WO1992017932A1 - Liquid-cooled electric motor having pipe for cooling liquid inside motor housing - Google Patents

Liquid-cooled electric motor having pipe for cooling liquid inside motor housing Download PDF

Info

Publication number
WO1992017932A1
WO1992017932A1 PCT/JP1992/000382 JP9200382W WO9217932A1 WO 1992017932 A1 WO1992017932 A1 WO 1992017932A1 JP 9200382 W JP9200382 W JP 9200382W WO 9217932 A1 WO9217932 A1 WO 9217932A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
coolant
cooling
motor
cylindrical casing
Prior art date
Application number
PCT/JP1992/000382
Other languages
French (fr)
Japanese (ja)
Inventor
Kosei Nakamura
Yukio Katsuzawa
Michi Masuya
Yasuyuki Nakazawa
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1992017932A1 publication Critical patent/WO1992017932A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • the present invention relates to a liquid-cooled electric motor, and in particular, to a casing having good thermal conductivity and a front and rear flare for forming a flow pipe for a coolant to form a jacket of the motor.
  • Highly efficient cooling motor provided inside the nozzle, and can be effectively applied as an electric motor that forms the spindle drive source mainly in machine tools such as machining centers.
  • the spindle drive in machine tools is a liquid-cooled motor with high cooling efficiency due to its continuous operation, and also induction. It is well known that liquid-cooled electric motors of the form are used.
  • induction-type electric motors particularly three-phase induction motors used as main shaft drive sources for machine tools, have a primary winding on which a primary current is supplied to the stator side.
  • a cage-type or cap-type rotor composed of a secondary current winding circuit is formed, and the primary winding is switched or changed between a Y-connection and a delta-connection.
  • the resistance between the terminals of the primary winding of the three-phase induction motor is reduced to about 3 before the switching. It shows twice the resistance, and therefore, when a primary current of the same current value flows, the copper loss heat generated in the primary winding also triples.
  • the structure of the aluminum cage rotor or the aluminum cap rotor is made larger. Therefore, a large secondary current flows in proportion to the slip "S".
  • the end plate is pressed against the front and rear ends of the stator core, fastened with bolt screws, and impregnated with resin material between the stator cores. Structured to cover the wall of the circuit and formed inside the stator core After preventing the liquid from leaking in the coolant passage, the coolant is caused to flow through such a coolant passage to remove heat from the stator core. Disclosed. However, in the liquid cooling system disclosed in the international patent application PCT / JP85 / 00006334, the copper cooling in the stay and the rotor causes the liquid cooling method. Although it is possible to remove the generated heat, it is due to the rotational friction from the rotating bearings that support the motor output shafts installed before and after both end faces of the stator.
  • hoops are arranged in the shape of a lace around the outer periphery of the status core.
  • a liquid cooling motor in which the cooling fluid flows through the die to remove the heat generated from the stator and the mouth.
  • the heat generated from the rotating bearings supporting the motor output shafts installed before and after the end of the heater is placed in the same way as the one with the coolant passage inside the data core. Impossible to do
  • an object of the present invention is to take advantage of the high cooling rate of the liquid cooling system, and not only to remove the generated heat in the stator rotor but also to the rotary bearing.
  • an object of the present invention is to provide an induction type electric motor which is provided with a cooling means capable of removing and cooling heat generated during high-speed rotation, and which can be applied to a spindle drive of a machine tool.
  • Another object of the present invention is to provide a cooling system in which a cooling liquid passage is provided inside a stator core employed in a conventional liquid cooling motor to prevent leakage in a processing process of the stator.
  • a cooling liquid passage is provided inside a stator core employed in a conventional liquid cooling motor to prevent leakage in a processing process of the stator.
  • the cooling liquid is placed inside the casing means consisting of the casing and the front and rear flanges.
  • the outer periphery of a stator provided around a rotor having an output shaft is surrounded.
  • a plurality of coolant main pipes which are distributed at a plurality of locations on the periphery of a tubular cylinder having good heat conductivity provided in the housing and penetrate in the axial direction;
  • the coolant main pipe of the cylindrical casing is provided on both front and rear flanges which are sealed and adhered to the front and rear end surfaces of the cylindrical casing and support the bearing of the output shaft.
  • a plurality of coolants are formed as fluid passages communicating with the coolant, and are provided for connecting the plurality of coolant main pipes and for introducing and discharging the coolant from outside the motor machine.
  • a liquid-cooled electric motor that is provided with a sub-pipe and heats and cools with a cooling fluid that flows inside a jacket consisting of a cylindrical casing and front and rear flanges. It provides data.
  • FIG. 1 is a longitudinal sectional view showing a structure of one embodiment of a liquid cooling motor having a liquid cooling pipe according to the present invention inside a jacket,
  • FIG. 2 is a cross-sectional view of the status portion taken along the line II- ⁇ shown in FIG.
  • FIG. 3A is a cross-sectional view showing the passage of the coolant formed in the rear flange by the H A - ⁇ line shown in FIG. 1,
  • FIG. 3B is an end view showing the coolant passage formed in the rear flange along the line MB-HIB in FIG. 1 and a sealing mechanism
  • FIG. 4A is an end view showing the coolant passage formed in the front flange and the sealing mechanism as viewed from the line IV A—IV A in FIG. 1, and FIG. 4B.
  • FIG. 1 is an end view taken along the line IVB—IVB in FIG. 1
  • FIG. 5 is a liquid cooling motor according to the embodiment of the present invention shown in FIG. Schematic diagram of the coolant circuit, which takes out and illustrates the coolant flow path of the
  • FIG. 6 is a cross-sectional view taken along lines IA-VIA and VIB-VIB of FIGS. 3B and 4B.
  • FIG. 7A is a graph showing how the cooling efficiency of a liquid-cooled electric motor according to the present invention is improved over a conventional air-cooled electric motor
  • FIG. 7B is a schematic view of an electric motor showing a measurement position where the data of FIG. 7A is obtained.
  • the liquid-cooled electric motor includes a rotor 12 having an output shaft 10, and the output shaft 10 includes front and rear rotating bearings 14. It is supported by a and 14b, and is provided as a motor element rotatable around the axis of the output shaft 10 together with the rotor 12 together.
  • a stator 16 is provided as a motor stationary element around the D—taco core 12 a of the rotor 12 through an air gap, as is well known.
  • the stator 16 is mounted on a stator core 18a formed by laminating magnetic material laminates, and a winding groove formed on the stator core 18a. And the primary winding 18b for excitation.
  • the liquid-cooled electric motor further includes a cylindrical casing 20 surrounding the outer periphery of the above-mentioned stator 16 and a cylindrical casing 20.
  • a front flange 22 and a rear flange 2 are hermetically bonded to the front and rear ends.
  • the front The flange 22 is formed as a cap-shaped element, has a bearing hole in the center for supporting the front rotary bearing 14a, and the rear flange 24 similarly has a key.
  • These casings 20 and the front and rear flanges are formed as cap-shaped elements and have a bearing hole in the center to support the rear rotating bearing 1 ".
  • the stator 22 and 2 form a casing element of the motor, and include therein a coolant pipe for flowing a coolant of a liquid cooling means to be described later, and the stator 16 and ⁇ — Since it acts to remove heat from the metal 12, it is formed of a metal material having good thermal conductivity, that is, a suitable material, namely, a luminous material or a luminous alloy material. In this case, it is possible to manufacture the casing 20 and the flanges 22 and 24 by the machine addition method, but a more effective method is possible.
  • the motor can be manufactured by molding and molding, etc.
  • the exciting current is applied to the primary winding 18b of the stator 16 at the rear of the motor. Terminal box 26 for supply is installed
  • a cooling liquid introduced from outside the motor as a liquid cooling means is formed inside the rear flange 24.
  • the cooling liquid sub-pipe introduced from the liquid sub-pipe 40 and formed in the front flange 22 via the cooling liquid main pipe 6 ⁇ formed in the cylindrical casing 20 To the channel 80, pass through the coolant sub-line 80 in the front flange 22, and then again through the coolant main line 60 of the cylindrical casing 20.
  • the cylindrical casing 20 has a substantially rectangular cylindrical casing with four chamfered corners.
  • An outer shell structure is provided so as to surround the stator core 18a of the stator 16 so as to surround it.
  • Cooling lines 62a, 62b, 6a having four sets of seed shapes (seeds) that form cooling liquid main lines 60 at the four corners.
  • '64 b, 66 a, 66 b, 68 a, 68 b are formed. All of these four sets of coolant pipes 62 a to 68 b are formed so as to penetrate parallel to the motor axis direction, and in this embodiment, are point-symmetric with respect to the center of the motor. There are four sets.
  • Screw holes for connecting the front and rear flanges 22 and 24 described later with port screws between the coolant lines of each set, for example, the coolant lines 62a and 62b. 70 is formed.
  • the coolant lines 62-68 are drilled or formed during the machining of the cylindrical casing 20 so that the coolant can flow smoothly.
  • the wall is formed smoothly.
  • the coolant line constituting the coolant sub line 40 formed in the rear flange 24 that supports the rear rotary bearing 14 b is shown. And a sealing 0-ring 72 formed on the end face.
  • the rear flange 24 is provided with a coolant inlet 41 and an outlet 42 for discharging the coolant after passing through the coolant channel of the jacket.
  • the coolant sub-line 40 is constituted by the coolant lines 44 to 54, and the coolant lines 46, 49, 52 are connected to the rear flange 24. It is formed as a comparatively long pipe extending inside along the side, and is cut from the side of the rear flange 24 with a tool such as a drill, and closed. The end is closed by screwing a pipe screw 55.
  • the coolant lines 44, 45, 47, 48, 50, 51, 53, 54, etc. formed at the four corners are cut in the thickness direction of the rear flange 24. Relatively short pipeline installed It is.
  • FIG. 6 is a cross-sectional view taken along the line IVA-IV in FIG. 3 showing the relationship between the ⁇ position 56 and the 0-ring 72 formed around the above-mentioned coolant line.
  • a hole 57 is formed for passing the bolt screw 100 (FIG. 1) when the rear flange 24 is fastened to the cylindrical casing 20. ing. It goes without saying that a bearing hole 58 for supporting the rear rotary bearing 14b is formed in the center of the rear flange 24.
  • FIGS. 4A and 4B illustrate a plurality of coolant lines 81-97 that form a coolant sub-line 80 formed in the front flange 22.
  • the closed ends of the pipelines 82, 83, 86, 87, 91, 92, 95, 96, etc. are closed with pipe threads 55 similar to those described above.
  • the end face of the cylindrical casing 20 which abuts against the front end face is provided with the aforementioned rear flange.
  • a recess 96 similar to the recess 56 of the die 24 is cut and formed so as to surround the corresponding coolant line, and the coolant 96 is prevented from leaking into the recess 96.
  • a sealing ring 72 is provided.
  • the front flange 22 is also provided with a bearing hole 98 for supporting the rotary bearing 14a, and a bolt for fastening to the casing 20. It goes without saying that the through hole 97 through which the same 100 is passed is formed.
  • the cooling liquid main line 60 of the cylindrical casing 20 having the above configuration and the cooling liquid sub-lines 40 and 80 of the front and rear flanges 22 and 24 are provided. Therefore, in the liquid-cooled electric motor of this embodiment, the coolant is introduced from the outside, and the cylindrical casing 20 and the front and rear flanges 22, 2, which are the outer casing elements, are used. 4 to flow through the pipeline built in, to remove the copper loss heat of the rotor 12 and the stator 16 and the frictional heat generated by the rotary bearings 14a and 14b during rotation. In this way, the motor body can be cooled and the heat transfer to the machine tool, including the spindle, can be prevented even when it is used directly as the spindle drive source for the machine tool. This can prevent thermal deformation of the main spindle etc. on the machine tool side.
  • FIG. 5 is a coolant circuit diagram taken out and shown in order to make it easy to understand only the flow path of the coolant in the liquid-cooled electric motor shown in FIG. .
  • the cooling liquid introduced from the inlet 41 circulates sequentially and cyclically in the motor body, and finally the outlet 4 You can see how it is discharged from 2. That is, the coolant sub-channels 40, 80 formed in the front and rear flanges 22, 24 are cooling formed in the four corners of the cylindrical casing 20. Connect the liquid main line 60 and It cools the flanges 22 and 24 and removes the heat generated from the rotating bearings.
  • FIG. 7A is a Darraf diagram showing the effect of cooling the liquid-cooled electric motor according to the present embodiment in comparison with a conventional air-cooled electric motor.
  • FIG. 7B shows the temperature detection position of the motor body. The temperature detection indicates the case where the detection is performed when the motor is operated at the output rotation speed of the motor of 8 and OOOrpm in both the conventional and the present invention.
  • One point of the casing suitable for detecting the heat loss effect of the heat loss of the stator and the rotor, and also suitable for detecting the heat loss effect of the generated heat of the rotary bearing.
  • the measurement result of one of the front flanges and the selected temperature detection point is displayed in a graph.
  • the motor used in the conventional air-cooled electric motor had a 7.5 kW output, and the temperature rise during operation was remarkable with time.
  • the temperature rise during operation at an output of 18.5 Kw is much lower than the conventional temperature curve, and the cooling effect is remarkable. It can be understood that The change in temperature of the coolant is also shown for reference.o
  • the coolant is introduced from the rear flange 24 and the coolant is discharged from the rear flange 24 again after circulating through the internal pipe of the motor casing.
  • the coolant may be introduced from an appropriate position of the front flange 22 or the cylindrical casing 20 as necessary. Needless to say, it's okay.
  • the liquid cooling type In an electric motor, the cylindrical casing forming the outer casing of the motor body and the front and rear flanges are hermetically sealed and joined in the axial direction, and these casings are connected to each other. Since the cooling fluid conduit is formed inside the flange and flange, the heat generated by the motor, especially copper loss due to the primary current supplied to the primary winding of the stator section. In addition, the rotary bearings, which are supported by the front and rear flanges, reduce the heat generated by secondary current in the rotor and the frictional heat generated with the high-speed tillage at a low cooling rate.
  • the joint between the casing and the front and rear flanges is an effective sealing and sealing mechanism despite the simple structure using a ring.
  • liquid leakage can be reliably prevented, and the sealing ring can be easily replaced if necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

A housing is made up of a thermally highly conductive casing (20) surrounding the outer periphery of a stator (16) of a multiphase induction motor, and front and rear frange (22, 24) for supporting bearings, which are coupled in a sealing way to the front and rear of the casing (20) respectively. A main pipe (60) and auxiliary pipes (40, 80) for a cooling liquid, through which cooling liquid is forced to flow are provided inside the housing. Thereby, the two kinds of heats, which are generated by the copper losses in the stator (16) and a rotor (12), and by the rotation in the bearings (14a, 14b) for an output shaft (10) of the rotor (12) are taken away.

Description

明 細 書 冷却液の管路をモ ー タ 外被の内部に有 した  Description A coolant line was provided inside the motor casing.
液冷型電動モ ー タ 技術分野  Liquid-cooled electric motor Technical field
本発明 は、 液冷型電動モ ー タ に関 し、 特に、 冷却液の流動 管路をモ ー タ の外被手段を形成す る 熱良導性のケ一 シ ン グ及 び前後フ ラ ン ジ の内部に具備 した冷却効率の高い、 主 と して マ シ ニ ン グセ ン タ 等の工作機械にお け る 主軸駆動源を形成す る電動モ ー タ と して有効に適用可能な液冷型電動モ ー タ に関 する。 '  The present invention relates to a liquid-cooled electric motor, and in particular, to a casing having good thermal conductivity and a front and rear flare for forming a flow pipe for a coolant to form a jacket of the motor. Highly efficient cooling motor provided inside the nozzle, and can be effectively applied as an electric motor that forms the spindle drive source mainly in machine tools such as machining centers. Related to liquid-cooled electric motors. '
従来技術  Conventional technology
工作機械、 特にマ シ ニ ン グセ ン タ のよ う な省力形工作機械 にお け る主軸の駆動は、 連続運転さ れる こ と か ら冷却効率の 高い液冷形モ ー タ 、 それ も誘導形の液冷電動モ ー タ が利用 さ れてい る こ と は周知であ る。 近年の誘導型電動モ ー タ 、 殊に 工作機械の主軸駆動源に用 い られる三相誘導電動機は、 ス テ — タ 側に一次電流が供給 さ れる一次巻線を有 し、 了 ル ミ 材か ら成る籠形やキ ヤ ッ プ形の ロ ー タ を二次電流の巻線回路に形 成 し、 一次巻線を Y形結線 と デルタ 形結線 と の間で切 り 換え 又はス テ ー タ 、 ロ ー タ 間のすべ り 率 ( S = n — ΤΊ ' / n ) を 制御 して 1 つの誘導形モ ー タ に就いて同一次電流下で も低速 回転で大き な ト ル ク を発生可能に構成さ れてい る。  The spindle drive in machine tools, especially in labor-saving machine tools such as machining centers, is a liquid-cooled motor with high cooling efficiency due to its continuous operation, and also induction. It is well known that liquid-cooled electric motors of the form are used. In recent years, induction-type electric motors, particularly three-phase induction motors used as main shaft drive sources for machine tools, have a primary winding on which a primary current is supplied to the stator side. A cage-type or cap-type rotor composed of a secondary current winding circuit is formed, and the primary winding is switched or changed between a Y-connection and a delta-connection. By controlling the slip ratio between the motor and rotor (S = n-ΤΊ '/ n), a large torque is generated at a low speed even under the same current for a single induction motor. It is configured to be possible.
然 しなが ら 、 高 ト ル ク 、 低回転速度を求めて一次巻線の上 記切 り 換え (デルタ 巻線方式か ら Y巻線方式への切 り 換え) を行 う と、 三相誘導モ ー タ の一次巻線の端子間の抵抗値が切 り 換え前の約 3 倍の抵抗値を示すよ う にな り 、 故に、 同一電 流値の一次電流を流 した と き、 一次巻線内で発生する銅損熱 も 3 倍にな る。 他方、 こ の種誘導モ ー タ では大き な出力 ト ルク を供する ため に、 ア ル ミ 製籠形 ロ ー タ 又は ア ル ミ 製キ ヤ ッ プ形ロ ー タ のすべ り を大き く する構造が設け られ、 故に、 すべ り " S " に比例 した大き な二次電流が流れ、 従っ て ロ ー タ を形成する 了 ル ミ 材の電気抵抗値が同一値で も銅損は二次 電流の二乗に比例 して増加する結果にな る。 故に、 結果的に は、 巻線切 り 換え方式でデルタ 結線か ら Υ結線に切 り 換えて 低速、 大 ト ル ク を発生 した場合は、 モ ー タ のス テ ー タ'及び口 — タ か ら発生する発熱量が増大する こ と にな る。 However, in order to obtain a high torque and a low rotational speed, When switching is performed (switching from the delta winding method to the Y winding method), the resistance between the terminals of the primary winding of the three-phase induction motor is reduced to about 3 before the switching. It shows twice the resistance, and therefore, when a primary current of the same current value flows, the copper loss heat generated in the primary winding also triples. On the other hand, in order to provide a large output torque in this kind of induction motor, the structure of the aluminum cage rotor or the aluminum cap rotor is made larger. Therefore, a large secondary current flows in proportion to the slip "S". Therefore, even if the electrical resistance of the aluminum material forming the rotor is the same, the copper loss can be reduced by the secondary current. The result is an increase in proportion to the square. Therefore, as a result, if a low-speed and large torque is generated by switching from delta connection to で connection in the winding switching method, the motor status and motor The amount of heat generated from this will increase.
工作機械の主軸駆動用の電動モ ー タ では、 工作機械の主軸 が伝熱によ る熱変形を生ずる と加工精度に悪影響を与え るた めに駆動モ ー タ 側の発熱を極力抑制 し、 又、 モ ータ 側か ら機 械主軸への伝熱を抑止する こ と が必須の条件と な る。 依っ て こ の種の主軸駆動用誘導型電動モ ー タ の冷却を空冷方式に替 えて液冷方式を採用 し、 冷却劲率の向上を図 っ た も のは既に 提供さ れてい る。 即 ち、 本出願によ る国際特許出願 P C T Z J P 8 5 / 0 0 0 6 3 4 号公報は、 交流電動モ ー タ のス テ 一 タ コ ア 内 に軸方向 に貫通する冷却液の循環路を設け、 かつス テ ー タ コ ァ の前後両端に ェ ン ド ブ レ ー ト を押 し当ててボル ト ね じで締結 し、 かつ、 ス テ 一タ コ ア間に含侵さ せた樹脂材で 循環路の路壁を被覆す る構造と し、 ス テ ー タ コ ア内部に形成 した冷却液通路にお け る漏液を防止 した上で、 こ のよ う な冷 却液通路に冷却液を流動 さ せてス テ ー タ コ ァか ら奪熱を図 る よ う に した も のを開示 してい る。 然 しなが ら、 こ の国際特許 出願 P C T / J P 8 5 / 0 0 0 6 3 4 号公報に開示 さ れた液 冷却方式では、 ス テ 一 夕 及び ロ ー タ にお け る銅 に 因 した 発生熱を奪取す る こ と は可能であ る に して も、 ス テ ー タ の両 端面の前後に設け られたモ ー タ 出力軸を支持する 回転軸受か ら の回転摩擦に よ る 発生熱を奪熱す る こ と は不可能で Φ o ま た、 積層 コ 了 内に冷却液冷の通路を設け る こ と は、 漏液防 止の面か ら長期に渡 り 完全漏液冷を期待する こ と は困難で、 例えば、 ゃ熱サ イ タ ルで榭脂被覆が劣化 して冷却液漏れ 防止上の信頼性に欠如する難点がめ 。 With the electric motor for driving the spindle of the machine tool, if the spindle of the machine tool undergoes thermal deformation due to heat transfer, which adversely affects the machining accuracy, heat generation on the drive motor side is suppressed as much as possible. In addition, it is an essential condition to suppress heat transfer from the motor side to the machine spindle. Therefore, the cooling of this type of induction-type electric motor for driving a spindle by using a liquid cooling system instead of an air cooling system to improve the cooling efficiency has already been provided. In other words, International Patent Application No. PCTZJP85 / 0000633 filed by the present application discloses that a coolant circulation path that penetrates in the axial direction into a stator core of an AC electric motor. The end plate is pressed against the front and rear ends of the stator core, fastened with bolt screws, and impregnated with resin material between the stator cores. Structured to cover the wall of the circuit and formed inside the stator core After preventing the liquid from leaking in the coolant passage, the coolant is caused to flow through such a coolant passage to remove heat from the stator core. Disclosed. However, in the liquid cooling system disclosed in the international patent application PCT / JP85 / 00006334, the copper cooling in the stay and the rotor causes the liquid cooling method. Although it is possible to remove the generated heat, it is due to the rotational friction from the rotating bearings that support the motor output shafts installed before and after both end faces of the stator. It is impossible to remove the generated heat.It is impossible to provide a coolant cooling passage in the lamination end for a long time from the viewpoint of preventing leakage. It is difficult to expect cooling. For example, the thermal coating degrades the resin coating due to heat cycling and lacks reliability in preventing coolant leakage.
他方、 ス テ ー タ コ ァの外周 に ラ セ ン状にハィ プを配置 し、 こ のハ。ィ プ中 に冷却液を流動 さ せて、 ス テ ー タ 及び口 一 夕 か ら の発生熱を奪熱す る方式の液冷モ ー タ も あ る が、 こ の方式 では、 上述 したス テ ー タ コ ァ 内部に冷却液通路を設けた も の と 同様に ス テ 一 夕 の陶-端面の前後に設け られたモ ー タ 出力軸 を支持する 回転軸受か ら の発生熱を奪熱する こ と は不可能で On the other hand, hoops are arranged in the shape of a lace around the outer periphery of the status core. There is also a liquid cooling motor in which the cooling fluid flows through the die to remove the heat generated from the stator and the mouth.However, in this method, The heat generated from the rotating bearings supporting the motor output shafts installed before and after the end of the heater is placed in the same way as the one with the coolant passage inside the data core. Impossible to do
Φ る。 速回転時にお け る 回転軸受か ら発生する熱は無視す る こ と はで き な い ので、 こ の種の回転軸受か ら の発生熱を奪 熱、 冷却す る こ と が不可能な場合は、 既述の如 く 、 ェ作機械 の主軸に伝熱に よ る 熱変形を来た し、 加ェ精度に悪影響を与 え る結果にな る か ら事実上、 主軸駆動用 モ ー タ に適用す る こ と は不可能での 発明の開示 Φ Since the heat generated from the rotating bearing during high-speed rotation cannot be ignored, it is impossible to remove the heat generated from this kind of rotating bearing and cool it. In this case, as described above, heat deformation occurs due to heat transfer on the main shaft of the machining machine, which adversely affects the accuracy of machining. Is not possible to apply to Disclosure of the invention
依 っ て、 本発明の目的は、 液冷方式に よ る高冷却率の有利 を活か し、 かつ、 ス テ 一 タ ゃ ロ ー タ にお け る発生熱ばか り で な く 、 回転軸受にお け る特に、 高速回転時の発生熱を奪熱、 冷却でき る冷却手段を備え、 工作機械の主軸駆動に適用可能 な誘導型電動モー タ を提供せんとする も のであ る。  Therefore, an object of the present invention is to take advantage of the high cooling rate of the liquid cooling system, and not only to remove the generated heat in the stator rotor but also to the rotary bearing. In particular, an object of the present invention is to provide an induction type electric motor which is provided with a cooling means capable of removing and cooling heat generated during high-speed rotation, and which can be applied to a spindle drive of a machine tool.
本発明の他の目的は、 従来の液冷モ ー タ に採用 さ れたス テ ー タ コ ァ 内部に冷却液通路を設け る冷却方式では ス テ ー タ の 加工工程で漏液防止用の被覆形成のために樹脂材の舍侵等の 煩瑣な工程が介在する こ と に鑑み、 こ のよ う な煩瑣な加工ェ 程を有 しな いで液冷に よ る改良 さ れた冷却手段を具備 した液 Another object of the present invention is to provide a cooling system in which a cooling liquid passage is provided inside a stator core employed in a conventional liquid cooling motor to prevent leakage in a processing process of the stator. In view of the fact that complicated processes such as erosion of the resin material are involved in forming the coating, an improved cooling means using liquid cooling without such a complicated processing step is required. Liquid provided
? ^型電動モ ー タ を提供する こ と に あ る。 ? It is to provide a ^ -type electric motor.
本発明 は、 多相誘導型電動モ ー タ のス テ 一 タ コ アの外周部 位を囲繞する熱良導性の了 ル ミ 製ケ ー シ ングを設け、 こ の ァ ル ミ 製ケ 一 シ ン グの前後端面に封止的に密着結合さ れる軸受 支持用 の フ ラ ン ジを設け、 これ らケ ー シ ン グ、 前後フ ラ ン ジ か ら成る外被手段の内部に冷却液を流動さ せてモ ータ ス テ ー タ 及び ロ ー タ の銅損熱を奪い、 かつ、 軸受の回転熱を奪 う 構 成を設け、 高 ト ル ク 、 低速回転時で も奪熱効率の高い液冷機 構を有 した液冷モ ー タ を構成 したのであ る。  According to the present invention, there is provided a case made of aluminum having good thermal conductivity surrounding an outer peripheral portion of a steer core of a polyphase induction motor, and the case made of aluminum is provided. A flange for supporting the bearing, which is sealed and tightly bonded to the front and rear end surfaces of the ring, is provided.The cooling liquid is placed inside the casing means consisting of the casing and the front and rear flanges. To remove the copper loss heat of the motor stator and the rotor, and to remove the rotational heat of the bearing, and to improve the heat removal efficiency even at high torque and low speed rotation. This constituted a liquid-cooled motor with a high liquid-cooling mechanism.
すなわち、 本発明 によれば、 冷却液で発生熱を冷却する液 冷モ ー タ において、 出力軸を有 した ロ ー タ の周囲に配設 さ れる ス テ 一 タ の外周を囲繞す る よ う に設け られた熱良導性の 筒形ケ ー シ ン グの周縁複数箇所に分散配置さ れ、 軸方向 に貫 通す る複数の冷却液主管路と、 前記筒形ケ 一 シ ン グの前後端面に封止、 密着 さ れ、 前記出 力軸の軸受を支持す る 前後両 フ ラ ン ジ に、 前記筒形ケ ー シ ン グの冷却液主管路に連通 した液通路 と して形成 さ れ、 該複数 の冷却液主管路の接続用 と 共にモ ー タ 機外か ら の冷却液の導 入及び排出用 と して設け られた複数の冷却液副管路 と を、 具備 して構成さ れ、 筒形ケ 一 シ ン グと 前後 フ ラ ン ジ と か ら成 る外被内部を流動する 冷却液で奪熱、 冷却する液冷型電動モ ー タ を提供す る も のであ る。 図面の簡単な説明 That is, according to the present invention, in a liquid-cooled motor that cools generated heat with a cooling liquid, the outer periphery of a stator provided around a rotor having an output shaft is surrounded. A plurality of coolant main pipes which are distributed at a plurality of locations on the periphery of a tubular cylinder having good heat conductivity provided in the housing and penetrate in the axial direction; The coolant main pipe of the cylindrical casing is provided on both front and rear flanges which are sealed and adhered to the front and rear end surfaces of the cylindrical casing and support the bearing of the output shaft. A plurality of coolants are formed as fluid passages communicating with the coolant, and are provided for connecting the plurality of coolant main pipes and for introducing and discharging the coolant from outside the motor machine. A liquid-cooled electric motor that is provided with a sub-pipe and heats and cools with a cooling fluid that flows inside a jacket consisting of a cylindrical casing and front and rear flanges. It provides data. BRIEF DESCRIPTION OF THE FIGURES
本発明の上記およ び他の 目的、 特徴、 利点に就き 、 添付図 面に示す実施例に基づいて詳細に説明する が、 同添付図にお いて、  The above and other objects, features, and advantages of the present invention will be described in detail with reference to the embodiments shown in the accompanying drawings.
第 1 図は、 本発明 に依る液冷用管路を外被内部に有 した液 冷モ ー タ の 1 実施例の構造を示す縦断面図、  FIG. 1 is a longitudinal sectional view showing a structure of one embodiment of a liquid cooling motor having a liquid cooling pipe according to the present invention inside a jacket,
第 2 図は、 第 1 図に示 した II — Π 線に よ る ス テ ー タ 部分の 断面図、  FIG. 2 is a cross-sectional view of the status portion taken along the line II-Π shown in FIG.
第 3 A図は、 第 1 図に示 した H A — ΠΙ Α線に よ る後部フ ラ ン ジ に形成さ れた冷却液の通路を示す断面図、  FIG. 3A is a cross-sectional view showing the passage of the coolant formed in the rear flange by the H A -ΠΙ line shown in FIG. 1,
第 3 B図は、 第 1 図の M B — HI B線に よ る後部フ ラ ン ジ に 形成さ れた冷却液の通路 と封止機構 と を示 した端面図、  FIG. 3B is an end view showing the coolant passage formed in the rear flange along the line MB-HIB in FIG. 1 and a sealing mechanism,
第 4 A図は、 第 1 図の IV A — IV A矢視線に よ る前部フ ラ ン ジ に形成さ れた冷却液の通路と 封止機構 と を示 した端面図、 第 4 B 図は、 第 1 図の IV B — IV B矢視線に よ る端面図、 第 5 図は、 第 1 図に示 した本発明の実施例に よ る液冷モ ー タ の冷却液の流動経路を取 り 出 し図示 した冷却液回路の略示 図、 FIG. 4A is an end view showing the coolant passage formed in the front flange and the sealing mechanism as viewed from the line IV A—IV A in FIG. 1, and FIG. 4B. FIG. 1 is an end view taken along the line IVB—IVB in FIG. 1, and FIG. 5 is a liquid cooling motor according to the embodiment of the present invention shown in FIG. Schematic diagram of the coolant circuit, which takes out and illustrates the coolant flow path of the
第 6 図は、 第 3 B図及び第 4 B 図の I A — VI A線及び VI B — VI B線に沿 う 断面図、  FIG. 6 is a cross-sectional view taken along lines IA-VIA and VIB-VIB of FIGS. 3B and 4B.
第 7 A図は、 従来の空冷型電動モ ー タ に対 して本発明 によ る液冷型電動モ ー タ の冷却効率の向上の様子を示 したグ ラ フ 図、  FIG. 7A is a graph showing how the cooling efficiency of a liquid-cooled electric motor according to the present invention is improved over a conventional air-cooled electric motor,
第 7 B図は第 7 A図のデー タ を得た測定位置を示す電動モ — タ の略示図であ る。 発明を実施する ための最良の態様  FIG. 7B is a schematic view of an electric motor showing a measurement position where the data of FIG. 7A is obtained. BEST MODE FOR CARRYING OUT THE INVENTION
先ず、 第 1 図を参照する と、 本発明 によ る液冷型電動モ ー タ は、 出力軸 1 0 を有 した ロ ー タ 1 2 を備え、 出力軸 1 0 は 前後の回転軸受 1 4 a 、 1 4 b によ り 支持さ れて、 同 ロ ー タ 1 2 と一緒に出力軸 1 0 の軸心周 り に回転可能なモータ 要素 と して設け られてい る。 ロ ー タ 1 2 の D — タ コ ア 1 2 a の周 囲に は周知のよ う に空隙を介 してス テ ー タ 1 6 がモ ータ 静止 要素 と して設け られ、 こ のス テ 一 タ 1 6 は磁性材ラ ミ ネ ー ト を積層 して成る ス テ ー タ コ ア 1 8 a と、 そのス テ 一タ コ 了 1 8 a に形成 した巻線溝に装塡さ れた励磁用 の一次巻線 1 8 b と か ら形成さ れてい る。  First, referring to FIG. 1, the liquid-cooled electric motor according to the present invention includes a rotor 12 having an output shaft 10, and the output shaft 10 includes front and rear rotating bearings 14. It is supported by a and 14b, and is provided as a motor element rotatable around the axis of the output shaft 10 together with the rotor 12 together. As is well known, a stator 16 is provided as a motor stationary element around the D—taco core 12 a of the rotor 12 through an air gap, as is well known. The stator 16 is mounted on a stator core 18a formed by laminating magnetic material laminates, and a winding groove formed on the stator core 18a. And the primary winding 18b for excitation.
こ の液冷型電動モ ー タ は更に、 上記の ス テ 一 タ 1 6 の外周 を囲繞する よ う に筒形のケ 一 シ ング 2 0 と 、 こ の筒形ケ ー シ ン グ 2 0 の前後両端に封止的に密着結合さ れる前部フ ラ ン ジ 2 2 と後部フ ラ ン ジ 2 と を備えてい る 。 こ こ で、 前部フ ラ ン ジ 2 2 はキ ャ ッ プ形要素 と して形成 さ れ、 中心部に前部回 転軸受 1 4 a を支持す る 軸受孔を有 し、 後部フ ラ ン ジ 2 4 も 同様に キ ヤ ッ プ形要素 と して形成 さ れ、 中心部に後部回転軸 受 1 " を支持す る軸受孔を有 してい る し れ ら のケ一 シ ン グ 2 0 や前後の フ ラ ン ジ 2 2 、 2 は、 モ ー タ の外被要素を 形成 し、 後述す る液冷手段の冷却液を流動 さ せ る冷却液管路 を内部に具備 してス テ ー タ 1 6 、 π — タ 1 2 か ら奪熱作用を 行 う ので、 良好な熱伝導性を有 した金属材料、 即 ち、 好適な 材料 と して は 了 ル ミ 材料又は 了 ル ミ 合金材料に よ っ て形成 さ れ、 そ の場合、 機械加二法によ つ てケ — シ ン グ 2 0 や フ ラ ン ジ 2 2 、 2 4 を製造す る こ と も可能であ る が、 よ り 効果的な 方法と してはダイ キ ヤ ス ト 等によ る成形加ェによ り 製造する こ と がで き る。 なお、 モ ー タ の後部に はス テ ー タ 1 6 の一次 巻線 1 8 b に励磁電流を供給する ための端子箱 2 6 が装着 さ れてい る The liquid-cooled electric motor further includes a cylindrical casing 20 surrounding the outer periphery of the above-mentioned stator 16 and a cylindrical casing 20. A front flange 22 and a rear flange 2 are hermetically bonded to the front and rear ends. Here, the front The flange 22 is formed as a cap-shaped element, has a bearing hole in the center for supporting the front rotary bearing 14a, and the rear flange 24 similarly has a key. These casings 20 and the front and rear flanges are formed as cap-shaped elements and have a bearing hole in the center to support the rear rotating bearing 1 ". 22 and 2 form a casing element of the motor, and include therein a coolant pipe for flowing a coolant of a liquid cooling means to be described later, and the stator 16 and π — Since it acts to remove heat from the metal 12, it is formed of a metal material having good thermal conductivity, that is, a suitable material, namely, a luminous material or a luminous alloy material. In this case, it is possible to manufacture the casing 20 and the flanges 22 and 24 by the machine addition method, but a more effective method is possible. as The motor can be manufactured by molding and molding, etc. The exciting current is applied to the primary winding 18b of the stator 16 at the rear of the motor. Terminal box 26 for supply is installed
さ て、 第 1 図に示 した液冷型電動モ ー タ では、 液冷手段 と してモ ー タ 機外か ら導入する冷却液を後部 フ ラ ン ジ 2 4 の内 部に形成 した冷却液副管路 4 0 か ら導入 し、 筒形ケ 一 シ ン グ 2 0 に形成 した冷却液主管路 6 ϋ を経由 して前部フ ラ ン ジ 2 2 に形成さ れた冷却液副管路 8 0 に導き 、 同前部 フ ラ ン ジ 2 2 内の冷却液副管路 8 0 内を通過 してか ら再び筒形ケ — シ ン グ 2 0 の冷却液主管路 6 0 を経て後部 フ ラ ン ジ 2 4 の冷却液 副管路 4 0 に帰還さ せ る循環サ イ ク ルを経過 し、 こ のよ う な 循環サ イ ク ルを複数回遂行 してか ら後部フ ラ ン ジ 2 4 の冷却 液副管路 4 0 よ り モ ー タ 機外へ排出 し、 冷却液供給源へ還流 さ せる構成を有 してい る。 そ して、 冷却液が こ れ ら の筒形ケIn the liquid-cooled electric motor shown in FIG. 1, a cooling liquid introduced from outside the motor as a liquid cooling means is formed inside the rear flange 24. The cooling liquid sub-pipe introduced from the liquid sub-pipe 40 and formed in the front flange 22 via the cooling liquid main pipe 6 形成 formed in the cylindrical casing 20 To the channel 80, pass through the coolant sub-line 80 in the front flange 22, and then again through the coolant main line 60 of the cylindrical casing 20. After passing through the circulation cycle returning to the coolant sub-line 40 of the rear flange 24, such a circulation cycle is performed several times before the rear Drain the motor from the cooling liquid sub-line 40 of the flange 24 and return to the cooling liquid supply source It has a configuration to make it work. Then, the coolant is supplied to these cylindrical casings.
— シ ン グ 2 0 や前後部フ ラ ン ジ 2 2 、 2 4 を流動する間に、 ロ ー タ 1 2 及びス テ ー タ 1 6 で発生する銅損熱を奪熱 して冷 却 し、 かつ又前後の フ ラ ン ジ 2 2 、 2 4 では回転軸受 1 4 a 1 4 b の高速回転時に発生す る熱を奪熱、 冷却する作用を行 う 。 — While flowing through the ring 20 and the front and rear flanges 22 and 24, the copper loss heat generated in the rotor 12 and the stator 16 is removed and cooled. In addition, the front and rear flanges 22 and 24 have a function of removing heat generated during high-speed rotation of the rotary bearings 14a and 14b and cooling them.
さ て、 第 1 図と共に第 2 図を参照する と、 筒形ケ ー シ ン グ 2 0 は 4 隅を面取 り さ れた略四角形の筒形ケ ー シ ングを成 し てお り 、 ス テ 一 タ 1 6 の ス テ 一 タ コ ア 1 8 a を包み込むよ う に囲繞する外被構造を備えてい る。 そ して、 そ の 4 隅部に冷 却液主管路 6 0 を形成する 4 組の種形状 ( シ ー ド状) の断面 形状を有 した冷却管路 6 2 a , 6 2 b、 6 a , '6 4 b , 6 6 a , 6 6 b、 6 8 a , 6 8 b が形成さ れてい る。 これ ら の 4 組の冷却液管路 6 2 a か ら 6 8 b は何れもモー タ の軸線方 向に平行に貫通形成さ れ、 本実施例では、 モー タ 中心に対 し て点対称に 4 組が設け られてい る。 各組みの冷却液管路、 例 えば冷却液管路 6 2 a , 6 2 b の間に は後述する前後フ ラ ン ジ 2 2 、 2 4 をポル ト ね じで締結する場合のね じ孔 7 0 が形 成さ れてい る。 冷却液管路 6 2 a - 6 8 b は、 筒形ケ 一 シ ン グ 2 0 の加工段階で穿削ま たは成形加工 さ れ、 冷却液の円滑 な流動を可能にする よ う に路壁が滑 ら に形成さ れる。 ま た、 ケ 一 シ ン グ 2 D の前後端面は面粗度が R m a X = 1 ミ ク ロ ン 程度に仕上げ られ、 前後フ ラ ン ジ 2 2 、 2 4 と 0 リ ン グを介 しての密着、 結合性を高めて冷却液が こ れ らの端面での 〇 リ ン グ の密着不良か ら漏出 しな いよ う に さ れる。 上述 した面粗 度の細かい高精度面に仕上げる に は、 周知の丸駒バイ ト に よ る旋削、 ま た はバ二 シ ン グ ツ ー ルを用 いた旋削加工に よ れば 実現可能であ る こ と が確認 さ れてい る。 なお、 上述 した前後 フ ラ ン ジ 2 2 、 2 4 と 、 筒形ケ ー シ ン グ 2 0 の端面 と の密着 結合性を高め る構造に就いては、 後述す る前後 フ ラ ン ジ 2 2 2 4 に封止用 の 〇 リ ン グを装着 し、 両 フ ラ ン ジ 2 2 、 2 4 を ポル ト ね じ 1 0 0 (第 1 図参照) によ り 筒形ケ 一 シ ン グ 2 0 に締結する こ と に よ り 、 完全な封止、 密着性が得 られ、 冷却 液の防止を図 る こ と が可能に な る。 Referring now to FIG. 2 together with FIG. 1, the cylindrical casing 20 has a substantially rectangular cylindrical casing with four chamfered corners. An outer shell structure is provided so as to surround the stator core 18a of the stator 16 so as to surround it. Cooling lines 62a, 62b, 6a having four sets of seed shapes (seeds) that form cooling liquid main lines 60 at the four corners. , '64 b, 66 a, 66 b, 68 a, 68 b are formed. All of these four sets of coolant pipes 62 a to 68 b are formed so as to penetrate parallel to the motor axis direction, and in this embodiment, are point-symmetric with respect to the center of the motor. There are four sets. Screw holes for connecting the front and rear flanges 22 and 24 described later with port screws between the coolant lines of each set, for example, the coolant lines 62a and 62b. 70 is formed. The coolant lines 62-68 are drilled or formed during the machining of the cylindrical casing 20 so that the coolant can flow smoothly. The wall is formed smoothly. In addition, the front and rear end surfaces of the casing 2D are finished to have a surface roughness of about R max = 1 micron, and the front and rear flanges 22 and 24 and the 0 ring are interposed. In this way, the cooling liquid is prevented from leaking from the poor adhesion of the rings at these end faces by improving the close contact and bonding. Surface roughness described above To achieve a high-precision surface with a high degree of precision, turning using a well-known round piece byte or turning using a bailing tool can be realized. Confirmed. The structure for enhancing the tight bonding between the front and rear flanges 22 and 24 and the end surface of the cylindrical casing 20 is described below. Attach a sealing ring to 2 24, and connect both flanges 2 2, 2 4 to the cylindrical casing by using a port screw 100 (see Fig. 1). By fastening at 20, complete sealing and adhesion can be obtained, and it is possible to prevent the cooling liquid.
第 3 A図、 第 3 B 図を参照す る と 、 後部回転軸受 1 4 b を 支持する後部フ ラ ン ジ 2 4 に形成 さ れた冷却液副管路 4 0 を 構成する冷却液管路と 端面に形成さ れた封止用 0 リ ン グ 7 2 が図示さ れてい る。  Referring to FIG. 3A and FIG. 3B, the coolant line constituting the coolant sub line 40 formed in the rear flange 24 that supports the rear rotary bearing 14 b is shown. And a sealing 0-ring 72 formed on the end face.
本実施例では、 後部 フ ラ ン ジ 2 4 に冷却液の導入口 4 1 と 外被の冷却液管路を通過後の冷却液を排出す る 排出口 4 2 が 設け られ、 又、 導入口 4 1 か ら導入 さ れた冷却液が流動する 複数の冷却液管路が形成 さ れる こ と によ り 上記の冷却液副管 路 4 0 を構成 してい る。 即 ち、 冷却液副管路 4 0 は、 冷却液 管路 4 4 〜 5 4 に よ っ て構成さ れ、 冷却液管路 4 6 、 4 9 、 5 2 は後部フ ラ ン ジ 2 4 の辺に沿 っ て内部に延設 さ れた比較 的長尺の管路と して形成さ れ、 後部フ ラ ン ジ 2 4 の側面か ら ド リ ル等の工具で削設 さ れ、 閉塞端に はパイ プね じ 5 5 をね じ込むこ と に よ り 閉 じてい る 。 なお 4 隅部に形成さ れた冷却 液管路 4 4 , 4 5 、 4 7 , 4 8 、 5 0 , 5 1 、 5 3 , 5 4 等 は後部フ ラ ン ジ 2 4 の厚み方向 に削設 さ れる 比較的短い管路 であ る 。 In this embodiment, the rear flange 24 is provided with a coolant inlet 41 and an outlet 42 for discharging the coolant after passing through the coolant channel of the jacket. By forming a plurality of coolant channels in which the coolant introduced from 41 flows, the above-described coolant channel 40 is configured. That is, the coolant sub-line 40 is constituted by the coolant lines 44 to 54, and the coolant lines 46, 49, 52 are connected to the rear flange 24. It is formed as a comparatively long pipe extending inside along the side, and is cut from the side of the rear flange 24 with a tool such as a drill, and closed. The end is closed by screwing a pipe screw 55. The coolant lines 44, 45, 47, 48, 50, 51, 53, 54, etc. formed at the four corners are cut in the thickness direction of the rear flange 24. Relatively short pipeline installed It is.
他方、 筒形ケ 一 シ ン グ 2 0 に 、 こ の後部フ ラ ン ジ 2 4 が密 着さ れる端面、 即 ち、 第 3 B図の紙面に該当する面において 4 隅部に は種形状の凹所 5 6 が各対応の管路 4 4 , 4 5 、 4 7 , 4 8 、 5 0 , 5 1 、 5 3 , 5 4 を囲んで形成さ れ、 こ の 凹所 5 6 の縁に沿 っ て前述 した封止用 〇 リ ン グ 7 2 が装塡さ れてい る。 なお、 第 6 図に は上記冷却液管路を囲んで形成さ れた ω所 5 6 と 0 リ ン グ 7 2 と の関係を示す第 3 Β図の IV A 一 IV Α線に沿 う 断面が図示さ れてお り 、 0 リ ン グ 7 2 が筒形 ケ 一 シ ン グ 2 0 の端面に押 し付け られる と 、 封止機能を発揮 して各冷却液管路か ら の冷却液の漏れを防止する のであ る。 なお、 凹所 5 6 の加工は、 周知の機械加工工具であ る ェ ン ド ミ ルを用 いた フ ラ イ ス加工によ っ て面粗度が R m a x = 1 ミ ク 口 ン程度に簡単に形成する こ と が可能であ る。  On the other hand, the end face where the rear flange 24 is tightly attached to the cylindrical casing 20, that is, the seed shape is formed at the four corners on the surface corresponding to the paper surface of FIG. 3B. Recesses 56 are formed around the corresponding pipelines 44, 45, 47, 48, 50, 51, 53, 54, at the edges of the recesses 56. Along with the sealing ring 72 described above. FIG. 6 is a cross-sectional view taken along the line IVA-IV in FIG. 3 showing the relationship between the ω position 56 and the 0-ring 72 formed around the above-mentioned coolant line. When the 0 ring 72 is pressed against the end face of the cylindrical casing 20, the sealing function is exerted, and the cooling liquid from each cooling pipe is displayed. This prevents leaks from leaking. The machining of the recesses 56 is as simple as the surface roughness R max = 1 micron by flattening using end mill, a well-known machining tool. It is possible to form in.
ま た、 後部フ ラ ン ジ 2 4 を筒形ケ 一 シ ン グ 2 0 に締結する 際のボル ト ね じ 1 0 0 (第 1 図) を揷通する ための孔 5 7 も 形成さ れてい る。 なお、 後部フ ラ ン ジ 2 4 の中央部に は後部 回転軸受 1 4 b を支持する軸受穴 5 8 が形成さ れてい る こ と は言 う ま で も な い。  Also, a hole 57 is formed for passing the bolt screw 100 (FIG. 1) when the rear flange 24 is fastened to the cylindrical casing 20. ing. It goes without saying that a bearing hole 58 for supporting the rear rotary bearing 14b is formed in the center of the rear flange 24.
同様に、 第 4 A図 と第 4 B図と は前部フ ラ ン ジ 2 2 に形成 さ れた冷却液副管路 8 0 を構成する複数の冷却液管路 8 1 〜 9 7 を図示 し、 管路 8 2 、 8 3 、 8 6 、 8 7 、 9 1 、 9 2 、 9 5 、 9 6 等の閉塞端は、 前述と 同様のパイ プね じ 5 5 で閉 じ られてい る。 ま た特に第 4 A図側に 明示の如 く 、 筒形ケ ー シ ング 2 0 の前端面に衝合する端面に は、 前述の後部フ ラ ン ジ 2 4 の凹所 5 6 と 同様な凹所 9 6 が対応す る冷却液管路を 囲繞する よ う に削設、 形成 さ れ、 こ の凹所 9 6 に冷却液の漏 れ止め、 封止用 の 〇 リ ン グ 7 2 が装塡 さ れてい る。 Similarly, FIGS. 4A and 4B illustrate a plurality of coolant lines 81-97 that form a coolant sub-line 80 formed in the front flange 22. The closed ends of the pipelines 82, 83, 86, 87, 91, 92, 95, 96, etc. are closed with pipe threads 55 similar to those described above. Also, as clearly shown in FIG. 4A in particular, the end face of the cylindrical casing 20 which abuts against the front end face is provided with the aforementioned rear flange. A recess 96 similar to the recess 56 of the die 24 is cut and formed so as to surround the corresponding coolant line, and the coolant 96 is prevented from leaking into the recess 96. A sealing ring 72 is provided.
勿論、 こ の前部フ ラ ン ジ 2 2 に も 回転軸受 1 4 a を支持す る軸受孔 9 8 が具備 さ れ、 ま た、 ケ 一 シ ン グ 2 0 へ の締結用 のボル ト ね じ 1 0 0 が揷通 さ れる 貫通孔 9 7 が形成さ れてい る こ と は言 う ま で も ない。  Of course, the front flange 22 is also provided with a bearing hole 98 for supporting the rotary bearing 14a, and a bolt for fastening to the casing 20. It goes without saying that the through hole 97 through which the same 100 is passed is formed.
以上の構成を有 した筒形ケ ー シ ン グ 2 0 の冷却液主管路 6 0 、 前後 フ ラ ン ジ 2 2 、 2 4 の冷却液副管路 4 0 及び 8 0 を 設け る こ と に よ り 、 本実施例の液冷型電動モ ー タ は外部か ら 冷却液を導入 し、 外被要素であ る上記筒形ケ ー シ ン グ 2 0 、 前後フ ラ ン ジ 2 2 、 2 4 に 内蔵さ れた管路を流動 さ せ、 ロ ー タ 1 2 と ス テ ー タ 1 6 の銅損熱や回転時に 回転軸受 1 4 a 、 1 4 b で発生す る摩擦熱を奪熱 してモ ー タ 機体の冷却を達成 し、 かつ、 工作機械の主軸駆動源 と して直結使用 さ れる場合 も主軸を始め とする 工作機械側への伝'熱が防止さ れ、 こ れ ら 工作機械側の主軸等にお け る熱変形を防止でき る のであ る。  The cooling liquid main line 60 of the cylindrical casing 20 having the above configuration and the cooling liquid sub-lines 40 and 80 of the front and rear flanges 22 and 24 are provided. Therefore, in the liquid-cooled electric motor of this embodiment, the coolant is introduced from the outside, and the cylindrical casing 20 and the front and rear flanges 22, 2, which are the outer casing elements, are used. 4 to flow through the pipeline built in, to remove the copper loss heat of the rotor 12 and the stator 16 and the frictional heat generated by the rotary bearings 14a and 14b during rotation. In this way, the motor body can be cooled and the heat transfer to the machine tool, including the spindle, can be prevented even when it is used directly as the spindle drive source for the machine tool. This can prevent thermal deformation of the main spindle etc. on the machine tool side.
第 5 図は、 第 1 図に示 した液冷型電動モ ー タ にお け る冷却 液の流動経路だけを分か り 易 く す る ために取出 し図示 した冷 却液回路図であ る。 こ の第 5 図に示す冷却液体の回路図か ら 導入口 4 1 よ り 導入さ れた冷却液がモ ー タ 機体内の順次に サ ィ ク ル的に循環 して最終的に排出口 4 2 か ら排出 さ れる様子 が理解でき る 。 すなわ ち、 前後 フ ラ ン ジ 2 2 、 2 4 内 に形成 さ れた冷却液副管路 4 0 、 8 0 は筒形ケ 一 シ ン グ 2 0 の 4 隅 所に形成さ れた冷却液体主管路 6 0 を接続す る と 共に各 フ ラ ン ジ 2 2 、 2 4 を冷却 して回転軸受か ら発生する熱の奪熱を 行な う のであ る。 FIG. 5 is a coolant circuit diagram taken out and shown in order to make it easy to understand only the flow path of the coolant in the liquid-cooled electric motor shown in FIG. . From the circuit diagram of the cooling liquid shown in Fig. 5, the cooling liquid introduced from the inlet 41 circulates sequentially and cyclically in the motor body, and finally the outlet 4 You can see how it is discharged from 2. That is, the coolant sub-channels 40, 80 formed in the front and rear flanges 22, 24 are cooling formed in the four corners of the cylindrical casing 20. Connect the liquid main line 60 and It cools the flanges 22 and 24 and removes the heat generated from the rotating bearings.
第 7 A図は、 本実施例に係る液冷型電動モータ の冷却によ る効果を従来の空冷型電動モ ー タ と対比 して示 したダラ フ図 であ る。 又、 第 7 B図はモ ータ 機体の温度検出位置を示 して い る。 温度検出は、 従来も本発明 も共にモー タ の出力回転数 8 , O O O r p mで運転 してい る場合に検出を行な っ た場合 を示 してい る。 そ して、 ス テ 一 タ 、 ロ ータ の鋦損熱の奪熱効 果を検出する のに適 したケ一シ ングの一点と 回転軸受の発生 熱の奪熱効果を検出する のに適 した前部フ ラ ン ジの一点と を 温度検出点に選定 した測定結果がグラ フ表示さ れてい る。  FIG. 7A is a Darraf diagram showing the effect of cooling the liquid-cooled electric motor according to the present embodiment in comparison with a conventional air-cooled electric motor. FIG. 7B shows the temperature detection position of the motor body. The temperature detection indicates the case where the detection is performed when the motor is operated at the output rotation speed of the motor of 8 and OOOrpm in both the conventional and the present invention. One point of the casing suitable for detecting the heat loss effect of the heat loss of the stator and the rotor, and also suitable for detecting the heat loss effect of the generated heat of the rotary bearing. The measurement result of one of the front flanges and the selected temperature detection point is displayed in a graph.
同グ ラ フ か ら 明 らかなよ う に、 モータ は従来の空冷型電動 モー タ は 7 . 5 K w出力で運転時の温度上昇が時間の柽過 と 共に顕著であ る に も係わ らず、 本発明に依る液冷型電動モ 一 タ では、 1 8 . 5 K wの出力で運転時の温度上昇が従来の温 度曲線よ り 大幅に下部領域に あ り 、 冷却効果が顕著であ る こ とが理解でき る。 なお、 冷却液の温度変化 も参考に示さ れて い る o  As is evident from the graph, the motor used in the conventional air-cooled electric motor had a 7.5 kW output, and the temperature rise during operation was remarkable with time. However, in the liquid-cooled electric motor according to the present invention, the temperature rise during operation at an output of 18.5 Kw is much lower than the conventional temperature curve, and the cooling effect is remarkable. It can be understood that The change in temperature of the coolant is also shown for reference.o
上述の実施例では、 後部フ ラ ン ジ 2 4 か ら冷却液を導入 し モータ 外被の内部管路を循環後に再び、 後部フ ラ ン ジ 2 4 か ら冷却液を機外に排出す る構成に したが、 他の実施例 と して 必要に応 じて、 前部フ ラ ン ジ 2 2 や筒形ケ 一 シ ン グ 2 0 の適 所か ら冷却液を導入する よ う に して も良い こ と は言 う ま で も ない。  In the above-described embodiment, the coolant is introduced from the rear flange 24 and the coolant is discharged from the rear flange 24 again after circulating through the internal pipe of the motor casing. Although the configuration is adopted, as another embodiment, the coolant may be introduced from an appropriate position of the front flange 22 or the cylindrical casing 20 as necessary. Needless to say, it's okay.
以上の説明か ら 明 らかなよ う に、 本発明 によれば、 液冷型 電動モ ー タ において、 モ ー タ 機体の外被を形成する筒形ケ ー シ ン グ と 前後 フ ラ ン ジ と を軸方向に封止的に密着、 結合 し、 こ れ ら のケ 一 シ ン グ、 フ ラ ン ジの内部に冷却液の管路を形成 し た ので、 モ ー タ の発生熱、 特に、 ス テ ー タ 部の一次巻線に 供給さ れる一次電流によ る銅損、 ロ ー タ にお け る二次電流に よ る鋦損、 前後フ ラ ン ジで支持する 回転軸受が髙速回耘と共 に発生する摩擦熱等の発生熱を髙冷却率で冷却 し、 故に、 こ の種の誘導形モ ー タ を工作機械の主軸の駆動源に適用 して も 主軸に伝熱によ る熱変形を来す こ と な く 適用する こ と ができ る。 なお、 上記の筒形ケ 一 シ ン グと前後 フ ラ ン ジ と は熱良導 性の了 ル ミ 材又は了 ル ミ 合金材か ら成る ので、 奪熱作用の高 锥率化を助勢する のであ る。 As is clear from the above description, according to the present invention, the liquid cooling type In an electric motor, the cylindrical casing forming the outer casing of the motor body and the front and rear flanges are hermetically sealed and joined in the axial direction, and these casings are connected to each other. Since the cooling fluid conduit is formed inside the flange and flange, the heat generated by the motor, especially copper loss due to the primary current supplied to the primary winding of the stator section In addition, the rotary bearings, which are supported by the front and rear flanges, reduce the heat generated by secondary current in the rotor and the frictional heat generated with the high-speed tillage at a low cooling rate. Therefore, even if this type of induction motor is applied to the drive source of the spindle of a machine tool, it can be applied without causing thermal deformation due to heat transfer to the spindle. In addition, since the cylindrical casing and the front and rear flanges are made of a thermally conductive aluminum or aluminum alloy material, it helps to increase the efficiency of heat removal. It is.
又、 冷却液管路に お いて、 ケ 一 シ ン グ と前後フ ラ ン ジ と の 結合部は 〇 リ ン グを用 いた構造簡単に も係わ らず効果的な密 着、 封止機構を形成 してい る ので、 液漏れは確実に防止でき しかも、 必要に応 じて封止◦ リ ン グの交換等 も簡単に行な う こ と がで き る 。  Also, in the coolant line, the joint between the casing and the front and rear flanges is an effective sealing and sealing mechanism despite the simple structure using a ring. As a result, liquid leakage can be reliably prevented, and the sealing ring can be easily replaced if necessary.

Claims

請求の範囲 The scope of the claims
1 . 液冷型電動モ ー ダが、 1. The liquid-cooled electric mod
回転出力軸を有 した ロ ー タ と、  A rotor with a rotary output shaft,
前記ロ ー タ の周囲に設けたス テ ー タ と、  A stator provided around the rotor,
前記ス テ 一 タ の外周を丽繞す る よ う に設け られた熱良導性 の筒形ケ ー シ ン グ と  A thermally conductive cylindrical casing provided so as to surround the outer periphery of the stator; and
前記筒形ケ ー シ ン グの前後端面に封止、 密着さ れ、 前記回 転出力軸の軸受を保持 した前後両フ ラ ン ジ と 、  Front and rear flanges which are sealed and adhered to front and rear end surfaces of the cylindrical casing, and which hold the bearing of the rotary output shaft;
モ ー タ の発生熱を冷却液で冷却す る液冷手段と を具備 し、 前記液冷手段は、  Liquid cooling means for cooling the heat generated by the motor with a cooling liquid, wherein the liquid cooling means comprises:
,前記ス テ — タ の周縁複数箇所に分散配置さ れ、 軸方向に貫 通する複数の冷却液主管路と、  A plurality of coolant main pipes which are distributed and arranged at a plurality of peripheral edges of the stator and penetrate in the axial direction;
前記前後フ ラ ン ジに夫々 、 形成さ れ、 前記筒形ケ ー シ ング が有する前記複数の冷却液主管路に連通 した液通路と して設 け られ、 該複数の冷却液主管路の接続用 と共にモータ 機外か らの冷却液の導入及び排出用 と して設け られた複数の冷却液 副管路と を、  The plurality of coolant main pipes are formed in the front and rear flanges, respectively, and are provided as liquid passages communicating with the plurality of coolant main pipes of the cylindrical casing. And a plurality of coolant sub-channels provided for the introduction and discharge of coolant from outside the motor machine.
具備 して構成さ れ、 前記筒形ケ 一 シ ングと 前記前後フ ラ ン ジ とか ら成る モ ー タ 外被内部を流動する冷却液で冷却効果を得 る よ う に した こ と を特徴と した液冷型電動モ ー タ 。 A cooling effect is obtained by a cooling fluid flowing inside a motor casing comprising the cylindrical casing and the front and rear flanges. Liquid-cooled electric motor.
2 . 前記筒形ケ ー シ ングは、 4 つ の隅部を有 した角筒形状 の了 ル ミ 製ケ ー シ ン グか ら成 り 、 かつ、 該 4 隅部の内部に は 冷却液往路と冷却液復路と を包含 した各 1 組の前記冷却液主 管路が形成さ れ、 該全 4 組の前記冷却液主管路が順次に接続 さ れて冷却液回路を形成 してな り 、 前記前後 フ ラ ン ジの何れ か一方の フ ラ ン ジ に形成 さ れた複数の前記冷却液副管路の 1 つか ら導入 さ れた冷却液を第 1 組か ら第 4 組ま での前記 4 つ の冷却液主管路を順次に通過後に他の 1 つの冷却液副管路か らモ ー タ 機外へ排出する よ う に した こ と を特徴 と した請求項 1 に記載の液冷型電動モ ー タ 。 2. The cylindrical casing is made of a rectangular cylindrical casing having four corners, and a coolant outgoing passage is provided inside the four corners. And a return line for the coolant, each of which is provided with one set of the main coolant lines, and the four sets of the main coolant lines are sequentially connected. To form a cooling liquid circuit, and the cooling liquid introduced from one of the plurality of cooling liquid sub-channels formed in one of the front and rear flanges. After the liquid sequentially passes through the four coolant main lines from the first set to the fourth set, the liquid is discharged from the other one of the coolant sub-lines to the outside of the motor machine. The liquid-cooled electric motor according to claim 1, characterized in that:
3 . 前記前後フ ラ ン ジ は ア ル ミ 製フ ラ ン ジか ら成 り 、 前記 複数の冷却液副管路は、 前記回転主軸の軸受の周囲に配設さ れ、 該軸受の回転熱を奪熱する請求項 1 に記載の液冷型電動 モ ー タ 。  3. The front and rear flanges are made of aluminum flanges, and the plurality of coolant sub-channels are arranged around a bearing of the rotating main shaft, and a rotational heat of the bearing is provided. The liquid-cooled electric motor according to claim 1, wherein heat is removed from the motor.
4 . 前記前後フ ラ ン ジ は、 前記筒形ケ ー シ ン グの端面 と の 封止、 密着 さ れる面に、 前記冷却液副管路の入口又は出口を 囲繞する種形状の凹所を夫々 備え、 該凹所に は封止 リ ングが 装着さ れてい る請求項 1 に記載の液冷型電動モ ー タ 。  4. The front and rear flanges are provided with a seed-shaped recess surrounding the inlet or outlet of the coolant sub-channel on a surface to be sealed and adhered to the end surface of the cylindrical casing. 2. The liquid-cooled electric motor according to claim 1, wherein each of the recesses is provided with a sealing ring.
PCT/JP1992/000382 1991-03-29 1992-03-27 Liquid-cooled electric motor having pipe for cooling liquid inside motor housing WO1992017932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/66685 1991-03-29
JP3066685A JP2661805B2 (en) 1991-03-29 1991-03-29 Liquid-cooled motor with liquid-cooling pipe inside jacket

Publications (1)

Publication Number Publication Date
WO1992017932A1 true WO1992017932A1 (en) 1992-10-15

Family

ID=13323036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000382 WO1992017932A1 (en) 1991-03-29 1992-03-27 Liquid-cooled electric motor having pipe for cooling liquid inside motor housing

Country Status (2)

Country Link
JP (1) JP2661805B2 (en)
WO (1) WO1992017932A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726635A1 (en) * 1995-02-13 1996-08-14 Siemens Aktiengesellschaft Electrical machine
WO2007137917A1 (en) * 2006-05-26 2007-12-06 Siemens Aktiengesellschaft Drive system
JP2011529676A (en) * 2008-07-30 2011-12-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of manufacturing an electric machine and electric machine for a hybrid vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3759097B2 (en) 2002-10-24 2006-03-22 ファナック株式会社 Cooling jacket and motor equipped with cooling jacket
JP2004257499A (en) * 2003-02-27 2004-09-16 Pentax Corp Cooling structure of spindle device
JP5426232B2 (en) * 2009-05-18 2014-02-26 ファナック株式会社 Electric motor cooling jacket
JP6445598B2 (en) * 2017-01-25 2018-12-26 株式会社Schaft Water cooling motor structure and water cooling housing
CN113014050B (en) * 2020-05-08 2022-05-10 欧佩德伺服电机节能系统有限公司 Heat dissipation casing assembly for motor and manufacturing method
JP7465167B2 (en) 2020-07-20 2024-04-10 リョービ株式会社 Method for casting article material, casting product, and method for manufacturing casting product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121941A (en) * 1983-12-05 1985-06-29 Fanuc Ltd Liquid-cooled motor
JPH01198243A (en) * 1988-02-02 1989-08-09 Fanuc Ltd Duct joining structure for cooling liquid-cooled motor
JPH0255551A (en) * 1988-08-19 1990-02-23 Fanuc Ltd Liquid cooling motor coolant channel construction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121941A (en) * 1983-12-05 1985-06-29 Fanuc Ltd Liquid-cooled motor
JPH01198243A (en) * 1988-02-02 1989-08-09 Fanuc Ltd Duct joining structure for cooling liquid-cooled motor
JPH0255551A (en) * 1988-08-19 1990-02-23 Fanuc Ltd Liquid cooling motor coolant channel construction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726635A1 (en) * 1995-02-13 1996-08-14 Siemens Aktiengesellschaft Electrical machine
WO2007137917A1 (en) * 2006-05-26 2007-12-06 Siemens Aktiengesellschaft Drive system
US7893573B2 (en) 2006-05-26 2011-02-22 Siemens Aktiengesellschaft Drive system
JP2011529676A (en) * 2008-07-30 2011-12-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of manufacturing an electric machine and electric machine for a hybrid vehicle
US8424186B2 (en) 2008-07-30 2013-04-23 Robert Bosch Gmbh Method for manufacturing an electric machine by a lost foam casting process, and electric machine for a hybrid vehicle

Also Published As

Publication number Publication date
JPH04304145A (en) 1992-10-27
JP2661805B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US7322103B2 (en) Method of making a motor/generator cooling jacket
US7737585B2 (en) Electric machine with improved water cooling system
US7545060B2 (en) Method and apparatus for heat removal from electric motor winding end-turns
US5994804A (en) Air cooled dynamoelectric machine
US6772504B2 (en) Rotating machine with cooled hollow rotor bars
US5664916A (en) Cooling system for a motor spindle for a machine tool
JP2975178B2 (en) Rotor liquid-cooled rotating electric machine
US8067865B2 (en) Electric motor/generator low hydraulic resistance cooling mechanism
EP2632026B1 (en) Cooling jacket for axial flux machine
US6809441B2 (en) Cooling of electrical machines
JP2011015578A (en) Motor cooling device
JPH10327558A (en) Cooling device for motor
WO2004007982A1 (en) Magnetic bearing spindle
JP2001333559A (en) Motor stator
JPH04229049A (en) Liquid cooling of rotor for electric machine
WO1992017932A1 (en) Liquid-cooled electric motor having pipe for cooling liquid inside motor housing
JP2019176648A (en) Stator frame, stator, and rotary electric machine
JP5426232B2 (en) Electric motor cooling jacket
CN115296498A (en) Cooling structure, stator, axial magnetic field motor and assembling method
JP3538947B2 (en) Motor cooling device
CN115912734A (en) Axial magnetic field motor and stator cooling structure and manufacturing method thereof
CN115882622A (en) Axial magnetic field motor and stator cooling structure and manufacturing method thereof
JP2000197311A (en) Coil-cooling structure of a rotary electric machine
JP2007159286A (en) Linear motor
JP2707995B2 (en) Liquid cooled rotary electric machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE IT