JPS60121941A - Liquid-cooled motor - Google Patents

Liquid-cooled motor

Info

Publication number
JPS60121941A
JPS60121941A JP58228361A JP22836183A JPS60121941A JP S60121941 A JPS60121941 A JP S60121941A JP 58228361 A JP58228361 A JP 58228361A JP 22836183 A JP22836183 A JP 22836183A JP S60121941 A JPS60121941 A JP S60121941A
Authority
JP
Japan
Prior art keywords
stator
liquid
laminated core
motor
circulation passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58228361A
Other languages
Japanese (ja)
Inventor
Jiro Nakano
次郎 中野
Yukio Katsusawa
幸男 勝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP58228361A priority Critical patent/JPS60121941A/en
Publication of JPS60121941A publication Critical patent/JPS60121941A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To enhance the heat removing efficiency without using a separate part like a jacket by forming a pair of brackets and a stator in a circulating passage of coolant and preventing the leakage from the passage in a laminated core by a metal coating layer. CONSTITUTION:A cooling circulating passage 27 connected with an inlet 23 and a coolant circulating passage 28 connected with an outlet 24 are formed in a bracket 13. Four circulating passages 29-32 which pass axially a stator 11 are formed in the stator 11. A metal coating layer 38 is fusion-bonded to the inner surfaces of the passages 29-32 in the laminated core 18 of the stator 11, thereby preventing the leakage from the passages 29-32.

Description

【発明の詳細な説明】 発明の技術分野 本発明は液冷モータに関し、特に、ロータの両端の軸部
を回転可能に支持する一対のブラヶ71・の間に積層コ
アを有するステータを固着した液冷モータに関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a liquid-cooled motor, and more particularly, to a liquid-cooled motor in which a stator having a laminated core is fixed between a pair of brackets 71 that rotatably support the shaft portions at both ends of the rotor. Regarding cold motors.

従来技術と問題点 従来から、電磁鋼板を打ち抜いて形成したステータコア
を多数枚積層し、その積層コアの内側に励磁巻線を配設
してステータを構成し、ロータの両端軸部を支持する一
対のブラケット間にこのステータを固着させた構造のモ
ータが用いられている。この種のモータにおいては、1
iIt員、鉄損等に伴ってモータが発熱し、ブラケット
の軸受部が高温になるために、モータの口・−夕軸を高
速回転させることができなくなる。また、モータを工作
機械に取り付けた場合、モータの熱によって工作機械が
熱変形してしまうという問題が生じる。
Conventional technology and problems Conventionally, a stator is constructed by laminating a large number of stator cores formed by punching out electromagnetic steel sheets, and arranging excitation windings inside the laminated cores, and a pair of stators supporting the shaft portions at both ends of the rotor. A motor with a structure in which this stator is fixed between two brackets is used. In this kind of motor, 1
The motor generates heat due to heat loss, iron loss, etc., and the bearing portion of the bracket becomes hot, making it impossible to rotate the motor shaft at high speed. Furthermore, when the motor is attached to a machine tool, there is a problem in that the machine tool is thermally deformed by the heat of the motor.

モータの発熱を防止するために、従来は、一般に、モー
タの一端部側に設けた冷却ファンによりモータに冷却風
を送って奪熱冷却を行なう構成が採られている。しかし
ながら、このような冷却手段を用いた場合、空気自体の
比熱が小さいため奪熱量も少なく、これを補うべく通風
量を増加させると、騒音が増大するという問題が生じる
。また、モータの熱を奪った冷却風が工作機械に当たる
ため、」−作機械が熱変形を一層起ごし易くなるという
問題が生じる。
In order to prevent the motor from generating heat, a configuration has generally been adopted in which a cooling fan provided at one end of the motor sends cooling air to the motor to perform heat removal cooling. However, when such a cooling means is used, since the specific heat of the air itself is small, the amount of heat absorbed is also small, and if the amount of ventilation is increased to compensate for this, a problem arises in that noise increases. Furthermore, since the cooling air that has removed the heat from the motor hits the machine tool, there is a problem in that the machine tool is more likely to undergo thermal deformation.

冷却媒体として液体を用いれば冷却効率が高まるが、こ
の場合、液漏ネ1を十分に防止する構造が必要となる。
If a liquid is used as the cooling medium, the cooling efficiency will be increased, but in this case, a structure that sufficiently prevents liquid leakage 1 is required.

そこで、従来において、内部に冷却液循環用通路を有す
る鋳造製品のジャケットをステータの周囲に配設した液
冷モータが提案されている。しかしながら、このような
構成の液冷モータの場合、ジャゲットとステータとの間
に接合壁が存在Jるため、伝pシ効率が低下してしまい
、十分な冷却を行なうことができなくなるという欠点が
ある。また、ジャケットの配置により、モータの外形寸
法及びmlが増大してしまうという欠点や、ジャケット
の製作によりコス]・が増大するという欠点がある。
Therefore, conventionally, a liquid-cooled motor has been proposed in which a cast jacket having a coolant circulation passage therein is disposed around a stator. However, in the case of a liquid-cooled motor with such a configuration, there is a joint wall between the jacket and the stator, which reduces pneumatic transfer efficiency and makes it impossible to provide sufficient cooling. be. In addition, there is a drawback that the outer dimensions and ml of the motor increase due to the arrangement of the jacket, and the cost increases due to the manufacture of the jacket.

発明の目的 本発明は上記従来技術の欠点に鑑み、」二連したジャケ
ットのような別部品を必要とせず、しかも、奪熱効率を
高めることができるとともに液漏れを十分に防止するこ
とができる信頼性の高い液冷モータを提供することを目
的とする。
Purpose of the Invention In view of the above-mentioned drawbacks of the prior art, the present invention provides a reliable system that does not require separate parts such as double jackets, can increase heat removal efficiency, and can sufficiently prevent liquid leakage. The objective is to provide a liquid-cooled motor with high performance.

発明の構成 」二記目的を達成するために、本発明は、ロータの両端
の軸部を回転可能に支持する一対のブラケットの間に積
層コアを有するステータを固着したモータにおいて、一
方のブラケソ1〜に冷却液の入口及び出口を設け、該入
口及び出し1に通じる冷却液の循環通路を一対のブラケ
ット及びステータ内に形成し、ステ〜りの積層コア内の
循環通路の内面に溶着した金属被膜層により積層コア内
の循環通路の液漏れを防止したごとを特徴とする液冷モ
ータを提供する。
[Structure of the Invention] In order to achieve the second object, the present invention provides a motor in which a stator having a laminated core is fixed between a pair of brackets that rotatably support the shaft portions at both ends of the rotor. A coolant inlet and an outlet are provided in ~, a coolant circulation passage leading to the inlet and outlet 1 is formed in a pair of brackets and the stator, and metal is welded to the inner surface of the circulation passage in the laminated core of the stator. Provided is a liquid-cooled motor characterized in that a coating layer prevents liquid leakage from a circulation passage in a laminated core.

発明の実施例 以−ト、図面を参照して本発明の詳細な説明する。Examples of the invention The present invention will now be described in detail with reference to the drawings.

第1図ないし第3図は本発明の一実施例を示すものであ
る。ごれらの図を参照すると、液冷モータは、ロータ1
0とステータ】1と一対のブラケット12□ 13とを
備え−ζいる。ロータ10はローダニ1ア14と一体の
軸15を有しており、軸15の両端部はそれぞれベアリ
ング16.17を介してブラケット12.13に回転可
能に支持され−ζいる。
1 to 3 show one embodiment of the present invention. Referring to these figures, the liquid cooled motor has rotor 1
0 and a stator] 1 and a pair of brackets 12 and 13. The rotor 10 has a shaft 15 integral with the load mite 14, and both ends of the shaft 15 are rotatably supported by brackets 12.13 via bearings 16.17, respectively.

ステータ11は積層コア18を自している。積層コア1
8は、電磁鋼板を打ち抜いて形成したステータコアを多
数枚積層して接着、含浸等により一体化した構成となっ
ている。積層コア18の内側には励磁巻線19が配設さ
れている。積層コア18の両端には補強用の端板20.
21が固着されている。ステータ11はブラケソ112
.13間に配設されており、ステータ11とブラケット
12.13はボルト等の締結手段によって一体に固着さ
れている。
The stator 11 has a laminated core 18. Laminated core 1
Reference numeral 8 has a structure in which a large number of stator cores formed by punching out electromagnetic steel sheets are laminated and integrated by bonding, impregnation, etc. An excitation winding 19 is arranged inside the laminated core 18 . End plates 20 for reinforcement are provided at both ends of the laminated core 18.
21 is fixed. Stator 11 is bracketo 112
.. The stator 11 and the brackets 12 and 13 are fixed together by fastening means such as bolts.

一方のブラケット12には、液冷モータを工作機械等に
取り付けるためのフランジ22が形成されており、ロー
タ10の軸15の出力側端部はこのブラケソ1〜12の
外方に突出している。
One of the brackets 12 is formed with a flange 22 for attaching the liquid-cooled motor to a machine tool or the like, and the output side end of the shaft 15 of the rotor 10 projects outward from the brackets 1 to 12.

他方のブラケット13には冷却液の人口23と出口24
とが形成されており、入口23及び出口24には配管2
5.26が接続されている。入口23側の配管は工作機
械等に付属するクーラントポンプや水道管に接続するこ
とができるので、液冷モータ専用の冷却液供給ポンプ等
を準備する必要はない。
The other bracket 13 has a coolant port 23 and an outlet 24.
are formed, and piping 2 is provided at the inlet 23 and outlet 24.
5.26 is connected. Since the piping on the inlet 23 side can be connected to a coolant pump attached to a machine tool or the like or a water pipe, there is no need to prepare a coolant supply pump exclusively for the liquid-cooled motor.

第3図を参照すると、ブラケソt−13内には入口23
に接続される冷却液用循環通路27と出口24に接続さ
れる冷却液用循環通路28とが形成されている。ステー
クJ1には該ステータ11を軸線方向に貫通する4つの
循環通路29,30゜31.32が形成されている。こ
れらのうち、2つの循環通路29.30は入口2例のブ
ラケット13の循環通路27に接続されており、他の2
つの循環通路31.32は出口24側のブラケット13
の循環通路28に接続されている。ブラケット12には
ステータ11の循環通路29〜32に接続される循環通
路33が形成されている。
Referring to FIG. 3, there is an entrance 23
A coolant circulation passage 27 connected to the outlet 24 and a coolant circulation passage 28 connected to the outlet 24 are formed. Four circulation passages 29, 30° 31, 32 are formed in the stake J1, passing through the stator 11 in the axial direction. Of these, two circulation passages 29 and 30 are connected to the circulation passages 27 of the brackets 13 of the two entrances, and the other two
The two circulation passages 31 and 32 are connected to the bracket 13 on the outlet 24 side.
It is connected to the circulation passage 28 of. A circulation passage 33 connected to the circulation passages 29 to 32 of the stator 11 is formed in the bracket 12 .

ステータ11の循環通路29は積層コア18に形成され
た貫通孔29aと端板20,21に形成された貫通孔2
9b、29cとからなっており、他の循環通路30〜3
2も同様の構成となっている。第3図に示されているよ
うに、端板20に形成されている貫通孔29bと32b
は端板20の端面に形成された溝34によって互いに接
続されており、端板20に形成されている貫通孔30b
と31bは端板20の端面に形成された溝35によって
互いに接続されている。同様に、第2図に示すように、
端板21に形成されている貫通孔29Cと30Cは端板
21の端面に形成された436によって互いに接続され
ており、端板21に形成されている貫通孔32Cと31
Cは端板21の端面に形成された溝37によって互いに
接続されている。
The circulation passage 29 of the stator 11 includes a through hole 29a formed in the laminated core 18 and a through hole 2 formed in the end plates 20, 21.
9b and 29c, and other circulation passages 30 to 3.
2 has a similar configuration. As shown in FIG. 3, through holes 29b and 32b formed in the end plate 20
are connected to each other by a groove 34 formed in the end surface of the end plate 20, and a through hole 30b formed in the end plate 20
and 31b are connected to each other by a groove 35 formed in the end surface of the end plate 20. Similarly, as shown in Figure 2,
The through holes 29C and 30C formed in the end plate 21 are connected to each other by 436 formed in the end surface of the end plate 21, and the through holes 32C and 31 formed in the end plate 21
C are connected to each other by a groove 37 formed in the end surface of the end plate 21.

循環通路29の一部を構成する積層コア18内の貫通孔
29aは、各ステータコアの打抜きによって形成した穿
設孔を軸線方向に累積させることにより構成されている
。したがって、貫通孔29aに冷却液を流すと各ステー
タコア間の隙間から冷却液が漏れる可能性がある。この
液漏れを防止するために、本発明においては、第1図に
示すように、積層コア18の貫通孔29aの内面にはア
ルミニウム、亜鉛等の低融点金属からなる金属被膜層3
8が溶着されている。この金属被膜層38により、循環
通路29は完全な液漏れ防止構造となっている。図示は
されていないが、ステータ11における他の循環通路3
0〜32においても、積層コア18の貫通孔の内面に同
様の金属被膜層が形成されている。これら貫通孔の内面
への金属被膜層の溶着は、積層コア18の接着若しくは
含浸を行なう前に完了させておくことが望ましい。
The through-hole 29a in the laminated core 18, which constitutes a part of the circulation passage 29, is formed by accumulating in the axial direction drilling holes formed by punching each stator core. Therefore, when the coolant flows through the through holes 29a, there is a possibility that the coolant leaks from the gaps between the stator cores. In order to prevent this liquid leakage, in the present invention, as shown in FIG.
8 is welded. This metal coating layer 38 makes the circulation passage 29 completely leak-proof. Although not shown, other circulation passages 3 in the stator 11
0 to 32, a similar metal coating layer is formed on the inner surface of the through hole of the laminated core 18. It is desirable to complete the welding of the metal coating layer to the inner surfaces of these through holes before adhering or impregnating the laminated core 18.

液漏れ防止用の被膜層としては樹脂被膜を用いることも
考えられるが、樹脂被膜は積層コア18の振動等によっ
て割れを生じるおそれがある。また、樹脂被膜の場合、
使用する冷却液と反応して化学変化を起こし、劣化する
おそれがある。これに対し、本発明は金属被膜を用いて
いるから、積層コア18の振動等に対する被膜層の強度
が高くなり、割れ等を生じにくくなる。また、金属被膜
は冷却液と反応することはないから、冷却液の連打シが
制限されることはなくなる。
Although it is conceivable to use a resin coating as the coating layer for preventing liquid leakage, there is a risk that the resin coating may crack due to vibration of the laminated core 18 or the like. In addition, in the case of resin coating,
There is a risk that it will react with the coolant used and cause a chemical change, resulting in deterioration. On the other hand, since the present invention uses a metal coating, the strength of the coating layer against vibrations of the laminated core 18 is high, and cracks are less likely to occur. Further, since the metal coating does not react with the coolant, there is no restriction on continuous application of the coolant.

上記構成の液冷モータにおいて、第1図及び第3図に示
すように、冷却液は入口23からブラケット13のfF
j環通路27内に入ってブラケット13を冷却する。ご
れにより、ベアリング17も冷却される。また、ブラケ
ット13の循環通路27からステータ器内の循環通路2
−9.30内に入ってステータ11を冷却する。更に、
冷却液はステーク】1の循環通路29.30からブラケ
ット12の循環通路33内に入ってブラケット12を冷
却する。これにより、ベアリング16も冷却される。冷
却液はその後ステータ11の循環通路31.32内を通
ってブラケット13の循環通路28から出口24に導か
れる。
In the liquid-cooled motor having the above configuration, as shown in FIGS. 1 and 3, the cooling liquid is supplied from the inlet 23 to the fF of the bracket 13
The bracket 13 is cooled by entering the j-ring passage 27. The bearing 17 is also cooled by the dirt. Also, from the circulation passage 27 of the bracket 13 to the circulation passage 2 in the stator device
-9.30 to cool the stator 11. Furthermore,
The cooling fluid enters the circulation passage 33 of the bracket 12 from the circulation passage 29, 30 of the stake 1 to cool the bracket 12. As a result, the bearing 16 is also cooled. The coolant is then led through the circulation channels 31 , 32 of the stator 11 and from the circulation channels 28 of the bracket 13 to the outlet 24 .

銅損、鉄損等によって積層コア18内に発生する熱は積
層コア18自体に形成されている循環通路29〜32の
貫通孔から冷却液に伝達されるので、熱の伝達効率は非
常に高まる。特に、積層コア18の貫通孔の内面の被膜
層は金属からなっているので、樹脂に比して熱の伝達効
率は更に一層高まる。
Heat generated in the laminated core 18 due to copper loss, iron loss, etc. is transferred to the cooling fluid through the through holes of the circulation passages 29 to 32 formed in the laminated core 18 itself, so the heat transfer efficiency is greatly increased. . In particular, since the coating layer on the inner surface of the through hole of the laminated core 18 is made of metal, the heat transfer efficiency is even higher than that of resin.

以上のようにして、液冷モーりのブラケット12.13
及びステータ11が内部を通過する冷却液によって効率
よく冷却されるので、ベアリング16.17の過熱も防
止される。したがって、モータの高速回転使用が可能と
なる。また、モータに発生する熱は冷却液によって出r
rl 24がら配管に沿って排出されるの゛乙モータと
結合される工作機械にはモータの熱は伝わらない。した
がって、工作機械の熱変形が防止される。
As described above, the liquid cooling bracket 12.13
Also, since the stator 11 is efficiently cooled by the cooling liquid passing through the stator 11, overheating of the bearings 16, 17 is also prevented. Therefore, the motor can be used to rotate at high speed. Also, the heat generated in the motor is removed by the coolant.
Since the heat from the rl 24 is discharged along the piping, the heat from the motor is not transferred to the machine tool connected to the motor. Therefore, thermal deformation of the machine tool is prevented.

以」二、一実施例にイ」き説明したが、本発明は上記実
施例の態様のみに限定されるものではなく、特許請求の
範囲に記載した発明の範囲内で種々の変更を加えること
ができる。
2. Although the present invention has been described based on one embodiment, the present invention is not limited to the embodiments of the above embodiment, and various modifications may be made within the scope of the invention described in the claims. Can be done.

発明の効果 以上の説明から明らかなように、本発明ば、ロータの両
醋)の軸部を回転可能に支持する一対のブラケソ1−の
間に積層コアを有するステータを固着したモータにおい
て、一方のブラケットに冷却液の入口及び出口を設け、
該入口及び出口に通じる冷却液の循環通路を一対のブラ
ケソI・及びステータ内に形成し、ステータの積層コア
内の循環通路の内面に溶着した金属被膜層により積層コ
ア内の循環通路の液漏れを防止したことを特徴とする液
冷モータを提供するものであるから、冷却用ジャケット
のような別部品を必要とせず、しかも、奪熱効率を高め
ることができるとともに液漏れを十分に防止することが
できる信頼性の高い液冷モータを提供することができる
Effects of the Invention As is clear from the above description, the present invention provides a motor in which a stator having a laminated core is fixed between a pair of brackets 1- which rotatably supports the shaft portions of both rotors. Provide a coolant inlet and outlet on the bracket,
A cooling fluid circulation passage leading to the inlet and outlet is formed in a pair of brackets and the stator, and a metal coating layer welded to the inner surface of the circulation passage in the laminated core of the stator prevents liquid leakage from the circulation passage in the laminated core. Since the present invention provides a liquid-cooled motor that is characterized in that it prevents liquid leakage, it does not require separate parts such as a cooling jacket, and moreover, heat removal efficiency can be increased and liquid leakage can be sufficiently prevented. It is possible to provide a highly reliable liquid-cooled motor that can

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の−・実施例を示す液冷モーフの第2図
中1−1線に沿った断面図、第2図は第1図に示ず液冷
モータの第1図中■−■線に沿った断面図、第3図は第
1図に示す液冷モーフの要部斜視図である。 10−ロータ、11−ステータ、 12.13 ブラケット、15− ロータの軸、18−
積層コア、23−人口、 24−出口、 27.28−−ブラケノ1〜13の循環通路、29〜3
2−=−ステータ11の循環通路、33−ブラケット1
2の循環通路、 38−金属被膜層。 特許出願人 ファナソク株式会社 特許出願代理人 弁理士 青 木 朗 弁理士西舘 和之 弁理士西岡 部間 弁理士 山 口 昭 之 弁理士 西 山 雅 也 第1図 第2図 2 第3図 りR
Fig. 1 is a sectional view taken along line 1-1 in Fig. 2 of a liquid-cooled morph showing an embodiment of the present invention, and Fig. 2 is a sectional view of a liquid-cooled motor not shown in Fig. 1; FIG. 3 is a cross-sectional view taken along line -■, and a perspective view of a main part of the liquid-cooled morph shown in FIG. 1. 10-rotor, 11-stator, 12.13 bracket, 15-rotor shaft, 18-
Laminated core, 23-Population, 24-Outlet, 27.28--Circulation passage of brackets 1-13, 29-3
2-=-circulation passage of stator 11, 33-bracket 1
2 circulation passages; 38-metallic coating layer; Patent applicant Fanasoku Co., Ltd. Patent application agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Nishioka Bema Patent attorney Akira Yamaguchi Patent attorney Masaya Nishiyama Figure 1 Figure 2 2 3rd diagram R

Claims (1)

【特許請求の範囲】 1、tl−夕の両端の軸部を回転可能に支持する一対の
ブラケットの間にfa層ココア有するステータを固着し
たモータにおいて、一方のブラケットに冷却液の入11
及び出口を設け、該入口及び出口に通じる冷却液の循環
通路を一対のブラケット及びステーク内に形成し、ステ
ータの積層コア内の循環通路の内面に溶着した金属被膜
層により積層コア内の循環通路の液漏れを防止したこと
を特徴とする液冷モータ。 2、特許請求の範囲第1項に記載の液冷モータにおいて
、前記金属被膜層は低融点金属からなることを特徴とす
る液冷モータ。
[Claims] 1. In a motor in which a stator having a fa-layer cocoa is fixed between a pair of brackets that rotatably support the shaft portions at both ends of the tl.
and an outlet, and a cooling fluid circulation passage leading to the inlet and outlet is formed in a pair of brackets and stakes, and a metal coating layer welded to the inner surface of the circulation passage in the laminated core of the stator forms a circulation passage in the laminated core. A liquid-cooled motor characterized by preventing liquid leakage. 2. The liquid-cooled motor according to claim 1, wherein the metal coating layer is made of a low-melting point metal.
JP58228361A 1983-12-05 1983-12-05 Liquid-cooled motor Pending JPS60121941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58228361A JPS60121941A (en) 1983-12-05 1983-12-05 Liquid-cooled motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228361A JPS60121941A (en) 1983-12-05 1983-12-05 Liquid-cooled motor

Publications (1)

Publication Number Publication Date
JPS60121941A true JPS60121941A (en) 1985-06-29

Family

ID=16875249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228361A Pending JPS60121941A (en) 1983-12-05 1983-12-05 Liquid-cooled motor

Country Status (1)

Country Link
JP (1) JPS60121941A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260544A (en) * 1986-04-07 1987-11-12 Mitsubishi Electric Corp Ac generator for vehicle
JPS6455039A (en) * 1987-08-22 1989-03-02 Fanuc Ltd Liquid-proof rotor
WO1989007360A1 (en) * 1988-02-02 1989-08-10 Fanuc Ltd Pipe joint structure for cooling piping of liquid-cooled motor
WO1991015049A1 (en) * 1990-03-28 1991-10-03 Fanuc Ltd Structure for cooling stator
US5084642A (en) * 1988-08-19 1992-01-28 Fanuc, Ltd. Channel structure for coolant in motor
WO1992017932A1 (en) * 1991-03-29 1992-10-15 Fanuc Ltd Liquid-cooled electric motor having pipe for cooling liquid inside motor housing
US5229673A (en) * 1988-02-02 1993-07-20 Fanuc Ltd. Joint construction of cooling pipes for liquid cooled motor
WO1993017485A1 (en) * 1992-02-21 1993-09-02 Fanuc Ltd Motor equipped with stator cooling means
EP0560993A1 (en) * 1991-10-05 1993-09-22 Fanuc Ltd Cooled motor and a method of manufacturing its jacket
EP1343243A1 (en) * 2000-12-11 2003-09-10 Mitsubishi Heavy Industries, Ltd. Cooling structure of generator
KR100476585B1 (en) * 1999-10-11 2005-03-17 현대중공업 주식회사 Structure for Cooling Electric Motor provided with ventilation path
GB2470266A (en) * 2009-05-13 2010-11-17 Gen Electric Multipass stator coolant channels
KR101093795B1 (en) 2010-06-28 2011-12-19 현대중공업 주식회사 Water cooling electric motor for electric vehicle
WO2016050387A1 (en) * 2014-09-29 2016-04-07 Robert Bosch Gmbh Electrical machine with cooling
CN111384820A (en) * 2018-12-27 2020-07-07 观致汽车有限公司 Cooling structure of driving motor and driving motor with cooling structure
WO2020174182A1 (en) * 2019-02-28 2020-09-03 Nidec Psa Emotors Rotating electric machine having an improved annular cooling chamber

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260544A (en) * 1986-04-07 1987-11-12 Mitsubishi Electric Corp Ac generator for vehicle
JPH0516261B2 (en) * 1986-04-07 1993-03-03 Mitsubishi Electric Corp
JPS6455039A (en) * 1987-08-22 1989-03-02 Fanuc Ltd Liquid-proof rotor
WO1989007360A1 (en) * 1988-02-02 1989-08-10 Fanuc Ltd Pipe joint structure for cooling piping of liquid-cooled motor
US5229673A (en) * 1988-02-02 1993-07-20 Fanuc Ltd. Joint construction of cooling pipes for liquid cooled motor
US5084642A (en) * 1988-08-19 1992-01-28 Fanuc, Ltd. Channel structure for coolant in motor
WO1993013583A1 (en) * 1988-08-19 1993-07-08 Yukio Katsuzawa Coolant path structure for a liquid-cooled motor
WO1991015049A1 (en) * 1990-03-28 1991-10-03 Fanuc Ltd Structure for cooling stator
WO1992017932A1 (en) * 1991-03-29 1992-10-15 Fanuc Ltd Liquid-cooled electric motor having pipe for cooling liquid inside motor housing
US5448118A (en) * 1991-10-05 1995-09-05 Fanuc Limited Liquid cooled motor and its jacket
EP0560993A1 (en) * 1991-10-05 1993-09-22 Fanuc Ltd Cooled motor and a method of manufacturing its jacket
EP0560993A4 (en) * 1991-10-05 1994-06-08 Fanuc Ltd Cooled motor and its jacket
WO1993017485A1 (en) * 1992-02-21 1993-09-02 Fanuc Ltd Motor equipped with stator cooling means
KR100476585B1 (en) * 1999-10-11 2005-03-17 현대중공업 주식회사 Structure for Cooling Electric Motor provided with ventilation path
EP1343243A1 (en) * 2000-12-11 2003-09-10 Mitsubishi Heavy Industries, Ltd. Cooling structure of generator
EP1343243A4 (en) * 2000-12-11 2005-07-13 Mitsubishi Heavy Ind Ltd Cooling structure of generator
GB2470266A (en) * 2009-05-13 2010-11-17 Gen Electric Multipass stator coolant channels
US8164225B2 (en) 2009-05-13 2012-04-24 General Electric Company Multiple pass axial cooled generator
KR101093795B1 (en) 2010-06-28 2011-12-19 현대중공업 주식회사 Water cooling electric motor for electric vehicle
WO2016050387A1 (en) * 2014-09-29 2016-04-07 Robert Bosch Gmbh Electrical machine with cooling
CN111384820A (en) * 2018-12-27 2020-07-07 观致汽车有限公司 Cooling structure of driving motor and driving motor with cooling structure
WO2020174182A1 (en) * 2019-02-28 2020-09-03 Nidec Psa Emotors Rotating electric machine having an improved annular cooling chamber
FR3093383A1 (en) * 2019-02-28 2020-09-04 Nidec Psa Emotors Rotating electric machine having an improved annular cooling chamber
US11929644B2 (en) 2019-02-28 2024-03-12 Nidec Psa Emotors Rotating electric machine having an improved annular cooling chamber

Similar Documents

Publication Publication Date Title
JPS60121941A (en) Liquid-cooled motor
US7675209B2 (en) Electric motor cooling jacket
US6879069B1 (en) Rotating machine with cooled hollow rotor bars
TWI410027B (en) A fully enclosed main motor for a vehicle
US7800259B2 (en) Stator assembly for use in a fluid-cooled motor and method of making the same
WO2015008390A1 (en) Liquid-cooled electric motor
CN203352307U (en) Structure of motor stator core and cooling device of motor stator
JP2009081994A (en) Fully-closed external-fan cooling electric motor
WO1986003069A1 (en) Liquid-cooled motor
JP2010028958A (en) Rotating electrical machine and cooling system of rotating electrical machine
US12049872B2 (en) Cooling device, motor, and wind turbine set
JP2006067793A (en) Liquid-cooled type switched reluctance electric machine
JP4935839B2 (en) Motor housing structure
US11283331B2 (en) Rotating electric machine
JPH07288949A (en) Electric motor to drive vehicle
JP2007049850A (en) Liquid-cooled rotary electric machine
US20230299629A1 (en) Rotor, motor, and electric vehicle
JP2020058219A (en) Rotary electric machine
JP4928986B2 (en) Fully closed electric motor for vehicle drive
JPS60102827A (en) Motor
JP2004112968A (en) Cooling structure for rotary electric machine
JPS5983557A (en) Cooling structure in generator for vehicle
JPH0445679B2 (en)
WO2020220835A1 (en) Cooling system, motor and wind turbine generator set
JPS61170254A (en) Liquid cooled motor