Li 2 O ): 0.3 ~ 4.0wt%, A l 2 O 3: 1.0 In the case of the material according to the present invention having a wt% or less, the crystallization rate after 3 minutes after spraying was 80% or more and the compressive strength was 200 kgf / cm 2 or more. In addition, these materials according to the present invention have a propane and oxygen utility range of ± 15% or more, a crystallization rate after 3 minutes of spraying of 80% or more, and a compressive strength of 200 kgf / cm 2 or more. It met the characteristics required as a high temperature furnace wall repair material for the furnace. In addition, the rate of decrease in the adhesive strength with the silica brick after 100% crystallization was 30% or less in the present invention example compared to 70% in the comparative example.
[0034]
[Table 1]
Figure 0003827119
[0035]
[Table 2]
Figure 0003827119
[0036]
【The invention's effect】
Thus, according to the repair material according to the present invention, Al 2 O 3 containing CaO 2.0 to 5.0 wt% is not more than 1 wt%, the material mainly containing SiO 2, a high crystallization ratio immediately after thermal spraying, Since a dense thermal spray repair layer is obtained, there is almost no difference in thermal expansion characteristics from the furnace wall brick when the crystallization rate of this thermal spray repair layer reaches 100% (during expansion). Since no reduction occurs and a thermal spray repair layer with high compressive strength is obtained, it is excellent in wear resistance and durability (life). Moreover, the material of the present invention can be applied to the above-mentioned sprayed repair layer with a small amount of oxygen gas and propane gas.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a method for measuring adhesive strength.
FIG. 2 is a graph showing the relationship between the Al 2 O 3 concentration in the raw material and the crystallization rate immediately after thermal spraying.
FIG. 3 is a graph showing the relationship between the CaO concentration in the raw material and the crystallization rate immediately after thermal spraying.

Claims (2)

酸化物としての濃度で、SiO:89wt%以上、CaO:2.0超〜5.0wt%、NaO:0.5〜4.0wt%およびAl:1.0wt%以下含有し、残部が不可避的不純物であり、火炎溶射後の結晶化率が80%以上、圧縮強度が200kgf/cm以上、補修層が100%結晶化したときの強度の低下率が30%以下の接着強度を示すものである火炎溶射補修用粉状混合物。At a concentration of as oxides, SiO 2: 89wt% or more, CaO: 2.0 super ~5.0wt%, Na 2 O: 0.5~4.0wt % and Al 2 O 3: containing less 1.0 wt% The balance is inevitable impurities, the crystallization rate after flame spraying is 80% or more, the compressive strength is 200 kgf / cm 2 or more, and the rate of decrease in strength when the repair layer is 100% crystallized is 30% or less. A powder mixture for flame spray repair that shows adhesive strength. 酸化物としての濃度が、SiO:89wt%以上、CaO:2.0超〜5.0wt%、LiO:0.2wt%超、かつLi Oの他にNa Oをも含有し、しかもこれらNaおよびLiの合計で0.3〜4.0wt%およびAl:1.0wt%以下含有し、残部が不可避的不純物であり、火炎溶射後の結晶化率が80%以上、圧縮強度が200kgf/cm以上、補修層が100%結晶化したときの強度の低下率が30%以下の接着強度を示すものである火炎溶射補修用粉状混合物。The concentration of the oxides, SiO 2: 89 wt% or more, CaO: 2.0 super ~5.0wt%, Li 2 O: also contain Na 2 O 0.2 wt% greater, and in addition to Li 2 O In addition, the total content of Na 2 O and Li 2 O is 0.3 to 4.0 wt% and Al 2 O 3 : 1.0 wt% or less, and the balance is inevitable impurities, and the crystallization rate after flame spraying Is a powder mixture for flame spraying repair, in which the adhesive strength is 80% or more, the compressive strength is 200 kgf / cm 2 or more, and the rate of decrease in strength when the repair layer is 100% crystallized is 30% or less.
JP08189398A 1998-03-27 1998-03-27 Powder mixture for flame spray repair Expired - Fee Related JP3827119B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP08189398A JP3827119B2 (en) 1998-03-27 1998-03-27 Powder mixture for flame spray repair
US09/424,650 US6322622B1 (en) 1998-03-27 1998-10-13 Flame-spraying powdery repair mixture
KR10-1999-7011031A KR100369265B1 (en) 1998-03-27 1998-10-13 Flame-spraying powdery repair mixture
AU94606/98A AU749724B2 (en) 1998-03-27 1998-10-13 Flame-spraying powdery repair mixture
CN98807600A CN1265161A (en) 1998-03-27 1998-10-13 Flame-spraying powdery repair mixture
CA002291227A CA2291227A1 (en) 1998-03-27 1998-10-13 Powdery mixture for flame spray mending
EP98947848A EP0990712A4 (en) 1998-03-27 1998-10-13 Flame-spraying powdery repair mixture
PCT/JP1998/004615 WO1999050470A1 (en) 1998-03-27 1998-10-13 Flame-spraying powdery repair mixture
BR9809188-3A BR9809188A (en) 1998-03-27 1998-10-13 Powder mix for flame spray repair
TW087117762A TW459066B (en) 1998-03-27 1998-10-27 Powdery mixture for flame spray mending

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08189398A JP3827119B2 (en) 1998-03-27 1998-03-27 Powder mixture for flame spray repair

Publications (2)

Publication Number Publication Date
JPH11279741A JPH11279741A (en) 1999-10-12
JP3827119B2 true JP3827119B2 (en) 2006-09-27

Family

ID=13759133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08189398A Expired - Fee Related JP3827119B2 (en) 1998-03-27 1998-03-27 Powder mixture for flame spray repair

Country Status (1)

Country Link
JP (1) JP3827119B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493404B2 (en) * 2004-05-26 2010-06-30 品川リフラクトリーズ株式会社 Thermal spray material
LU92339B1 (en) * 2013-12-19 2015-06-22 Fib Services Intellectual Sa Siliceous composition and process for obtaining it

Also Published As

Publication number Publication date
JPH11279741A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
CN101939273A (en) Sintered refractory with silicon nitride tackiness agent based on silicon carbide
CN102795843B (en) High-strength anti-stripping wear-resistant ceramic paint and preparation method thereof
CN108821785A (en) A kind of coating against binding slags for hot-rolling heating furnace water beam heat preservation lining
JP5493711B2 (en) Thermal spray repair material
JP3827119B2 (en) Powder mixture for flame spray repair
KR100369265B1 (en) Flame-spraying powdery repair mixture
EP1328490B1 (en) Refractory article
JP3103523B2 (en) Thermal spray material
KR101788275B1 (en) Ceramic welding composition
JP3470588B2 (en) Powder mixture for flame spray repair
JP2000111024A (en) Alkaline waste liquid incinerating furnace
JP6263208B2 (en) Thermal spray material
ES2373765T3 (en) DRY MIX FOR THE TREATMENT OF REFRACTORY SUBSTRATES AND PROCEDURE THAT USES IT.
JP4493404B2 (en) Thermal spray material
JP2549035B2 (en) Fireproof powder for thermal spraying
JPS6221753B2 (en)
JP2024044395A (en) Powder for thermal spraying materials
JP3009815B2 (en) Aluminum titanate-alumina spray material
JP3874216B2 (en) Flame spraying material
KR101633472B1 (en) Repairing materials for blast furnace body
JP3982647B2 (en) Flame spraying material
JPS5917347B2 (en) rotary reduction furnace
JPH0791120B2 (en) Silica-based furnace wall repair spray material
JPH05330931A (en) Thermal spraying repairing material
Chatterjee et al. Refractory Practices in Ferro-alloy Smelting Furnaces

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees